1
|
Moretti Rozalem N, de Moura Moreira B, Pimentel Braz I, Caroline de Oliveira Barretto I, Ayumi Zanoni Chiba AL, Augusta Grigoli Dominato A, Moraes FCAD. CYP450 Gene Polymorphisms and the Risk of Taxane-Induced Neurotoxicity in Breast Cancer Patients: A Systematic Review and Meta-Analysis. Biomarkers 2025:1-17. [PMID: 40560854 DOI: 10.1080/1354750x.2025.2522892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 05/11/2025] [Indexed: 06/28/2025]
Abstract
BACKGROUND Breast cancer (BC) is the most common cancer in women. Taxanes are widely used, but their neurotoxicity affects patients' quality of life. Genetic polymorphisms in CYP450 enzymes influence taxane metabolism, leading to variability in toxicity risk. METHODS A literature search was conducted to identify studies on the association between CYP450 polymorphisms and Taxane-Induced Peripheral Neuropathy (TIPN) in BC patients. Odds ratios (OR) and hazard ratios (HR) with 95% confidence intervals (CI) were estimated using a random-effects model in RStudio. RESULTS Nine studies with 3034 patients were included. Overall CYP polymorphisms showed a significant association with TIPN (OR: 1.2877, 95% CI: 1.0262-1.6157). CYP1B1 polymorphism had an inconsistent link to TIPN by OR of 1.1524 (95% CI: 0.7441-1.7849). CYP2C8 polymorphism demonstrated the strongest association (OR: 1.5532, 95% CI: 1.2013-2.0082; HR: 1.5236, 95% CI: 1.1317-2.0512). CYP3A4 showed no significant association (OR: 1.0988, 95% CI: 0.5022-2.4404). CONCLUSIONS CYP2C8 polymorphisms were significantly linked to TIPN. While CYP1B1 showed inconsistent results, CYP3A4 had no significant association. These findings imply that CYP2C8 genetic variations may affect taxane metabolism and neurotoxicity risk, indicating that pharmacogenomic profiling could help personalize chemotherapy and reduce adverse effects.
Collapse
|
2
|
Kicken MP, Deenen MJ, van der Wekken AJ, van den Borne BEEM, van den Heuvel MM, Ter Heine R. Opportunities for Precision Dosing of Cytotoxic Drugs in Non-Small Cell Lung Cancer: Bridging the Gap in Precision Medicine. Clin Pharmacokinet 2025; 64:511-531. [PMID: 40045151 PMCID: PMC12041064 DOI: 10.1007/s40262-025-01492-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2025] [Indexed: 04/30/2025]
Abstract
Precision dosing of classical cytotoxic drugs in oncology remains underdeveloped, especially in treating non-small cell lung cancer (NSCLC). Despite advancements in targeted therapy and immunotherapy, classical cytotoxic agents continue to play a critical role in NSCLC treatment. However, the current body surface area (BSA)-based dosing of these agents fails to adequately address interindividual variability in pharmacokinetics. By better considering patient characteristics, treatment outcomes can be improved, reducing risks of under-exposure and over-exposure. This narrative review explores opportunities for precision dosing for key cytotoxic agents used in NSCLC treatment: cisplatin, carboplatin, pemetrexed, docetaxel, (nab-)paclitaxel, gemcitabine, and vinorelbine. A comprehensive review of regulatory reports and an extensive literature search were conducted to evaluate current dosing practices, pharmacokinetics, pharmacodynamics, and exposure-response relationships. Our findings highlight promising developments in precision dosing, although the number of directly implementable strategies remains limited. The most compelling evidence supports using the biomarker cystatin C for more precise carboplatin dosing and adopting weekly dosing schedules for docetaxel, paclitaxel, and nab-paclitaxel. Additionally, we recommend direct implementation of therapeutic drug monitoring (TDM)-guided dosing for paclitaxel. This review stresses the urgent need to reassess conventional dosing paradigms for classical cytotoxic agents to better align with the principles of the precision dosing framework. Our recommendations show the potential of precision dosing to improve NSCLC treatment, addressing gaps in the current dosing of classical cytotoxic drugs. Given the large NSCLC patient population, optimising the dosing of these agents could significantly improve treatment outcomes and reduce toxicity for many patients.
Collapse
Affiliation(s)
- M P Kicken
- Department of Clinical Pharmacy, Catharina Hospital, Michelangelolaan 2, 5623 EJ, Eindhoven, The Netherlands.
- Department of Pharmacy, Radboudumc, Research Institute for Medical Innovation, Nijmegen, The Netherlands.
| | - M J Deenen
- Department of Clinical Pharmacy, Catharina Hospital, Michelangelolaan 2, 5623 EJ, Eindhoven, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Centre, Leiden, The Netherlands
| | - A J van der Wekken
- Department of Pulmonology and Tuberculosis, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | | | - M M van den Heuvel
- Department of Pulmonology, Radboudumc, Research Institute for Medical Innovation, Nijmegen, The Netherlands
- Department of Pulmonology, University Medical Center, Utrecht, The Netherlands
| | - R Ter Heine
- Department of Pharmacy, Radboudumc, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Wu X, Xiong H. The Role of Pharmacogenetic-Based Pharmacokinetic Analysis in Precise Breast Cancer Treatment. Pharmaceutics 2024; 16:1407. [PMID: 39598531 PMCID: PMC11597240 DOI: 10.3390/pharmaceutics16111407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/19/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Given the high prevalence of breast cancer and the diverse genetic backgrounds of patients, a growing body of research emphasizes the importance of pharmacogenetic-based pharmacokinetic analysis in optimizing treatment outcomes. The treatment of breast cancer involves multiple drugs whose metabolism and efficacy are influenced by individual genetic variations. Genetic polymorphisms in drug-metabolizing enzymes and transport proteins are crucial in the regulation of pharmacokinetics. Our review aims to investigate the opportunities and challenges of pharmacogenomic-based pharmacokinetic analysis as a precision medicine tool in breast cancer management.
Collapse
Affiliation(s)
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
| |
Collapse
|
4
|
Shen F, Jiang G, Philips S, Gardner L, Xue G, Cantor E, Ly RC, Osei W, Wu X, Dang C, Northfelt D, Skaar T, Miller KD, Sledge GW, Schneider BP. Cytochrome P450 Oxidoreductase (POR) Associated with Severe Paclitaxel-Induced Peripheral Neuropathy in Patients of European Ancestry from ECOG-ACRIN E5103. Clin Cancer Res 2023; 29:2494-2500. [PMID: 37126018 PMCID: PMC10411392 DOI: 10.1158/1078-0432.ccr-22-2431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/06/2022] [Accepted: 04/25/2023] [Indexed: 05/02/2023]
Abstract
PURPOSE Paclitaxel is a widely used anticancer therapeutic. Peripheral neuropathy is the dose-limiting toxicity and negatively impacts quality of life. Rare germline gene markers were evaluated for predicting severe taxane-induced peripheral neuropathy (TIPN) in the patients of European ancestry. In addition, the impact of Cytochrome P450 (CYP) 2C8, CYP3A4, and CYP3A5 metabolizer status on likelihood of severe TIPN was also assessed. EXPERIMENTAL DESIGN Whole-exome sequencing analyses were performed in 340 patients of European ancestry who received a standard dose and schedule of paclitaxel in the adjuvant, randomized phase III breast cancer trial, E5103. Patients who experienced grade 3-4 (n = 168) TIPN were compared to controls (n = 172) who did not experience TIPN. For the analyses, rare variants with a minor allele frequency ≤ 3% and predicted to be deleterious by protein prediction programs were retained. A gene-based, case-control analysis using SKAT was performed to identify genes that harbored an imbalance of deleterious variants associated with increased risk of severe TIPN. CYP star alleles for CYP2C8, CYP3A4, and CYP3A5 were called. An additive logistic regression model was performed to test the association of CYP2C8, CYP3A4, and CYP3A5 metabolizer status with severe TIPN. RESULTS Cytochrome P450 oxidoreductase (POR) was significantly associated with severe TIPN (P value = 1.8 ×10-6). Six variants were predicted to be deleterious in POR. There were no associations between CYP2C8, CYP3A4, or CYP3A5 metabolizer status with severe TIPN. CONCLUSIONS Rare variants in POR predict an increased risk of severe TIPN in patients of European ancestry who receive paclitaxel.
Collapse
Affiliation(s)
- Fei Shen
- Indiana University School of Medicine, Indianapolis, Indiana
| | - Guanglong Jiang
- Indiana University School of Medicine, Indianapolis, Indiana
| | - Santosh Philips
- Indiana University School of Medicine, Indianapolis, Indiana
| | - Laura Gardner
- Indiana University School of Medicine, Indianapolis, Indiana
| | - Gloria Xue
- Indiana University School of Medicine, Indianapolis, Indiana
| | - Erica Cantor
- Indiana University School of Medicine, Indianapolis, Indiana
| | - Reynold C. Ly
- Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Xi Wu
- Indiana University School of Medicine, Indianapolis, Indiana
| | - Chau Dang
- Memorial Sloan Kettering Cancer center, New York, New York
| | | | - Todd Skaar
- Indiana University School of Medicine, Indianapolis, Indiana
| | - Kathy D. Miller
- Indiana University School of Medicine, Indianapolis, Indiana
| | | | | |
Collapse
|
5
|
McEvoy L, Cliff J, Carr DF, Jorgensen A, Lord R, Pirmohamed M. CYP3A genetic variation and taxane-induced peripheral neuropathy: a systematic review, meta-analysis, and candidate gene study. Front Pharmacol 2023; 14:1178421. [PMID: 37469869 PMCID: PMC10352989 DOI: 10.3389/fphar.2023.1178421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023] Open
Abstract
Background: Taxane-induced peripheral neuropathy (TIPN) is an important cause of premature treatment cessation and dose-limitation in cancer therapy. It also reduces quality of life and survivorship in affected patients. Genetic polymorphisms in the CYP3A family have been investigated but the findings have been inconsistent and contradictory. Methods: A systematic review identified 12 pharmacogenetic studies investigating genetic variation in CYP3A4*22 and CYP3A5*3 and TIPN. In our candidate gene study, 288 eligible participants (211 taxane participants receiving docetaxel or paclitaxel, and 77 control participants receiving oxaliplatin) were successfully genotyped for CYP3A4*22 and CYP3A5*3. Genotyping data was transformed into a combined CYP3A metaboliser phenotype: Poor metabolisers, intermediate metabolisers and extensive metabolisers. Individual genotypes and combined CYP3A metaboliser phenotypes were assessed in relation to neurotoxicity, including by meta-analysis where possible. Results: In the systematic review, no significant association was found between CYP3A5*3 and TIPN in seven studies, with one study reporting a protective association. For CYP3A4*22, one study has reported an association with TIPN, while four other studies failed to show an association. Evaluation of our patient cohort showed that paclitaxel was found to be more neurotoxic than docetaxel (p < 0.001). Diabetes was also significantly associated with the development of TIPN. The candidate gene analysis showed no significant association between either SNP (CYP3A5*3 and CYP3A4*22) and the development of TIPN overall, or severe TIPN. Meta-analysis showed no association between these two variants and TIPN. Transformed into combined CYP3A metaboliser phenotypes, 30 taxane recipients were poor metabolisers, 159 were intermediate metabolisers, and 22 were extensive metabolisers. No significant association was observed between metaboliser status and case-control status. Summary: We have shown that the risk of peripheral neuropathy during taxane chemotherapy is greater in patients who have diabetes. CYP3A genotype or phenotype was not identified as a risk factor in either the candidate gene analysis or the systematic review/meta-analysis, although we cannot exclude the possibility of a minor contribution, which would require a larger sample size.
