1
|
X-Box Binding Protein 1 (XBP1): A Potential Role in Chemotherapy Response, Clinical Pathologic Features, Non-Inflamed Tumour Microenvironment for Breast Cancer. Biosci Rep 2022; 42:231292. [PMID: 35543228 PMCID: PMC9202509 DOI: 10.1042/bsr20220225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/17/2022] [Accepted: 04/04/2022] [Indexed: 12/09/2022] Open
Abstract
X-box binding protein 1 (XBP1) is mainly expressed in breast cancer (BC) in human cancers. Its tumorigenesis and favourable prognosis are contradictory, and its essential role in chemotherapeutic response and immunosuppression is unknown in BC. The study firstly identified XBP1 who received neoadjuvant chemotherapy (NAC) from GSE25055 and GSE24460. Associations between XBP1 expression and clinicopathological characteristics was investigated using Oncomine, TCGA, UALCAN and bc-GenExMiner. The prognostic value of XBP1 was assessed using the Kaplan–Meier Plotter, bc-GenExMiner, GSE25055, and GSE25056. Furthermore, we systematically correlated XBP1 and immunological characteristics in the BC tumour microenvironment (TME) using TISIDB, TIMER, GSE25055, GSE25056 and TCGA dataset. Finally, an essential role of XBP1 in chemotherapy response was evaluated based on GSE25055, GSE25065, GSE24460, GSE5846, ROC Plotter and CELL databases. Furthermore, XBP1 mRNA expression levels were obviously highest in BC among human cancers and were significantly related to a good prognosis. In addition, XBP1 mRNA and protein levels were higher in the luminal subtype than in normal tissues and basal-like subtype, which might be attributed to membrane transport-related processes. Apart from BC, negative immunological correlations of XBP1 were not observed in other malignancies. XBP1 might shape the non-inflamed TME in BC. Finally, XBP1 expression was higher in chemo-resistive than chemo-sensitive cases, it had a predictive value and could independently predict chemotherapy response in BC patients receiving NAC. Our study suggests that the essential role of XBP1 in clinical pathologic features, non-inflamed TME, chemotherapy response in BC.
Collapse
|
2
|
FGF/FGFR-Dependent Molecular Mechanisms Underlying Anti-Cancer Drug Resistance. Cancers (Basel) 2021; 13:cancers13225796. [PMID: 34830951 PMCID: PMC8616288 DOI: 10.3390/cancers13225796] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Deregulation of the FGF/FGFR axis is associated with many types of cancer and contributes to the development of chemoresistance, limiting the effectiveness of current treatment strategies. There are several mechanisms involved in this phenomenon, including cross-talks with other signaling pathways, avoidance of apoptosis, stimulation of angiogenesis, and initiation of EMT. Here, we provide an overview of current research and approaches focusing on targeting components of the FGFR/FGF signaling module to overcome drug resistance during anti-cancer therapy. Abstract Increased expression of both FGF proteins and their receptors observed in many cancers is often associated with the development of chemoresistance, limiting the effectiveness of currently used anti-cancer therapies. Malfunctioning of the FGF/FGFR axis in cancer cells generates a number of molecular mechanisms that may affect the sensitivity of tumors to the applied drugs. Of key importance is the deregulation of cell signaling, which can lead to increased cell proliferation, survival, and motility, and ultimately to malignancy. Signaling pathways activated by FGFRs inhibit apoptosis, reducing the cytotoxic effect of some anti-cancer drugs. FGFRs-dependent signaling may also initiate angiogenesis and EMT, which facilitates metastasis and also correlates with drug resistance. Therefore, treatment strategies based on FGF/FGFR inhibition (using receptor inhibitors, ligand traps, monoclonal antibodies, or microRNAs) appear to be extremely promising. However, this approach may lead to further development of resistance through acquisition of specific mutations, metabolism switching, and molecular cross-talks. This review brings together information on the mechanisms underlying the involvement of the FGF/FGFR axis in the generation of drug resistance in cancer and highlights the need for further research to overcome this serious problem with novel therapeutic strategies.