Collapse
Affiliation(s)
- Laurence McEvoy
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Joanne Cliff
- Clatterbridge Cancer Centre, Liverpool, United Kingdom
| | - Daniel F Carr
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Andrea Jorgensen
- Health Data Science, University of Liverpool, Liverpool, United Kingdom
| | - Rosemary Lord
- Clatterbridge Cancer Centre, Liverpool, United Kingdom
| | - Munir Pirmohamed
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
6
|
Johnson KB, Sharma A, Henry NL, Wei M, Bie B, Hershberger CE, Rhoades EE, Sen A, Johnson RE, Steenblik J, Hockings J, Budd GT, Eng C, Foss J, Rotroff DM. Genetic variations that influence paclitaxel pharmacokinetics and intracellular effects that may contribute to chemotherapy-induced neuropathy: A narrative review. FRONTIERS IN PAIN RESEARCH 2023; 4:1139883. [PMID: 37251592 PMCID: PMC10214418 DOI: 10.3389/fpain.2023.1139883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/05/2023] [Indexed: 05/31/2023] Open
Abstract
Taxanes, particularly paclitaxel and docetaxel, are chemotherapeutic agents commonly used to treat breast cancers. A frequent side effect is chemotherapy-induced peripheral neuropathy (CIPN) that occurs in up to 70% of all treated patients and impacts the quality of life during and after treatment. CIPN presents as glove and stocking sensory deficits and diminished motor and autonomic function. Nerves with longer axons are at higher risk of developing CIPN. The causes of CIPN are multifactorial and poorly understood, limiting treatment options. Pathophysiologic mechanisms can include: (i) disruptions of mitochondrial and intracellular microtubule functions, (ii) disruption of axon morphology, and (iii) activation of microglial and other immune cell responses, among others. Recent work has explored the contribution of genetic variation and selected epigenetic changes in response to taxanes for any insights into their relation to pathophysiologic mechanisms of CIPN20, with the hope of identifying predictive and targetable biomarkers. Although promising, many genetic studies of CIPN are inconsistent making it difficult to develop reliable biomarkers of CIPN. The aims of this narrative review are to benchmark available evidence and identify gaps in the understanding of the role genetic variation has in influencing paclitaxel's pharmacokinetics and cellular membrane transport potentially related to the development of CIPN.
Collapse
Affiliation(s)
- Ken B. Johnson
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, United States
| | - Anukriti Sharma
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - N. Lynn Henry
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Mei Wei
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Bihua Bie
- Department of Anesthesiology, Cleveland Clinic, Cleveland, OH, United States
| | - Courtney E. Hershberger
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Emily E. Rhoades
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Alper Sen
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, United States
| | - Ryan E. Johnson
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, United States
| | - Jacob Steenblik
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, United States
| | - Jennifer Hockings
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Pharmacy, Cleveland Clinic, Cleveland, OH, United States
| | - G. Thomas Budd
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Joseph Foss
- Department of Anesthesiology, Cleveland Clinic, Cleveland, OH, United States
| | - Daniel M. Rotroff
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Endocrinology and Metabolism Institute, Cleveland Clinic, Cleveland, OH, United States
- Center for Quantitative Metabolic Research, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
7
|
Scudeler MM, Manóchio C, Braga Pinto AJ, Santos Cirino HD, da Silva CS, Rodrigues-Soares F. Breast cancer pharmacogenetics: a systematic review. Pharmacogenomics 2023; 24:107-122. [PMID: 36475975 DOI: 10.2217/pgs-2022-0144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Breast cancer was declared the most prevalent type of cancer in 2020. Among other factors, treatment response can be affected by genetic polymorphisms - which is the focus of pharmacogenetics - and ethnicity is also a contributing factor in this context. Relevant genes in disease treatment pathways were selected to evaluate treatment response from the pharmacogenetic perspective; polymorphism frequencies and ethnic and continental representation across the available literature were also assessed through a systematic review. The identified associations and gaps have been described in this study with the purpose that, in the future, treatments can be personalized and thus be more effective, safer, and accessible to all.
Collapse
Affiliation(s)
- Mariana M Scudeler
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, 38025-350, Brazil
| | - Caíque Manóchio
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, 38025-350, Brazil
| | - Alex J Braga Pinto
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, 38025-350, Brazil
| | - Heithor Dos Santos Cirino
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, 38025-350, Brazil.,Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Cléber S da Silva
- Departamento de Ginecologia e Obstetrícia, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, 38025-350, Brazil.,Departamento de Cirurgia de Mama, Hospital Hélio Angotti, Uberaba, Minas Gerais, 38010-180, Brazil
| | - Fernanda Rodrigues-Soares
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, 38025-350, Brazil
| |
Collapse
|
8
|
Guijosa A, Freyria A, Espinosa‐Fernandez JR, Estrada‐Mena FJ, Armenta‐Quiroga AS, Ortega‐Treviño MF, Catalán R, Antonio‐Aguirre B, Villarreal‐Garza C, Perez‐Ortiz AC. Pharmacogenetics of taxane-induced neurotoxicity in breast cancer: Systematic review and meta-analysis. Clin Transl Sci 2022; 15:2403-2436. [PMID: 35892315 PMCID: PMC9579387 DOI: 10.1111/cts.13370] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/09/2022] [Accepted: 06/20/2022] [Indexed: 01/25/2023] Open
Abstract
Taxane-based chemotherapy regimens are used as first-line treatment for breast cancer. Neurotoxicity, mainly taxane-induced peripheral neuropathy (TIPN), remains the most important dose-limiting adverse event. Multiple genes may be associated with TIPN; however, the strength and direction of the association remain unclear. For this reason, we systematically reviewed observational studies of TIPN pharmacogenetic markers in breast cancer treatment. We conducted a systematic search of terms alluding to breast cancer, genetic markers, taxanes, and neurotoxicity in Ovid, ProQuest, PubMed, Scopus, Virtual Health, and Web of Science. We assessed the quality of evidence and bias profile. We extracted relevant variables and effect measures. Whenever possible, we performed random-effects gene meta-analyses and examined interstudy heterogeneity with meta-regression models and subgroup analyses. This study follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and STrengthening the REporting of Genetic Association Studies (STREGA) reporting guidance. A total of 42 studies with 19,431 participants were included. These evaluated 262 single-nucleotide polymorphisms (SNPs) across 121 genes. We conducted meta-analyses on 23 genes with 60 SNPs (19 studies and 6246 participants). Thirteen individual SNPs (ABCB1-rs2032582, ABCB1-rs3213619, BCL6/-rs1903216, /CAND1-rs17781082, CYP1B1-rs1056836, CYP2C8-rs10509681, CYP2C8-rs11572080, EPHA5-rs7349683, EPHA6-rs301927, FZD3-rs7001034, GSTP1-rs1138272, TUBB2A-rs9501929, and XKR4-rs4737264) and the overall SNPs' effect in four genes (CYP3A4, EphA5, GSTP1, and SLCO1B1) were statistically significantly associated with TIPN through meta-analysis. In conclusion, through systematic review and meta-analysis, we found that polymorphisms, and particularly 13 SNPs, are associated with TIPN, suggesting that genetics does play a role in interindividual predisposition. Further studies could potentially use these findings to develop individual risk profiles and guide decision making.
Collapse
Affiliation(s)
| | - Ana Freyria
- School of MedicineUniversidad PanamericanaMexico CityMexico
| | | | | | | | | | - Rodrigo Catalán
- School of MedicineUniversidad PanamericanaMexico CityMexico,Thoracic Oncology UnitInstituto Nacional de CancerologíaMexico CityMexico
| | | | - Cynthia Villarreal‐Garza
- Breast Cancer Center, Hospital Zambrano Hellion TecSalud, Tecnologico de MonterreySan Pedro Garza GarcíaNuevo LeónMexico
| | - Andric C. Perez‐Ortiz
- School of MedicineUniversidad PanamericanaMexico CityMexico,Transplant CenterMassachusetts General HospitalBostonMassachusettsUSA
| |
Collapse
|
9
|
Chua KC, El-Haj N, Priotti J, Kroetz DL. Mechanistic insights into the pathogenesis of microtubule-targeting agent-induced peripheral neuropathy from pharmacogenetic and functional studies. Basic Clin Pharmacol Toxicol 2022; 130 Suppl 1:60-74. [PMID: 34481421 PMCID: PMC8716520 DOI: 10.1111/bcpt.13654] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/04/2021] [Accepted: 09/01/2021] [Indexed: 01/03/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common dose-limiting toxicity that affects 30%-40% of patients undergoing cancer treatment. Although multiple mechanisms of chemotherapy-induced neurotoxicity have been described in preclinical models, these have not been translated into widely effective strategies for the prevention or treatment of CIPN. Predictive biomarkers to inform therapeutic approaches are also lacking. Recent studies have examined genetic risk factors associated with CIPN susceptibility. This review provides an overview of the clinical and pathologic features of CIPN and summarizes efforts to identify target pathways through genetic and functional studies. Structurally and mechanistically diverse chemotherapeutics are associated with CIPN; however, the current review is focused on microtubule-targeting agents since these are the focus of most pharmacogenetic association and functional studies of CIPN. Genome-wide pharmacogenetic association studies are useful tools to identify not only causative genes and genetic variants but also genetic networks implicated in drug response or toxicity and have been increasingly applied to investigations of CIPN. Induced pluripotent stem cell-derived models of human sensory neurons are especially useful to understand the mechanistic significance of genomic findings. Combined genetic and functional genomic efforts to understand CIPN hold great promise for developing therapeutic approaches for its prevention and treatment.
Collapse
Affiliation(s)
- Katherina C. Chua
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California San Francisco, San Francisco, CA 94143-2911,Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143-2911
| | - Nura El-Haj
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143-2911
| | - Josefina Priotti
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143-2911
| | - Deanna L. Kroetz
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143-2911,Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143-2911
| |
Collapse
|
10
|
Pozzi E, Alberti P. Management of Side Effects in the Personalized Medicine Era: Chemotherapy-Induced Peripheral Neurotoxicity. Methods Mol Biol 2022; 2547:95-140. [PMID: 36068462 DOI: 10.1007/978-1-0716-2573-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pharmacogenomics is a powerful tool to predict individual response to treatment, in order to personalize therapy, and it has been explored extensively in oncology practice. Not only efficacy on the malignant disease has been investigated but also the possibility to predict adverse effects due to drug administration. Chemotherapy-induced peripheral neurotoxicity (CIPN) is one of those. This potentially severe and long-lasting/permanent side effect of commonly administered anticancer drugs can severely impair quality of life (QoL) in a large cohort of long survival patients. So far, a pharmacogenomics-based approach in CIPN regard has been quite delusive, making a methodological improvement warranted in this field of interest: even the most refined genetic analysis cannot be effective if not applied correctly. Here we try to devise why it is so, suggesting how THE "bench-side" (pharmacogenomics) might benefit from and should cooperate with THE "bed-side" (clinimetrics), in order to make genetic profiling effective if applied to CIPN.
Collapse
Affiliation(s)
- Eleonora Pozzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- NeuroMI (Milan Center for Neuroscience), Milan, Italy
| | - Paola Alberti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
- NeuroMI (Milan Center for Neuroscience), Milan, Italy.
| |
Collapse
|
11
|
Abstract
Pharmacogenetic testing in patients with cancer requiring cytotoxic chemotherapy offers the potential to predict, prevent, and mitigate chemotherapy-related toxicities. While multiple drug-gene pairs have been identified and studied, few drug-gene pairs are currently used routinely in the clinical status. Here we review what is known, theorized, and unknown regarding the use of pharmacogenetic testing in cancer.
Collapse
Affiliation(s)
- Zahra Talebi
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Susan I Colace
- Division of Hematology, Oncology, and Blood & Marrow Transplant, Nationwide Children's Hospital, Columbus, OH, USA.
- The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
12
|
Abstract
Technological innovation and rapid reduction in sequencing costs have enabled the genomic profiling of hundreds of cancer-associated genes as a component of routine cancer care. Tumour genomic profiling can refine cancer subtype classification, identify which patients are most likely to benefit from systemic therapies and screen for germline variants that influence heritable cancer risk. Here, we discuss ongoing efforts to enhance the clinical utility of tumour genomic profiling by integrating tumour and germline analyses, characterizing allelic context and identifying mutational signatures that influence therapy response. We also discuss the potential clinical utility of more comprehensive whole-genome and whole-transcriptome sequencing and ultra-sensitive cell-free DNA profiling platforms, which allow for minimally invasive, serial analyses of tumour-derived DNA in blood.
Collapse
Affiliation(s)
- Debyani Chakravarty
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David B Solit
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
13
|
Alimardani M, Moghbeli M, Rastgar-Moghadam A, Shandiz FH, Abbaszadegan MR. Single nucleotide polymorphisms as the efficient prognostic markers in breast cancer. Curr Cancer Drug Targets 2021; 21:768-793. [PMID: 34036920 DOI: 10.2174/1568009621666210525151846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/15/2021] [Accepted: 04/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Breast cancer (BC) is known as the most common malignancy in women. Environmental and genetic factors are associated with BC progression. Genetic polymorphisms have been reported as important risk factors of BC prognosis and drug response. Main body: Therefore, in the present review, we have summarized all single nucleotide polymorphisms (SNPs) which have been significantly associated with drug response in BC patients around the world. We have also categorized the reported SNPs based on their related genes functions to clarify the molecular biology of drug responses in BC. CONCLUSION The majority of SNPs were reported in detoxifying enzymes, which introduced such genes as the main genetic risk factors during BC drug responses. This review paves the way for introducing a prognostic panel of SNPs for the BC patients in the world.
Collapse
Affiliation(s)
- Maliheh Alimardani
- Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azam Rastgar-Moghadam
- Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Homaei Shandiz
- Department of Radiotherapy/Oncology, Omid Hospital, Mashhad University of Medical Science, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Adjei AA, Lopez CL, Schaid DJ, Sloan JA, Le-Rademacher JG, Loprinzi CL, Norman AD, Olson JE, Couch FJ, Beutler AS, Vachon CM, Ruddy KJ. Genetic Predictors of Chemotherapy-Induced Peripheral Neuropathy from Paclitaxel, Carboplatin and Oxaliplatin: NCCTG/Alliance N08C1, N08CA and N08CB Study. Cancers (Basel) 2021; 13:1084. [PMID: 33802509 PMCID: PMC7959452 DOI: 10.3390/cancers13051084] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common and potentially permanent adverse effect of chemotherapeutic agents including taxanes such as paclitaxel and platinum-based compounds such as oxaliplatin and carboplatin. Previous studies have suggested that genetics may impact the risk of CIPN. We conducted genome-wide association studies (GWASs) for CIPN in two independent populations who had completed European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire (EORTC QLQ)-CIPN20 assessments (a CIPN-specific 20-item questionnaire which includes three scales that evaluate sensory, autonomic, and motor symptoms). The study population N08Cx included 692 participants from three clinical trials (North Central Cancer Treatment Group (NCCTG) N08C1, N08CA, and N08CB) who had been treated with paclitaxel, paclitaxel plus carboplatin, or oxaliplatin. The primary endpoint for the GWAS was the change from pre-chemotherapy CIPN20 sensory score to the worse score over the following 18 weeks. Study population The Mayo Clinic Breast Disease Registry (MCBDR) consisted of 381 Mayo Clinic Breast Disease Registry enrollees who had been treated with taxane or platinum-based chemotherapy. The primary endpoint for the GWAS assessed was the earliest CIPN20 sensory score available after the completion of chemotherapy. In multivariate model analyses, chemotherapy regimen (p = 3.0 × 10-8) and genetic ancestry (p = 0.007) were significantly associated with CIPN in the N08Cx population. Only age (p = 0.0004) was significantly associated with CIPN in the MCBDR population. The SNP most associated with CIPN was rs56360211 near PDE6C (p =7.92 × 10-8) in N08Cx and rs113807868 near TMEM150C in the MCBDR (p = 1.27 × 10-8). Due to a lack of replication, we cannot conclude that we identified any genetic predictors of CIPN.
Collapse
Affiliation(s)
- Araba A. Adjei
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; (A.A.A.); (C.L.L.); (A.S.B.)
- Alliance Cancer Control Program, Mayo Clinic, Rochester, MN 55905, USA
| | - Camden L. Lopez
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA; (C.L.L.); (D.J.S.); (J.A.S.); (J.G.L.-R.); (J.E.O.); (C.M.V.); (A.D.N.)
| | - Daniel J. Schaid
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA; (C.L.L.); (D.J.S.); (J.A.S.); (J.G.L.-R.); (J.E.O.); (C.M.V.); (A.D.N.)
| | - Jeff A. Sloan
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA; (C.L.L.); (D.J.S.); (J.A.S.); (J.G.L.-R.); (J.E.O.); (C.M.V.); (A.D.N.)
- Alliance Statistics and Data Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Jennifer G. Le-Rademacher
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA; (C.L.L.); (D.J.S.); (J.A.S.); (J.G.L.-R.); (J.E.O.); (C.M.V.); (A.D.N.)
- Alliance Statistics and Data Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Charles L. Loprinzi
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; (A.A.A.); (C.L.L.); (A.S.B.)
- Alliance Cancer Control Program, Mayo Clinic, Rochester, MN 55905, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA; (C.L.L.); (D.J.S.); (J.A.S.); (J.G.L.-R.); (J.E.O.); (C.M.V.); (A.D.N.)
| | - Aaron D. Norman
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA; (C.L.L.); (D.J.S.); (J.A.S.); (J.G.L.-R.); (J.E.O.); (C.M.V.); (A.D.N.)
| | - Janet E. Olson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA; (C.L.L.); (D.J.S.); (J.A.S.); (J.G.L.-R.); (J.E.O.); (C.M.V.); (A.D.N.)
| | - Fergus J. Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Andreas S. Beutler
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; (A.A.A.); (C.L.L.); (A.S.B.)
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA; (C.L.L.); (D.J.S.); (J.A.S.); (J.G.L.-R.); (J.E.O.); (C.M.V.); (A.D.N.)
| | - Celine M. Vachon
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA; (C.L.L.); (D.J.S.); (J.A.S.); (J.G.L.-R.); (J.E.O.); (C.M.V.); (A.D.N.)
| | - Kathryn J. Ruddy
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; (A.A.A.); (C.L.L.); (A.S.B.)
- Alliance Cancer Control Program, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
15
|
Wang B, Wu L, Chen J, Dong L, Chen C, Wen Z, Hu J, Fleming I, Wang DW. Metabolism pathways of arachidonic acids: mechanisms and potential therapeutic targets. Signal Transduct Target Ther 2021; 6:94. [PMID: 33637672 PMCID: PMC7910446 DOI: 10.1038/s41392-020-00443-w] [Citation(s) in RCA: 628] [Impact Index Per Article: 157.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/04/2020] [Accepted: 10/15/2020] [Indexed: 01/31/2023] Open
Abstract
The arachidonic acid (AA) pathway plays a key role in cardiovascular biology, carcinogenesis, and many inflammatory diseases, such as asthma, arthritis, etc. Esterified AA on the inner surface of the cell membrane is hydrolyzed to its free form by phospholipase A2 (PLA2), which is in turn further metabolized by cyclooxygenases (COXs) and lipoxygenases (LOXs) and cytochrome P450 (CYP) enzymes to a spectrum of bioactive mediators that includes prostanoids, leukotrienes (LTs), epoxyeicosatrienoic acids (EETs), dihydroxyeicosatetraenoic acid (diHETEs), eicosatetraenoic acids (ETEs), and lipoxins (LXs). Many of the latter mediators are considered to be novel preventive and therapeutic targets for cardiovascular diseases (CVD), cancers, and inflammatory diseases. This review sets out to summarize the physiological and pathophysiological importance of the AA metabolizing pathways and outline the molecular mechanisms underlying the actions of AA related to its three main metabolic pathways in CVD and cancer progression will provide valuable insight for developing new therapeutic drugs for CVD and anti-cancer agents such as inhibitors of EETs or 2J2. Thus, we herein present a synopsis of AA metabolism in human health, cardiovascular and cancer biology, and the signaling pathways involved in these processes. To explore the role of the AA metabolism and potential therapies, we also introduce the current newly clinical studies targeting AA metabolisms in the different disease conditions.
Collapse
Affiliation(s)
- Bei Wang
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, China
| | - Lujin Wu
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Jing Chen
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Jiong Hu
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China.
| |
Collapse
|
16
|
Hertz DL. Exploring pharmacogenetics of paclitaxel- and docetaxel-induced peripheral neuropathy by evaluating the direct pharmacogenetic-pharmacokinetic and pharmacokinetic-neuropathy relationships. Expert Opin Drug Metab Toxicol 2021; 17:227-239. [PMID: 33401943 DOI: 10.1080/17425255.2021.1856367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Peripheral neuropathy (PN) is an adverse effect of several classes of chemotherapy including the taxanes. Predictive PN biomarkers could inform individualized taxane treatment to reduce PN and enhance therapeutic outcomes. Pharmacogenetics studies of taxane-induced PN have focused on genes involved in pharmacokinetics, including enzymes and transporters. Contradictory findings from these studies prevent translation of genetic biomarkers into clinical practice. Areas covered: This review discusses the progress toward identifying pharmacogenetic predictors of PN by assessing the evidence for two independent associations; the effect of pharmacogenetics on taxane pharmacokinetics and the evidence that taxane pharmacokinetics affects PN. Assessing these direct relationships allows the reader to understand the progress toward individualized taxane treatment and future research opportunities. Expert opinion: Paclitaxel pharmacokinetics is a major determinant of PN. Additional clinical trials are needed to confirm the clinical benefit of individualized dosing to achieve target paclitaxel exposure. Genetics does not meaningfully contribute to paclitaxel pharmacokinetics and may not be useful to inform dosing. However, genetics may contribute to PN sensitivity and could be useful for estimating patients' optimal paclitaxel exposure. For docetaxel, genetics has not been demonstrated to have a meaningful effect on pharmacokinetics and there is no evidence that pharmacokinetics determines PN.