Collapse
|
3
|
Chen L, Qi H, Zhang L, Li H, Shao J, Chen H, Zhong M, Shi X, Ye T, Li Q. Effects of FGFR gene polymorphisms on response and toxicity of cyclophosphamide-epirubicin-docetaxel-based chemotherapy in breast cancer patients. BMC Cancer 2018; 18:1038. [PMID: 30359238 PMCID: PMC6202826 DOI: 10.1186/s12885-018-4951-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 10/15/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The chemotherapy resistance and toxicity of chemotherapy are major problems in breast cancer treatment. However, candidate biomarkers for predicting clinical outcomes and better prognosis remain lacking. METHODS In this study, we analyzed possible impact of 8 genetic variants of fibroblast growth factor receptor1-4 (FGFR1-4) on the treatment response and toxicities in 211 breast cancer patients. DNA was extracted from peripheral blood cells, and the genotypes were examined using the TaqMan Pre-Designed SNP Genotyping Assays. RESULTS The FGFR4 rs1966265 and FGFR2 rs2981578 contributed to clinical outcome of breast cancer treated with docetaxel-epirubicin-cyclophosphamide (CET)-based chemotherapy. For rs1966265, AA genotype had significant correlation with the clinical response to neoadjuvant chemotherapy (NCT) when compared with GG and AG/GG genotype (P = 0.019 and P = 0.004, respectively). Moreover, A allele of FGFR2 rs2981578 had significant rates of response (P = 0.025). In addition, rs2420946 CC genotype was associated with higher frequency of toxicities compared with TT and CT/TT genotypes (P = 0.038 and P = 0.019, respectively). Also, rs2981578 AG genotype showed higher frequency of toxicities compared with GG genotype (P < 0.0001). CONCLUSIONS The results suggest these polymorphisms, especially rs1966265 and rs2981578, might be candidate pharmacogenomics factors to the response and prognosis prediction for individualized CET-based chemotherapy in breast cancer patients.
Collapse
Affiliation(s)
- Lu Chen
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Huijie Qi
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Liudi Zhang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Haixia Li
- Department of Pathology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Jie Shao
- Department of General Surgery, Huashan Hospital North, Fudan University, Shanghai, China
| | - Haifei Chen
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Mingkang Zhong
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaojin Shi
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Ting Ye
- Nursing Department, Huashan Hospital, Fudan University, Shanghai, China.
| | - Qunyi Li
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Cheng CL, Thike AA, Tan SYJ, Chua PJ, Bay BH, Tan PH. Expression of FGFR1 is an independent prognostic factor in triple-negative breast cancer. Breast Cancer Res Treat 2015; 151:99-111. [DOI: 10.1007/s10549-015-3371-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/03/2015] [Indexed: 12/20/2022]
|
5
|
Bedussi F, Bottini A, Memo M, Fox SB, Sigala S, Generali D. Targeting fibroblast growth factor receptor in breast cancer: a promise or a pitfall? Expert Opin Ther Targets 2014; 18:665-78. [PMID: 24833241 DOI: 10.1517/14728222.2014.898064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Fibroblast growth factors (FGFs) along with their receptors (FGFRs) are involved in several cellular functions, from embryogenesis to metabolism. Because of the ability of FGFR signalling to induce cell proliferation, migration and survival in cancer, these have been found to become overactivated by several mechanisms, including gene amplification, chromosomal translocation and mutations. New evidences indicate that FGFs and FGFRs may act in an oncogenic fashion to promote multiple steps of cancer progression by inducing mitogenic and survival signals, as well as promoting epithelial-to-mesenchymal transition, invasion and tumour angiogenesis. This review focuses on the predictive and prognostic role of FGFRs, the role of FGFR signalling and how it may be most appropriately therapeutically targeted in breast cancer. AREAS COVERED Activation of the FGFR pathway is a common event in many cancer types and for this reason FGFR is an important potential target in cancer treatment. Relevant literature was reviewed to identify current and future role of FGFR family as a possible guide for selecting those patients who would be poor or good responders to the available or the upcoming target therapies for breast cancer treatment. EXPERT OPINION The success of a personalised medicine approach using targeted therapies ultimately depends on being capable of identifying the patients who will benefit the most from any given drug. Outlining the molecular mechanisms of FGFR signalling and discussing the role of this pathway in breast cancer, we would like to endorse the incorporation of specific patient selection biomakers with the rationale for therapeutic intervention with FGFR-targeted therapy in breast cancer.