Collapse
Affiliation(s)
- Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy , Ann Arbor, MI, United States
| |
Collapse
|
17
|
Muth M, Ojara FW, Kloft C, Joerger M. Role of TDM-based dose adjustments for taxane anticancer drugs. Br J Clin Pharmacol 2020; 87:306-316. [PMID: 33247980 DOI: 10.1111/bcp.14678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/10/2020] [Accepted: 11/03/2020] [Indexed: 01/14/2023] Open
Abstract
The classical taxanes (paclitaxel, docetaxel), the newer taxane cabazitaxel and the nanoparticle-bound nab-paclitaxel are among the most widely used anticancer drugs. Still, the optimal use and the value of pharmacological personalization of the taxanes is still controversial. We give an overview on the pharmacological properties of the taxanes, including metabolism, pharmacokinetics-pharmacodynamic relations and aspects in the clinical use of taxanes. The latter includes the ongoing debate on the most effective and safe regimen, the recommended initial dose, and pharmacological dosing individualization. The taxanes are among the most widely used anticancer drugs in patients with solid malignancies. Despite their longtime use in clinical routine, the optimal dosing strategy (weekly versus 3-weekly) or optimal average dose (cabazitaxel, nab-paclitaxel) has not been fully resolved, as it may differ according to tumour entity and line of treatment. The value of pharmacological individualization of the taxanes (TDM, TCI) has been partly explored for 3-weekly paclitaxel and docetaxel, but remains mostly unexplored for cabazitaxel and nab-paclitaxel at present.
Collapse
Affiliation(s)
- Marsilla Muth
- Department of Oncology & Hematology, Cantonal Hospital, St. Gallen, Switzerland
| | - Francis Williams Ojara
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universität Berlin, Germany.,Graduate Research Training Program PharMetrX, Germany
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universität Berlin, Germany
| | - Markus Joerger
- Department of Oncology & Hematology, Cantonal Hospital, St. Gallen, Switzerland
| |
Collapse
|
18
|
Neurotoxicity of antineoplastic drugs: Mechanisms, susceptibility, and neuroprotective strategies. Adv Med Sci 2020; 65:265-285. [PMID: 32361484 DOI: 10.1016/j.advms.2020.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 12/22/2019] [Accepted: 04/13/2020] [Indexed: 02/06/2023]
Abstract
This review summarizes the adverse effects on the central and/or peripheral nervous systems that may occur in response to antineoplastic drugs. In particular, we describe the neurotoxic side effects of the most commonly used drugs, such as platinum compounds, doxorubicin, ifosfamide, 5-fluorouracil, vinca alkaloids, taxanes, methotrexate, bortezomib and thalidomide. Neurotoxicity may result from direct action of compounds on the nervous system or from metabolic alterations produced indirectly by these drugs, and either the central nervous system or the peripheral nervous system, or both, may be affected. The incidence and severity of neurotoxicity are principally related to the dose, to the duration of treatment, and to the dose intensity, though other factors, such as age, concurrent pathologies, and genetic predisposition may enhance the occurrence of side effects. To avoid or reduce the onset and severity of these neurotoxic effects, the use of neuroprotective compounds and/or strategies may be helpful, thereby enhancing the therapeutic effectiveness of antineoplastic drug.
Collapse
|
19
|
Hlaváč V, Holý P, Souček P. Pharmacogenomics to Predict Tumor Therapy Response: A Focus on ATP-Binding Cassette Transporters and Cytochromes P450. J Pers Med 2020; 10:jpm10030108. [PMID: 32872162 PMCID: PMC7565825 DOI: 10.3390/jpm10030108] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Pharmacogenomics is an evolving tool of precision medicine. Recently, due to the introduction of next-generation sequencing and projects generating "Big Data", a plethora of new genetic variants in pharmacogenes have been discovered. Cancer resistance is a major complication often preventing successful anticancer treatments. Pharmacogenomics of both somatic mutations in tumor cells and germline variants may help optimize targeted treatments and improve the response to conventional oncological therapy. In addition, integrative approaches combining copy number variations and long noncoding RNA profiling with germline and somatic variations seem to be a promising approach as well. In pharmacology, expression and enzyme activity are traditionally the more studied aspects of ATP-binding cassette transporters and cytochromes P450. In this review, we briefly introduce the field of pharmacogenomics and the advancements driven by next-generation sequencing and outline the possible roles of genetic variation in the two large pharmacogene superfamilies. Although the evidence needs further substantiation, somatic and copy number variants as well as rare variants and common polymorphisms in these genes could all affect response to cancer therapy. Regulation by long noncoding RNAs has also been shown to play a role. However, in all these areas, more comprehensive studies on larger sets of patients are needed.
Collapse
Affiliation(s)
- Viktor Hlaváč
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic; (P.H.); (P.S.)
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 306 05 Pilsen, Czech Republic
- Correspondence: ; Tel.: +420-267082681; Fax: +420-267311236
| | - Petr Holý
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic; (P.H.); (P.S.)
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 306 05 Pilsen, Czech Republic
- Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
| | - Pavel Souček
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic; (P.H.); (P.S.)
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 306 05 Pilsen, Czech Republic
| |
Collapse
|
20
|
Anderson JT, Huang KM, Lustberg MB, Sparreboom A, Hu S. Solute Carrier Transportome in Chemotherapy-Induced Adverse Drug Reactions. Rev Physiol Biochem Pharmacol 2020; 183:177-215. [PMID: 32761456 DOI: 10.1007/112_2020_30] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Members of the solute carrier (SLC) family of transporters are responsible for the cellular influx of a broad range of endogenous compounds and xenobiotics. These proteins are highly expressed in the gastrointestinal tract and eliminating organs such as the liver and kidney, and are considered to be of particular importance in governing drug absorption and elimination. Many of the same transporters are also expressed in a wide variety of organs targeted by clinically important anticancer drugs, directly affect cellular sensitivity to these agents, and indirectly influence treatment-related side effects. Furthermore, targeted intervention strategies involving the use of transport inhibitors have been recently developed, and have provided promising lead candidates for combinatorial therapies associated with decreased toxicity. Gaining a better understanding of the complex interplay between transporter-mediated on-target and off-target drug disposition will help guide the further development of these novel treatment strategies to prevent drug accumulation in toxicity-associated organs, and improve the safety of currently available treatment modalities. In this report, we provide an update on this rapidly emerging field with particular emphasis on anticancer drugs belonging to the classes of taxanes, platinum derivatives, nucleoside analogs, and anthracyclines.
Collapse
Affiliation(s)
- Jason T Anderson
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Kevin M Huang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Maryam B Lustberg
- Department of Medical Oncology, The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Shuiying Hu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
21
|
Polymorphisms of genes encoding drug transporters or cytochrome P450 enzymes and association with clinical response in cancer patients: a systematic review. Cancer Chemother Pharmacol 2019; 84:959-975. [DOI: 10.1007/s00280-019-03932-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
|
22
|
Impact of gene polymorphisms on the systemic toxicity to paclitaxel/carboplatin chemotherapy for treatment of gynecologic cancers. Arch Gynecol Obstet 2019; 300:395-407. [PMID: 31123858 DOI: 10.1007/s00404-019-05197-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 05/15/2019] [Indexed: 02/03/2023]
Abstract
PURPOSE Gynecologic malignancies are often detected in advanced stages, requiring chemotherapy with taxane/platinum combinations, which may cause severe toxicities, such as neutropenia and peripheral neuropathy. Gene polymorphisms are suspected as possible causes for the interindividual variability on chemotherapy toxicities. OBJECTIVE To evaluate the role of ABCB1 1236C>T, 3435C>T; CYP2C8*3; CYP3A5*3C variants on paclitaxel/carboplatin toxicities. METHODS A cohort of 503 gynecologic cancer patients treated with paclitaxel/carboplatin at the Brazilian National Cancer Institute (INCA-Brazil) was recruited (2013-2017). Polymorphisms were genotyped by real-time PCR, and toxicities were evaluated by patients' interviews at each chemotherapy cycle and by data collection from electronic records. The association of clinical features and genotypes with severe toxicities was estimated using Pearson's Chi square tests and multiple regression analyses, with calculation of adjusted odds ratios (ORadjusted), and respective 95% confidence intervals (95% CI). RESULTS CYP2C8*3 was significantly associated with increased risks of severe (grades 3-4) neutropenia (ORadjusted 2.11; 95% CI 1.24-3.6; dominant model) and severe thrombocytopenia (ORadjusted 4.93; 95% CI 1.69-14.35; recessive model), whereas ABCB1 variant genotypes (ORadjusted 2.13; 95% CI 1.32-3.42), in association with CYP2C8*3 wild type (GG) (ORadjusted 1.93; 95% CI 1.17-3.19), were predictive of severe fatigue. CONCLUSIONS The present study suggests that CYP2C8*3 is a potential predictor of hematological toxicities related to paclitaxel/carboplatin treatment. Since hematological toxicities, especially neutropenia, may lead to dose delay or treatment interruption, such prognostic evaluation may contribute to clinical management of selected patients with paclitaxel-based chemotherapy.
Collapse
|
23
|
Sausville LN, Williams SM, Pozzi A. Cytochrome P450 epoxygenases and cancer: A genetic and a molecular perspective. Pharmacol Ther 2019; 196:183-194. [DOI: 10.1016/j.pharmthera.2018.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
24
|
Zirpoli GR, McCann SE, Sucheston-Campbell LE, Hershman DL, Ciupak G, Davis W, Unger JM, Moore HCF, Stewart JA, Isaacs C, Hobday TJ, Salim M, Hortobagyi GN, Gralow JR, Budd GT, Albain KS, Ambrosone CB. Supplement Use and Chemotherapy-Induced Peripheral Neuropathy in a Cooperative Group Trial (S0221): The DELCaP Study. J Natl Cancer Inst 2019; 109:4098262. [PMID: 29546345 DOI: 10.1093/jnci/djx098] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/24/2017] [Indexed: 12/24/2022] Open
Abstract
Background Chemotherapy-induced peripheral neuropathy (CIPN) can interfere with daily function and quality of life, and there are no known preventive approaches. In a cohort of breast cancer patients receiving paclitaxel as part of a clinical trial (SWOG 0221), we examined the use of dietary supplements both before diagnosis and during treatment in relation to CIPN. Methods At registration to S0221, 1225 breast cancer patients completed questionnaires regarding the use of multivitamins and supplements before and at diagnosis. A second questionnaire at six months queried use during treatment. Supplement use was evaluated in relation to CIPN, assessed via the National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE v. 3.0) and the self-reported Functional Assessment of Cancer Therapy/Gynecologic Oncology Group Neurotoxicity (FACT/GOG-Ntx) subscale. Odds ratios (ORs) and 95% confidence intervals (CIs) were computed with logistic regression for the CTCAE analyses and ordinal regression for the FACT/GOG-Ntx analyses. Results Multivitamin use before diagnosis was associated with reduced symptoms of CIPN (CTCAE-adjusted OR = 0.60, 95% CI = 0.42 to 0.87; FACT/GOG-Ntx-adjusted OR = 0.78, 95% CI = 0.61 to 1.00). Use during treatment was marginally inversely associated with CIPN (CTCAE-adjusted OR = 0.73, 95% CI = 0.49 to 1.08; FACT/GOG-Ntx-adjusted OR = 0.77, 95% CI = 0.60 to 0.99). Other supplement use, either before diagnosis or during treatment, was not statistically significantly associated with CIPN. Conclusions Multivitamin use may be associated with reduced risk of CIPN, although individual dietary supplement use did not appreciably affect risk. Multivitamin use could be a surrogate for other related behaviors that are the actual drivers of the association with reduced CIPN. Without prospective randomized trials of vitamin supplementation, recommendations for use or changes to clinical practice are clearly not warranted.
Collapse
Affiliation(s)
- Gary R Zirpoli
- Roswell Park Cancer Institute, Buffalo, NY.,Massachusetts General Hospital, Boston, MA
| | | | | | | | | | | | - Joseph M Unger
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | | | | | | | | | | | | | | | - Kathy S Albain
- Loyola University Chicago Stritch School of Medicine, Chicago, IL
| | | |
Collapse
|
25
|
Diaz PL, Furfari A, Wan BA, Lam H, Charames G, Drost L, Fefekos A, Ohearn S, Blake A, Asthana R, Chow E, DeAngelis C. Predictive biomarkers of chemotherapy-induced peripheral neuropathy: a review. Biomark Med 2018; 12:907-916. [DOI: 10.2217/bmm-2017-0427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of taxane treatment during chemotherapy. Identifying predictive biomarkers of CIPN would allow physicians to alter treatment given to patients according to a personal risk of developing this condition. The current literature on CIPN biomarkers is reviewed, identifying biomarkers which have been found to be significantly related to CIPN. Three genetic biomarkers are identified (ARHGEF10 rs9657362, CYP2C8 rs11572080/rs10509681 and FGD4 rs10771973) which have been found to act as predictive CIPN biomarkers in multiple studies. Possible mechanisms underlying the relationship between these single nucleotide polymorphisms and CIPN development are explored. The biomarkers identified in this study should be investigated further to generate predictive biomarkers that may be used in a clinical setting.
Collapse
Affiliation(s)
- Patrick L Diaz
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, M4N 3M5, Canada
| | - Anthony Furfari
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, M4N 3M5, Canada
| | - Bo Angela Wan
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, M4N 3M5, Canada
| | - Henry Lam
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, M4N 3M5, Canada
| | - George Charames
- Pathology & Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
- Mount Sinai Services Inc., Toronto, Ontario, M5G 1X5, Canada
- Lunenfeld–Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, M5G 1X5, Canada
| | - Leah Drost
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, M4N 3M5, Canada
| | | | | | - Alexia Blake
- MedReleaf Inc., Markham, Ontario, L3R 6G4, Canada
| | - Rashi Asthana
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, M4N 3M5, Canada
| | - Edward Chow
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, M4N 3M5, Canada
| | - Carlo DeAngelis
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, M4N 3M5, Canada
- Department of Pharmacy, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, M4N 3M5, Canada
| |
Collapse
|
26
|
Cliff J, Jorgensen AL, Lord R, Azam F, Cossar L, Carr DF, Pirmohamed M. The molecular genetics of chemotherapy-induced peripheral neuropathy: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2017; 120:127-140. [PMID: 29198326 DOI: 10.1016/j.critrevonc.2017.09.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/12/2017] [Accepted: 09/11/2017] [Indexed: 01/13/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) can adversely affect completion of systemic anti-cancer treatment and cause long-term morbidity. Increasingly pharmacogenetic studies have been performed to explore susceptibility to this important adverse effect. A systematic review was conducted to identify pharmacogenetic studies, assess their quality and findings and undertake meta-analysis where possible. 93 studies were included. Notable methodological issues included lack of standardisation and detail in phenotype definition and acknowledgement of potential confounding factors. Insufficient data was presented in many studies meaning only a minority could be included in meta-analysis showing mainly non-significant effects. Nonetheless, SNPs in CYP2C8, CYP3A4, ARHGEF10, EPHA and TUBB2A genes (taxanes), FARS2, ACYP2 and TAC1 (oxaliplatin), and CEP75 and CYP3A5 (vincristine) are of potential interest. These require exploration in large cohort studies with robust methodology and well-defined phenotypes. Seeking standardisation of phenotype, collaboration and subsequently, individual-patient-data meta-analysis may facilitate identifying contributory SNPs which could be combined in a polygenic risk score to predict those most at risk of CIPN.
Collapse
Affiliation(s)
- J Cliff
- University of Liverpool, Liverpool, L69 3BX, UK; Clatterbridge Cancer Centre NHS Foundation Trust, Clatterbridge Road, Wirral, CH63 4JY, UK.
| | | | - R Lord
- University of Liverpool, Liverpool, L69 3BX, UK; Clatterbridge Cancer Centre NHS Foundation Trust, Clatterbridge Road, Wirral, CH63 4JY, UK.
| | - F Azam
- Clatterbridge Cancer Centre NHS Foundation Trust, Clatterbridge Road, Wirral, CH63 4JY, UK.
| | - L Cossar
- University of Liverpool, Liverpool, L69 3BX, UK; Clatterbridge Cancer Centre NHS Foundation Trust, Clatterbridge Road, Wirral, CH63 4JY, UK.
| | - D F Carr
- University of Liverpool, Liverpool, L69 3BX, UK.
| | - M Pirmohamed
- University of Liverpool, Liverpool, L69 3BX, UK.
| |
Collapse
|
27
|
The early onset of peripheral neuropathy might be a robust predictor for time to treatment failure in patients with metastatic breast cancer receiving chemotherapy containing paclitaxel. PLoS One 2017; 12:e0184322. [PMID: 28898275 PMCID: PMC5595337 DOI: 10.1371/journal.pone.0184322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 08/22/2017] [Indexed: 12/23/2022] Open
Abstract
Background Paclitaxel plays a central role in chemotherapy for breast cancer. Peripheral neuropathy, a well-known toxicity with paclitaxel, may be of interest in predicting the efficacy of paclitaxel therapy for patients with metastatic breast cancer. We performed a retrospective analysis assessing whether the early occurrence of peripheral neuropathy (EPN) was a predictive marker for better efficacy in patients with metastatic breast cancer receiving chemotherapy containing paclitaxel. Patients and methods Between January 2000 and August 2008, we examined the records of 168 patients with metastatic breast cancer treated with paclitaxel in our hospital. EPN was defined as a symptom of Grade 2 or more during first three months of treatment. The overall response rate (ORR) and time to treatment failure (TTF) in each group were analyzed retrospectively. Results Of 168 patients with metastatic breast cancer who were treated with paclitaxel, EPN was documented in 101 patients (60.1%). The clinical benefit rate (CR, PR, and SD ≥ 6 months) was 72.3% in the EPN group and 49.3% in the non-EPN group (p = 0.002). The TTF of the EPN group (median 11.2 months, 95% CI: 9.5–12.9) was significantly longer than that of the non-EPN group (5.7 months, 95% CI: 4.6–6.8) (p<0.001). Multivariate analysis demonstrated that EPN (p<0.001), dose intensity of less than 70% (p<0.001), and the history of microtubule agents (p = 0.001) were the significant favorable prognostic factors for TTF. Conclusion The early onset of peripheral neuropathy might be a robust predictor for TTF in patients with metastatic breast cancer treated with paclitaxel.
Collapse
|
28
|
Schuler U, Heller S. [Chemotherapy-induced peripheral neuropathy and neuropathic pain]. Schmerz 2017; 31:413-425. [PMID: 28293734 DOI: 10.1007/s00482-017-0198-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The perception of the media is that chemotherapy is mainly associated with nausea, vomiting and hair loss. In the longer term the development of peripheral neuropathy, i.e. chemotherapy-induced peripheral neuropathy (CIPN) is often more important for patients. The CIPN represents a side effect of many antineoplastic substances with severe functional impairment and its prevention and treatment is an important task. In addition to many interventions, which have been shown to be ineffective, physiotherapeutic measures and possibly the prophylactic application of cold are helpful for prevention. Randomized studies on the treatment of painful CIPN provided positive data for duloxetine and to a lesser extent for venlafaxine.
Collapse
Affiliation(s)
- U Schuler
- PalliativCentrum, Universitätsklinikum Carl Gustav Carus, Fetscherstr. 74, 01307, Dresden, Deutschland.
| | - S Heller
- PalliativCentrum, Universitätsklinikum Carl Gustav Carus, Fetscherstr. 74, 01307, Dresden, Deutschland
| |
Collapse
|
29
|
Hiratsuka M. Genetic Polymorphisms and in Vitro Functional Characterization of CYP2C8, CYP2C9, and CYP2C19 Allelic Variants. Biol Pharm Bull 2017; 39:1748-1759. [PMID: 27803446 DOI: 10.1248/bpb.b16-00605] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genetic variations in CYP 2C (CYP2C) subfamily, CYP2C8, CYP2C9, and CYP2C19 contribute to interindividual variability in the metabolism of clinically used drugs. Changes in the drug metabolizing activity of CYP2C members may cause unexpected and serious adverse drug reactions and inadequate therapeutic effects. Therefore, CYP2C gene polymorphism is used as a genome biomarker for predicting responsiveness to administered drugs. The most direct method for understanding the extent of the effects of CYP2C gene polymorphism on drug pharmacokinetics is by evaluating the blood and urine concentrations of the drug in subjects. However, in vivo tests are highly invasive, and considering the risk of adverse drug reactions, the burden on the patient may be significant. In addition, examining the functions of rare variant enzymes with an allele frequency of ≤1% requires at least several hundred subjects. Furthermore, it is extremely difficult to evaluate the functions of all variant enzymes in an in vivo test. On the other hand, in vitro enzyme activity can be evaluated using a heterologous expression system to avoid the aforementioned problems. In vitro tests are extremely important as they complement in vivo information. This review focuses on recent findings of in vitro studies on 3 highly polymorphic CYP2C members: CYP2C8, CYP2C9, and CYP2C19.
Collapse
Affiliation(s)
- Masahiro Hiratsuka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
30
|
Roth AD, Lee MY. Idiosyncratic Drug-Induced Liver Injury (IDILI): Potential Mechanisms and Predictive Assays. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9176937. [PMID: 28133614 PMCID: PMC5241492 DOI: 10.1155/2017/9176937] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/29/2016] [Indexed: 12/16/2022]
Abstract
Idiosyncratic drug-induced liver injury (IDILI) is a significant source of drug recall and acute liver failure (ALF) in the United States. While current drug development processes emphasize general toxicity and drug metabolizing enzyme- (DME-) mediated toxicity, it has been challenging to develop comprehensive models for assessing complete idiosyncratic potential. In this review, we describe the enzymes and proteins that contain polymorphisms believed to contribute to IDILI, including ones that affect phase I and phase II metabolism, antioxidant enzymes, drug transporters, inflammation, and human leukocyte antigen (HLA). We then describe the various assays that have been developed to detect individual reactions focusing on each of the mechanisms described in the background. Finally, we examine current trends in developing comprehensive models for examining these mechanisms. There is an urgent need to develop a panel of multiparametric assays for diagnosing individual toxicity potential.