Collapse
Affiliation(s)
- Francesca Bedussi
- University of Brescia Medical School, Department of Molecular and Translational Medicine, Section of Pharmacology , Brescia , Italy
| | | | | | | | | | | |
Collapse
|
6
|
Lee HJ, Seo AN, Park SY, Kim JY, Park JY, Yu JH, Ahn JH, Gong G. Low Prognostic Implication of Fibroblast Growth Factor Family Activation in Triple-negative Breast Cancer Subsets. Ann Surg Oncol 2014; 21:1561-8. [DOI: 10.1245/s10434-013-3456-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Indexed: 01/17/2023]
|
7
|
Tessari A, Palmieri D, Di Cosimo S. Overview of diagnostic/targeted treatment combinations in personalized medicine for breast cancer patients. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2013; 7:1-19. [PMID: 24403841 PMCID: PMC3883531 DOI: 10.2147/pgpm.s53304] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Breast cancer includes a body of molecularly distinct subgroups, characterized by different presentation, prognosis, and sensitivity to treatments. Significant advances in our understanding of the complex architecture of this pathology have been achieved in the last few decades, thanks to new biotechnologies that have recently come into the research field and the clinical practice, giving oncologists new instruments that are based on biomarkers and allowing them to set up a personalized approach for each individual patient. Here we review the main treatments available or in preclinical development, the biomolecular diagnostic and prognostic approaches that changed our perspective about breast cancer, giving an overview of targeted therapies that represent the current standard of care for these patients. Finally, we report some examples of how new technologies in clinical practice can set in motion the development of new drugs.
Collapse
Affiliation(s)
- Anna Tessari
- Division of Medical Oncology 1, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Dario Palmieri
- Molecular Biology and Cancer Genetics, Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Serena Di Cosimo
- Division of Medical Oncology 1, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
8
|
Soreq L, Bergman H, Israel Z, Soreq H. Deep brain stimulation modulates nonsense-mediated RNA decay in Parkinson's patients leukocytes. BMC Genomics 2013; 14:478. [PMID: 23865419 PMCID: PMC3723527 DOI: 10.1186/1471-2164-14-478] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 07/12/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Nonsense-Mediated decay (NMD) selectively degrades mRNA transcripts that carry premature stop codons. NMD is often triggered by alternative splicing (AS) modifications introducing such codons. NMD plays an important regulatory role in brain neurons, but the in vivo dynamics of AS and NMD changes in neurological diseases and under treatment were scarcely explored. RESULTS Here, we report exon arrays analysis of leukocyte mRNA AS events prior to and following Deep Brain Stimulation (DBS) neurosurgery, which efficiently improves the motor symptoms of Parkinson's disease (PD), the leading movement disorder, and is increasingly applied to treat other diseases. We also analyzed publicly available exon array dataset of whole blood cells from mixed early and advanced PD patients. Our in-house exon array dataset of leukocyte transcripts was derived from advanced PD patients' pre- and post-DBS stimulation and matched healthy control volunteers. The mixed cohort exhibited 146 AS changes in 136 transcripts compared to controls, including 9 NMD protein-level assessed events. In comparison, PD patients from our advanced cohort differed from healthy controls by 319 AS events in 280 transcripts, assessed as inducing 27 protein-level NMD events. DBS stimulation induced 254 AS events in 229 genes as compared to the pre-DBS state including 44 NMD inductions. A short, one hour electrical stimulus cessation caused 234 AS changes in 125 genes compared to ON-stimulus state, 22 of these were assessed for NMD. Functional analysis highlighted disease-induced DNA damage and inflammatory control and its reversal under ON and OFF stimulus as well as alternative splicing in all the tested states. CONCLUSIONS The study findings indicate a potential role for NMD both in PD and following electrical brain stimulation. Furthermore, our current observations entail future implications for developing therapies for PD, and for interfering with the impaired molecular mechanisms that underlie PD and other neurodegenerative and neurological disorders, as well as DBS-treatable conditions in general.