Collapse
Affiliation(s)
- Alexander D. Roth
- Department of Chemical & Biomedical Engineering, Cleveland State University, 1960 East 24th Street, Cleveland, OH 44115-2214, USA
| | - Moo-Yeal Lee
- Department of Chemical & Biomedical Engineering, Cleveland State University, 1960 East 24th Street, Cleveland, OH 44115-2214, USA
| |
Collapse
|
31
|
Glaire MA, Brown M, Church DN, Tomlinson I. Cancer predisposition syndromes: lessons for truly precision medicine. J Pathol 2017; 241:226-235. [PMID: 27859368 DOI: 10.1002/path.4842] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/04/2016] [Accepted: 11/05/2016] [Indexed: 02/11/2024]
Abstract
Cancer predisposition syndromes are typically uncommon, monogenic, high-penetrance disorders. Despite their rarity, they have proven to be highly clinically relevant in directing cancer prevention strategies. As such, they share notable similarities with an expanding class of low-frequency somatic mutations that are associated with a striking prognostic or predictive effect in the tumours in which they occur. In this review, we highlight these commonalities, with particular reference to mutations in the proofreading domain of replicative DNA polymerases. These molecular phenotypes may occur as either germline or somatic events, and in the latter case, have been shown to confer a favourable prognosis and potential increased benefit from immune checkpoint inhibition. We note that incorporation of these variants into clinical management algorithms will help refine patient management, and that this will be further improved by the inclusion of other germline variants, such as those that determine the likelihood of benefit or toxicity from anti-neoplastic therapy. Finally, we propose that such integrated patient and tumour profiling will be essential if we are to deliver truly precision medicine for cancer patients, but in a similar way to rare germline mutations, we must ensure that we identify and utilize rare somatic mutations with strong predictive and prognostic effects. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mark A Glaire
- Tumour Genomics and Immunology Group, The Oxford Centre for Cancer Gene Research, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Matthew Brown
- Tumour Genomics and Immunology Group, The Oxford Centre for Cancer Gene Research, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - David N Church
- Tumour Genomics and Immunology Group, The Oxford Centre for Cancer Gene Research, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Ian Tomlinson
- Molecular and Population Genetics Laboratory, The Oxford Centre for Cancer Gene Research, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| |
Collapse
|
32
|
Schneider BP, Lai D, Shen F, Jiang G, Radovich M, Li L, Gardner L, Miller KD, O'Neill A, Sparano JA, Xue G, Foroud T, Sledge GW. Charcot-Marie-Tooth gene, SBF2, associated with taxane-induced peripheral neuropathy in African Americans. Oncotarget 2016; 7:82244-82253. [PMID: 27732968 PMCID: PMC5347688 DOI: 10.18632/oncotarget.12545] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 09/18/2016] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Taxane-induced peripheral neuropathy (TIPN) is one of the most important survivorship issues for cancer patients. African Americans (AA) have previously been shown to have an increased risk for this toxicity. Germline predictive biomarkers were evaluated to help identify a priori which patients might be at extraordinarily high risk for this toxicity. EXPERIMENTAL DESIGN Whole exome sequencing was performed using germline DNA from 213 AA patients who received a standard dose and schedule of paclitaxel in the adjuvant, randomized phase III breast cancer trial, E5103. Cases were defined as those with either grade 3-4 (n=64) or grade 2-4 (n=151) TIPN and were compared to controls (n=62) that were not reported to have experienced TIPN. We retained for analysis rare variants with a minor allele frequency <3% and which were predicted to be deleterious by protein prediction programs. A gene-based, case-control analysis using SKAT was performed to identify genes that harbored an imbalance of deleterious variants associated with increased risk of TIPN. RESULTS Five genes had a p-value < 10-4 for grade 3-4 TIPN analysis and three genes had a p-value < 10-4 for the grade 2-4 TIPN analysis. For the grade 3-4 TIPN analysis, SET binding factor 2 (SBF2) was significantly associated with TIPN (p-value=4.35 x10-6). Five variants were predicted to be deleterious in SBF2. Inherited mutations in SBF2 have previously been associated with autosomal recessive, Type 4B2 Charcot-Marie-Tooth (CMT) disease. CONCLUSION Rare variants in SBF2, a CMT gene, predict an increased risk of TIPN in AA patients receiving paclitaxel.
Collapse
Affiliation(s)
| | - Dongbing Lai
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Fei Shen
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Guanglong Jiang
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Milan Radovich
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lang Li
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Laura Gardner
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kathy D. Miller
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Anne O'Neill
- Dana Farber Cancer Institute, ECOG-ACRIN Biostatistics Center, Boston, Massachusetts, USA
| | - Joseph A. Sparano
- Albert Einstein University, Montefiore Medical Center, Bronx, New York, USA
| | - Gloria Xue
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tatiana Foroud
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - George W. Sledge
- Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
33
|
Lam SW, Frederiks CN, van der Straaten T, Honkoop AH, Guchelaar HJ, Boven E. Genotypes of CYP2C8 and FGD4 and their association with peripheral neuropathy or early dose reduction in paclitaxel-treated breast cancer patients. Br J Cancer 2016; 115:1335-1342. [PMID: 27736846 PMCID: PMC5129817 DOI: 10.1038/bjc.2016.326] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/12/2016] [Accepted: 09/14/2016] [Indexed: 12/16/2022] Open
Abstract
Background: The purpose of this study was to evaluate single-nucleotide polymorphisms (SNPs) in genes encoding key metabolising enzymes or involved in pharmacodynamics for possible associations with paclitaxel-induced peripheral neuropathy. Methods: The study population consists of 188 women from the multicenter, randomised, phase II ATX trial (BOOG2006-06; EudraCT number 2006-006058-83) that received paclitaxel and bevacizumab without or with capecitabine as first-line palliative therapy of HER2-negative metastatic breast cancer. Genotyping of CYP2C8*3 (c.416G>A), CYP3A4*22 (c.522-191C>T), TUBB2A (c.-101T>C), FGD4 (c.2044-236G>A) and EPHA5 (c.2895G>A) was performed by real-time PCR. Toxicity endpoints were cumulative dose (1) until first onset of grade ⩾1 peripheral neuropathy and (2) until first paclitaxel dose reduction from related toxicity (NCI-CTCAE version 3.0). SNPs were evaluated using the Kaplan–Meier method, the Gehan–Breslow–Wilcoxon test and the multivariate Cox regression analysis. Results: The rate of grade ⩾1 peripheral neuropathy was 67% (n=126). The rate of dose reduction was 46% (n=87). Age ⩾65 years was a risk factor for peripheral neuropathy (HR=1.87, P<0.008), but not for dose reduction. When adjusted for age, body surface area and total cumulative paclitaxel dose, CYP2C8*3 carriers had an increased risk of peripheral neuropathy (HR=1.59, P=0.045). FGD4 c.2044-236 A-allele carriers had an increased risk of paclitaxel dose reduction (HR per A-allele=1.38, P=0.036) when adjusted for total cumulative paclitaxel dose. Conclusions: These findings may point towards clinically useful indicators of early toxicity, but warrant further investigation.
Collapse
Affiliation(s)
- Siu W Lam
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Charlotte N Frederiks
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Tahar van der Straaten
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Aafke H Honkoop
- Department of Medical Oncology, Isala Clinics, Zwolle, The Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Epie Boven
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
34
|
Kus T, Aktas G, Kalender ME, Demiryurek AT, Ulasli M, Oztuzcu S, Sevinc A, Kul S, Camci C. Polymorphism of CYP3A4 and ABCB1 genes increase the risk of neuropathy in breast cancer patients treated with paclitaxel and docetaxel. Onco Targets Ther 2016; 9:5073-80. [PMID: 27574448 PMCID: PMC4990373 DOI: 10.2147/ott.s106574] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Interindividual variability of pharmacogenetics may account for unpredictable neurotoxicities of taxanes. METHODS From March 2011 to June 2015, female patients with operable breast cancer who had received docetaxel- or paclitaxel-containing adjuvant chemotherapy were included in this study. All patients were treated with single-agent paclitaxel intravenously (IV) 175 mg/m(2) every 3 weeks for four cycles, or IV 80 mg/m(2) weekly for 12 cycles, and IV 100 mg/m(2) docetaxel for four cycles as adjuvant treatment. We evaluated the relationship between neurotoxicity of taxanes and single-nucleotide polymorphisms of ABCB1, CYP3A4, ERCC1, ERCC2, FGFR4, TP53, ERBB2, and CYP2C8 genes. Taxane-induced neurotoxicity during the treatment was evaluated according to the National Cancer Institute Common Toxicity Criteria version 4.03 prior to each cycle. Chi-squared tests were used to compare the two groups, and multivariate binary logistic regression models were used for determining possible risk factors of neuropathy. RESULTS Pharmacogenetic analysis was performed in 219 females. ABCB1 3435 TT genotype had significantly higher risk for grade ≥2 neurotoxicity (odds ratio [OR]: 2.759, 95% confidence interval [CI]: 1.172-6.493, P: 0.017) compared to TC and CC genotype, and also CYP3A4 392 AA and AG genotype had significantly higher risk for grade ≥2 neurotoxicity (OR: 2.259, 95% CI: 1.033-4.941, P: 0.038) compared to GG genotype. For FDGF4 gene with AG and GG genotype, OR was 1.879 (95% CI: 1.001-3.525, P: 0.048) compared to AA genotype with regard to any grade of neuropathy risk. We could not find any other association of other genotypes with neurotoxicity grades. CONCLUSION ABCB1 3435 TT genotype and CYP3A4 392 AA/AG genotypes may be used as predictors of neurotoxicity during taxane chemotherapy.
Collapse
Affiliation(s)
- Tulay Kus
- Department of Internal Medicine, Division of Medical Oncology, University of Gaziantep, Gaziantep Oncology Hospital, Gaziantep, Turkey
| | - Gokmen Aktas
- Department of Internal Medicine, Division of Medical Oncology, University of Gaziantep, Gaziantep Oncology Hospital, Gaziantep, Turkey
| | - Mehmet Emin Kalender
- Department of Internal Medicine, Division of Medical Oncology, University of Gaziantep, Gaziantep Oncology Hospital, Gaziantep, Turkey
| | | | - Mustafa Ulasli
- Department of Internal Medicine, Division of Medical Oncology, University of Gaziantep, Gaziantep Oncology Hospital, Gaziantep, Turkey
| | - Serdar Oztuzcu
- Department of Medical Biology, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| | - Alper Sevinc
- Department of Internal Medicine, Division of Medical Oncology, University of Gaziantep, Gaziantep Oncology Hospital, Gaziantep, Turkey
| | - Seval Kul
- Department of Biostatistics, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| | - Celaletdin Camci
- Department of Internal Medicine, Division of Medical Oncology, University of Gaziantep, Gaziantep Oncology Hospital, Gaziantep, Turkey
| |
Collapse
|
35
|
SHINODA YASUTAKA, KIMURA MICHIO, USAMI EISEKI, ASANO HIROKI, YOSHIMURA TOMOAKI. Potential drug interaction between paclitaxel and clopidogrel. Biomed Rep 2016; 5:141-145. [PMID: 27347418 PMCID: PMC4906698 DOI: 10.3892/br.2016.685] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/11/2016] [Indexed: 11/06/2022] Open
Abstract
Paclitaxel is mainly inactivated in vivo by cytochrome P5402C8 (CYP2C8). In recent years, the clopidogrel metabolite has been reported to potently inhibit CYP2C8. However, clinical information regarding the interaction between these two drugs is limited. To the best of our knowledge, this is the first retrospective study investigating the potential for the drug interaction between paclitaxel and clopidogrel. A total of 8 cases in which clopidogrel and paclitaxel were used in combination were examined. The incidence of adverse events and discontinuation rate in these cases were assessed. Neutrophil counts were compared in patients prior and subsequent to the combined administration of clopidogrel and paclitaxel. Grade 3 neutropenia occurred in all cases of combination therapy and grade 4 occurred in 7 cases (88%). In addition, 4 cases (50%) showed febrile neutropenia. Four cases (50%) involved a severe adverse event requiring discontinuation of drug administration. In 1 case involving 6 courses of paclitaxel and nedaplatin therapy prior and subsequent to clopidogrel, there was a significant reduction in the average neutrophil count after 8 days of combination treatment (1,240±395 counts/mm3 without clopidogrel; 370±148 counts/mm3 with clopidogrel; mean ± standard deviation, P<0.01). Drug interactions during co-administration of clopidogrel and paclitaxel may cause severe neutropenia. To avoid these interactions, alternative medications should be considered. If these two drugs are used in combination, it may be necessary to monitor for adverse events more carefully.
Collapse
Affiliation(s)
- YASUTAKA SHINODA
- Department of Pharmacy, Ogaki Municipal Hospital, Ogaki, Gifu 503-8502, Japan
| | - MICHIO KIMURA
- Department of Pharmacy, Ogaki Municipal Hospital, Ogaki, Gifu 503-8502, Japan
| | - EISEKI USAMI
- Department of Pharmacy, Ogaki Municipal Hospital, Ogaki, Gifu 503-8502, Japan
| | - HIROKI ASANO
- Department of Pharmacy, Ogaki Municipal Hospital, Ogaki, Gifu 503-8502, Japan
| | - TOMOAKI YOSHIMURA
- Department of Pharmacy, Ogaki Municipal Hospital, Ogaki, Gifu 503-8502, Japan
| |
Collapse
|
36
|
Kümler I, Stenvang J, Moreira J, Brünner N, Nielsen DL. Drug transporters in breast cancer: response to anthracyclines and taxanes. Expert Rev Anticancer Ther 2016; 15:1075-92. [PMID: 26313418 DOI: 10.1586/14737140.2015.1067610] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Despite the advances that have taken place in the past decade, including the development of novel molecular targeted agents, cytotoxic chemotherapy remains the mainstay of cancer treatment. In breast cancer, anthracyclines and taxanes are the two main chemotherapeutic options used on a routine basis. Although effective, their usefulness is limited by the inevitable development of resistance, a lack of response to drug-induced cancer cell death. A large body of research has resulted in the characterization of a plethora of mechanisms involved in resistance; ATP-binding cassette transporter proteins, through their function in xenobiotic clearance, play an important role in resistance. We review here the current evidence for drug transporters as biomarkers and the benefit of adding drug transporter modulators to conventional chemotherapy.
Collapse
Affiliation(s)
- Iben Kümler
- a ¹ Department of Oncology, Herlev Hospital, University of Copenhagen, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| | | | | | | | | |
Collapse
|
37
|
Berretta M, Caraglia M, Martellotta F, Zappavigna S, Lombardi A, Fierro C, Atripaldi L, Muto T, Valente D, De Paoli P, Tirelli U, Di Francia R. Drug-Drug Interactions Based on Pharmacogenetic Profile between Highly Active Antiretroviral Therapy and Antiblastic Chemotherapy in Cancer Patients with HIV Infection. Front Pharmacol 2016; 7:71. [PMID: 27065862 PMCID: PMC4811911 DOI: 10.3389/fphar.2016.00071] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/10/2016] [Indexed: 01/08/2023] Open
Abstract
The introduction of Highly Active Antiretroviral Therapy (HAART) into clinical practice has dramatically changed the natural approach of HIV-related cancers. Several studies have shown that intensive antiblastic chemotherapy (AC) is feasible in HIV-infected patients with cancer, and that the outcome is similar to that of HIV-negative patients receiving the same AC regimens. However, the concomitant use of HAART and AC can result in drug accumulation or possible toxicity with consequent decreased efficacy of one or both classes of drugs. In fact, many AC agents are preferentially metabolized by CYP450 and drug-drug interactions (DDIs) with HAART are common. Therefore, it is important that HIV patients with cancer in HAART receiving AC treatment at the same time receive an individualized cancer management plan based on their liver and renal functions, their level of bone marrow suppression, their mitochondrial dysfunction, and their genotype profile. The rationale of this review is to summarize the existing data on the impact of HAART on the clinical management of cancer patients with HIV/AIDS and DDIs between antiretrovirals and AC. In addition, in order to maximize the efficacy of antiblastic therapy and minimize the risk of drug-drug interaction, a useful list of pharmacogenomic markers is provided.
Collapse
Affiliation(s)
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples Naples, Italy
| | | | - Silvia Zappavigna
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples Naples, Italy
| | - Angela Lombardi
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples Naples, Italy
| | - Carla Fierro
- Hematology and Cellular Immunology (Clinical Biochemistry), A.O. dei Colli Monaldi Hospital Naples, Italy
| | - Luigi Atripaldi
- Hematology and Cellular Immunology (Clinical Biochemistry), A.O. dei Colli Monaldi Hospital Naples, Italy
| | - Tommaso Muto
- Hematology and Cellular Immunology (Clinical Biochemistry), A.O. dei Colli Monaldi Hospital Naples, Italy
| | - Daniela Valente
- Molecular Diagnostics Service, CETAC Research Center Caserta, Italy
| | - Paolo De Paoli
- Department of Medical Oncology, CRO National Cancer Institute Aviano, Italy
| | - Umberto Tirelli
- Department of Medical Oncology, CRO National Cancer Institute Aviano, Italy
| | - Raffaele Di Francia
- Hematology-Oncology and Stem Cell Transplantation Unit, National Cancer Institute, Fondazione "G. Pascale" IRCCS Naples, Italy
| |
Collapse
|
38
|
Fridley BL, Ghosh TM, Wang A, Raghavan R, Dai J, Goode EL, Lamba JK. Genome-Wide Study of Response to Platinum, Taxane, and Combination Therapy in Ovarian Cancer: In vitro Phenotypes, Inherited Variation, and Disease Recurrence. Front Genet 2016; 7:37. [PMID: 27047539 PMCID: PMC4801852 DOI: 10.3389/fgene.2016.00037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/04/2016] [Indexed: 11/13/2022] Open
Abstract
Background: The standard treatment for epithelial ovarian cancer (EOC) patients with advanced disease is carboplatin-paclitaxel combination therapy following initial debulking surgery, yet there is wide inter-patient variation in clinical response. We sought to identify pharmacogenomic markers related to carboplatin-paclitaxel therapy. Methods: The lymphoblastoid cell lines, derived from 74 invasive EOC patients seen at the Mayo Clinic, were treated with increasing concentrations of carboplatin and/or paclitaxel and assessed for in vitro drug response using MTT viability and caspase3/7 apoptosis assays. Drug response phenotypes IC50 (effective dose at which 50% of cells are viable) and EC50 (dose resulting in 50% induction of caspase 3/7 activity) were estimated for each patient to paclitaxel and carboplatin (alone and in combination). For each of the six drug response phenotypes, a genome-wide association study was conducted. Results: Statistical analysis found paclitaxel in vitro drug response phenotypes to be moderately associated with time to EOC recurrence (p = 0.008 IC50; p = 0.058 EC50). Although no pharmacogenomic associations were significant at p < 5 × 10−8, seven genomic loci were associated with drug response at p < 10−6, including at 4q21.21 for carboplatin, 4p16.1 and 5q23.2 for paclitaxel, and 3q24, 10q, 1q44, and 13q21 for combination therapy. Nearby genes of interest include FRAS1, MGC32805, SNCAIP, SLC9A9, TIAL1, ZNF731P, and PCDH20. Conclusions: These results suggest the existence of genetic loci associated with response to platinum-taxane therapies. Further research is needed to understand the mechanism by which these loci may impact EOC clinical response to this commonly used regimen.
Collapse
Affiliation(s)
- Brooke L Fridley
- Department of Biostatistics, University of Kansas Medical Center Kansas City, KS, USA
| | - Taraswi M Ghosh
- Department of Experimental and Clinical Pharmacology, University of Minnesota Minneapolis, MN, USA
| | - Alice Wang
- Department of Biostatistics, University of Kansas Medical Center Kansas City, KS, USA
| | - Rama Raghavan
- Department of Biostatistics, University of Kansas Medical Center Kansas City, KS, USA
| | - Junqiang Dai
- Department of Biostatistics, University of Kansas Medical Center Kansas City, KS, USA
| | - Ellen L Goode
- Department of Health Sciences Research, Mayo Clinic Rochester, MN, USA
| | - Jatinder K Lamba
- Department of Pharmacotherapy and Translational Research, University of Florida Gainesville, FL, USA
| |
Collapse
|
39
|
Wolking S, Schaeffeler E, Lerche H, Schwab M, Nies AT. Impact of Genetic Polymorphisms of ABCB1 (MDR1, P-Glycoprotein) on Drug Disposition and Potential Clinical Implications: Update of the Literature. Clin Pharmacokinet 2016; 54:709-35. [PMID: 25860377 DOI: 10.1007/s40262-015-0267-1] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ATP-binding cassette transporter B1 (ABCB1; P-glycoprotein; multidrug resistance protein 1) is an adenosine triphosphate (ATP)-dependent efflux transporter located in the plasma membrane of many different cell types. Numerous structurally unrelated compounds, including drugs and environmental toxins, have been identified as substrates. ABCB1 limits the absorption of xenobiotics from the gut lumen, protects sensitive tissues (e.g. the brain, fetus and testes) from xenobiotics and is involved in biliary and renal secretion of its substrates. In recent years, a large number of polymorphisms of the ABCB1 [ATP-binding cassette, sub-family B (MDR/TAP), member 1] gene have been described. The variants 1236C>T (rs1128503, p.G412G), 2677G>T/A (rs2032582, p.A893S/T) and 3435C>T (rs1045642, p.I1145I) occur at high allele frequencies and create a common haplotype; therefore, they have been most widely studied. This review provides an overview of clinical studies published between 2002 and March 2015. In summary, the effect of ABCB1 variation on P-glycoprotein expression (messenger RNA and protein expression) and/or activity in various tissues (e.g. the liver, gut and heart) appears to be small. Although polymorphisms and haplotypes of ABCB1 have been associated with alterations in drug disposition and drug response, including adverse events with various ABCB1 substrates in different ethnic populations, the results have been majorly conflicting, with limited clinical relevance. Future research activities are warranted, considering a deep-sequencing approach, as well as well-designed clinical studies with appropriate sample sizes to elucidate the impact of rare ABCB1 variants and their potential consequences for effect sizes.