Collapse
Affiliation(s)
- Lilach Soreq
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada, Hadassah Medical School, The Hebrew University, Jerusalem, Israel
| | - Hagai Bergman
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada, Hadassah Medical School, The Hebrew University, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Zvi Israel
- Center for Functional & Restorative Neurosurgery, Department of Neurosurgery, Hadassah University Hospital, Jerusalem, Israel
| | - Hermona Soreq
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem 91904, Israel
- The Department of Biological Chemistry, The Life Sciences Institute, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
9
|
Brunello E, Brunelli M, Bogina G, Caliò A, Manfrin E, Nottegar A, Vergine M, Molino A, Bria E, Massari F, Tortora G, Cingarlini S, Pedron S, Chilosi M, Zamboni G, Miller K, Martignoni G, Bonetti F. FGFR-1 amplification in metastatic lymph-nodal and haematogenous lobular breast carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2012; 31:103. [PMID: 23270564 PMCID: PMC3542523 DOI: 10.1186/1756-9966-31-103] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 12/20/2012] [Indexed: 01/31/2023]
Abstract
BACKGROUND Lobular breast carcinoma usually shows poor responsiveness to chemotherapies and often lacks targeted therapies. Since FGFR1 expression has been shown to play pivotal roles in primary breast cancer tumorigenesis, we sought to analyze the status of FGFR1 gene in a metastatic setting of lobular breast carcinoma, since promising FGFR1 inhibitors has been recently developed. METHODS Fifteen tissue metastases from lobular breast carcinomas with matched primary infiltrative lobular breast carcinoma were recruited. Eleven cases showed loco-regional lymph-nodal and four haematogenous metastases.FGFR-1 gene (8p12) amplification was evaluated by chromogenic in situ hybridization (CISH) analysis. Her-2/neu and topoisomerase-IIα gene status was assessed. E-cadherin and Hercept Test were also performed. We distinguished amplification (>6 or cluster of signals) versus gains (3-6 signals) of the locus specific FGFR-1 gene. RESULTS Three (20%) primary lobular breast carcinomas showed >6 or cluster of FGFR1 signals (amplification), six cases (40%) had a mean of three (range 3-6) chromogenic signals (gains) whereas in 6 (40%) was not observed any abnormality. Three of 15 metastasis (20%) were amplified, 2/15 (13,4%) did not. The ten remaining cases (66,6%) showed three chromogenic signals.The three cases with FGFR-1 amplification matched with those primary breast carcinomas showing FGFR-1 amplification. The six cases showing FGFR-1 gains in the primary tumour again showed FGFR-1 gains in the metastases. Four cases showed gains of FGFR-1 gene signals in the metastases and not in the primary tumours. Her-2/neu gene amplification was not observed in all cases but one (6%) case. Topoisomerase-IIα was not amplified in all cases. CONCLUSIONS 1) a subset of metastatic lobular breast carcinoma harbors FGFR-1 gene amplification or gains of chromogenic signals; 2) a minor heterogeneity has been observed after matching primary and metastatic carcinomas; 3) in the era of tailored therapies, patients affected by the lobular subtype of breast carcinoma with FGFR1 amplification could be approached to the new target biological therapy such as emerging FGFR-1 inhibitors.
Collapse
Affiliation(s)
- Eleonora Brunello
- Department of Pathology and Diagnostic, University of Verona, Verona, 37134, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|