Collapse
Affiliation(s)
- Stefan Wolking
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler Strasse 3, 72076, Tübingen, Germany
| | | | | | | | | |
Collapse
|
40
|
Boora GK, Kanwar R, Kulkarni AA, Abyzov A, Sloan J, Ruddy KJ, Banck MS, Loprinzi CL, Beutler AS. Testing of candidate single nucleotide variants associated with paclitaxel neuropathy in the trial NCCTG N08C1 (Alliance). Cancer Med 2016; 5:631-9. [PMID: 26763541 PMCID: PMC4831281 DOI: 10.1002/cam4.625] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 12/22/2022] Open
Abstract
Paclitaxel‐induced peripheral neuropathy (PIPN) cannot be predicted from clinical parameters and might have a pharmacogenomic basis. Previous studies identified single nucleotide variants (SNV) associated with PIPN. However, only a subset of findings has been confirmed to date in more than one study, suggesting a need for further re‐testing and validation in additional clinical cohorts. Candidate PIPN‐associated SNVs were identified from the literature. SNVs were retested in 119 patients selected by extreme phenotyping from 269 in NCCTG N08C1 (Alliance) as previously reported. SNV genotyping was performed by a combination of short‐read sequencing analysis and Taqman PCR. These 22 candidate PIPN SNVs were genotyped. Two of these, rs7349683 in the EPHA5 and rs3213619 in ABCB1 were found to be significantly associated with PIPN with an Odds ratios OR = 2.07 (P = 0.02) and OR = 0.12 (P = 0.03), respectively. In addition, three SNVs showed a trend toward a risk‐ or protective effect that was consistent with previous reports. The rs10509681 and rs11572080 in the gene CYP2C8*3 showed risk effect with an OR = 1.49 and rs1056836 in CYP1B1 showed a protective effect with an OR = 0.66. None of the other results supported the previously reported associations, including some SNVs displaying an opposite direction of effect from previous reports, including rs1058930 in CYP2C8, rs17222723 and rs8187710 in ABCC2, rs10771973 in FGD4, rs16916932 in CACNB2 and rs16948748 in PITPNA. Alliance N08C1 validated or supported a minority of previously reported SNV‐PIPN associations. Associations previously reported by multiple studies appeared to have a higher likelihood to be validated by Alliance N08C1.
Collapse
Affiliation(s)
- Ganesh K Boora
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota
| | - Rahul Kanwar
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota
| | - Amit A Kulkarni
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota
| | - Alexej Abyzov
- Department of Health Sciences Research (Biostatistics and Informatics), Mayo Clinic, Rochester, Minnesota
| | - Jeff Sloan
- Alliance Statistics and Data Center, Mayo Clinic, Rochester, Minnesota.,Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Kathryn J Ruddy
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota.,Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Michaela S Banck
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota.,Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Charles L Loprinzi
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota.,Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Andreas S Beutler
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota.,Mayo Clinic Cancer Center, Rochester, Minnesota
| |
Collapse
|
41
|
Backman JT, Filppula AM, Niemi M, Neuvonen PJ. Role of Cytochrome P450 2C8 in Drug Metabolism and Interactions. Pharmacol Rev 2016; 68:168-241. [PMID: 26721703 DOI: 10.1124/pr.115.011411] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
During the last 10-15 years, cytochrome P450 (CYP) 2C8 has emerged as an important drug-metabolizing enzyme. CYP2C8 is highly expressed in human liver and is known to metabolize more than 100 drugs. CYP2C8 substrate drugs include amodiaquine, cerivastatin, dasabuvir, enzalutamide, imatinib, loperamide, montelukast, paclitaxel, pioglitazone, repaglinide, and rosiglitazone, and the number is increasing. Similarly, many drugs have been identified as CYP2C8 inhibitors or inducers. In vivo, already a small dose of gemfibrozil, i.e., 10% of its therapeutic dose, is a strong, irreversible inhibitor of CYP2C8. Interestingly, recent findings indicate that the acyl-β-glucuronides of gemfibrozil and clopidogrel cause metabolism-dependent inactivation of CYP2C8, leading to a strong potential for drug interactions. Also several other glucuronide metabolites interact with CYP2C8 as substrates or inhibitors, suggesting that an interplay between CYP2C8 and glucuronides is common. Lack of fully selective and safe probe substrates, inhibitors, and inducers challenges execution and interpretation of drug-drug interaction studies in humans. Apart from drug-drug interactions, some CYP2C8 genetic variants are associated with altered CYP2C8 activity and exhibit significant interethnic frequency differences. Herein, we review the current knowledge on substrates, inhibitors, inducers, and pharmacogenetics of CYP2C8, as well as its role in clinically relevant drug interactions. In addition, implications for selection of CYP2C8 marker and perpetrator drugs to investigate CYP2C8-mediated drug metabolism and interactions in preclinical and clinical studies are discussed.
Collapse
Affiliation(s)
- Janne T Backman
- Department of Clinical Pharmacology, University of Helsinki (J.T.B., A.M.F., M.N., P.J.N.), and Helsinki University Hospital, Helsinki, Finland (J.T.B., M.N., P.J.N.)
| | - Anne M Filppula
- Department of Clinical Pharmacology, University of Helsinki (J.T.B., A.M.F., M.N., P.J.N.), and Helsinki University Hospital, Helsinki, Finland (J.T.B., M.N., P.J.N.)
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki (J.T.B., A.M.F., M.N., P.J.N.), and Helsinki University Hospital, Helsinki, Finland (J.T.B., M.N., P.J.N.)
| | - Pertti J Neuvonen
- Department of Clinical Pharmacology, University of Helsinki (J.T.B., A.M.F., M.N., P.J.N.), and Helsinki University Hospital, Helsinki, Finland (J.T.B., M.N., P.J.N.)
| |
Collapse
|
42
|
Frederiks C, Lam S, Guchelaar H, Boven E. Genetic polymorphisms and paclitaxel- or docetaxel-induced toxicities: A systematic review. Cancer Treat Rev 2015; 41:935-50. [DOI: 10.1016/j.ctrv.2015.10.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/17/2015] [Accepted: 10/20/2015] [Indexed: 12/28/2022]
|
43
|
Xiang F, Ni Z, Zhan Y, Kong Q, Xu J, Jiang J, Wu R, Kang X. Increased expression of MyD88 and association with paclitaxel resistance in breast cancer. Tumour Biol 2015; 37:6017-25. [DOI: 10.1007/s13277-015-4436-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/12/2015] [Indexed: 11/24/2022] Open
|
44
|
Schneider BP, Li L, Radovich M, Shen F, Miller KD, Flockhart DA, Jiang G, Vance G, Gardner L, Vatta M, Bai S, Lai D, Koller D, Zhao F, O'Neill A, Smith ML, Railey E, White C, Partridge A, Sparano J, Davidson NE, Foroud T, Sledge GW. Genome-Wide Association Studies for Taxane-Induced Peripheral Neuropathy in ECOG-5103 and ECOG-1199. Clin Cancer Res 2015; 21:5082-5091. [PMID: 26138065 PMCID: PMC4717479 DOI: 10.1158/1078-0432.ccr-15-0586] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/08/2015] [Indexed: 01/01/2023]
Abstract
PURPOSE Taxane-induced peripheral neuropathy (TIPN) is an important survivorship issue for many cancer patients. Currently, there are no clinically implemented biomarkers to predict which patients might be at increased risk for TIPN. We present a comprehensive approach to identification of genetic variants to predict TIPN. EXPERIMENTAL DESIGN We performed a genome-wide association study (GWAS) in 3,431 patients from the phase III adjuvant breast cancer trial, ECOG-5103 to compare genotypes with TIPN. We performed candidate validation of top SNPs for TIPN in another phase III adjuvant breast cancer trial, ECOG-1199. RESULTS When evaluating for grade 3-4 TIPN, 120 SNPs had a P value of <10(-4) from patients of European descent (EA) in ECOG-5103. Thirty candidate SNPs were subsequently tested in ECOG-1199 and SNP rs3125923 was found to be significantly associated with grade 3-4 TIPN (P = 1.7 × 10(-3); OR, 1.8). Race was also a major predictor of TIPN, with patients of African descent (AA) experiencing increased risk of grade 2-4 TIPN (HR, 2.1; P = 5.6 × 10(-16)) and grade 3-4 TIPN (HR, 2.6; P = 1.1 × 10(-11)) compared with others. An SNP in FCAMR, rs1856746, had a trend toward an association with grade 2-4 TIPN in AA patients from the GWAS in ECOG-5103 (OR, 5.5; P = 1.6 × 10(-7)). CONCLUSIONS rs3125923 represents a validated SNP to predict grade 3-4 TIPN. Genetically determined AA race represents the most significant predictor of TIPN.
Collapse
Affiliation(s)
| | - Lang Li
- Indiana University School of Medicine, Indianapolis,
Indiana
| | - Milan Radovich
- Indiana University School of Medicine, Indianapolis,
Indiana
| | - Fei Shen
- Indiana University School of Medicine, Indianapolis,
Indiana
| | - Kathy D. Miller
- Indiana University School of Medicine, Indianapolis,
Indiana
| | | | - Guanglong Jiang
- Indiana University School of Medicine, Indianapolis,
Indiana
| | - Gail Vance
- Indiana University School of Medicine, Indianapolis,
Indiana
| | - Laura Gardner
- Indiana University School of Medicine, Indianapolis,
Indiana
| | - Matteo Vatta
- Indiana University School of Medicine, Indianapolis,
Indiana
| | - Shaochun Bai
- Indiana University School of Medicine, Indianapolis,
Indiana
| | - Dongbing Lai
- Indiana University School of Medicine, Indianapolis,
Indiana
| | - Daniel Koller
- Indiana University School of Medicine, Indianapolis,
Indiana
| | - Fengmin Zhao
- Dana Farber Cancer Institute, Boston, Massachusetts
| | - Anne O'Neill
- Dana Farber Cancer Institute, Boston, Massachusetts
| | | | | | | | | | - Joseph Sparano
- Albert Einstein university, Montefiore Medical Center,
Bronx, New York
| | | | - Tatiana Foroud
- Indiana University School of Medicine, Indianapolis,
Indiana
| | | |
Collapse
|
45
|
Szalai R, Ganczer A, Magyari L, Matyas P, Bene J, Melegh B. Interethnic differences of cytochrome P450 gene polymorphisms may influence outcome of taxane therapy in Roma and Hungarian populations. Drug Metab Pharmacokinet 2015; 30:453-6. [PMID: 26507668 DOI: 10.1016/j.dmpk.2015.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/24/2015] [Accepted: 08/03/2015] [Indexed: 11/18/2022]
Abstract
Taxanes are widely used microtubule-stabilizing chemotherapeutic agents in the treatment of cancers. Several cytochrome P450 gene variants have been proven to influence taxane metabolism and therapy. The purpose of this work was to determine the distribution of genetic variations of CYP1B1, CYP2C8 and CYP3A5 genes as the first report on taxane metabolizer cytochrome P450 gene polymorphisms in Roma and Hungarian populations. A total of 397 Roma and 412 Hungarian healthy subjects were genotyped for CYP1B1 c.4326C > G, CYP2C8 c.792C > G and CYP3A5 c.6986A > G variant alleles by PCR-RFLP assay and direct sequencing. We found significant differences in the frequencies of homozygous variant genotypes of CYP1B1 4326 GG (p = 0.002) and CYP3A5 6986 GG (p < 0.001) between Roma and Hungarian populations. Regarding minor allele frequencies, for CYP2C8 a significantly increased prevalence was found in 792G allele frequency in the Hungarian population compared to the Roma population (5.83% vs. 2.14%, p = 0.001). Our results can be used as possible predictive factors in population specific treatment algorithms to developing effective programs for a better outcome in patients treated with taxanes.
Collapse
Affiliation(s)
- Renata Szalai
- University of Pecs, Clinical Center, Department of Medical Genetics, H-7624 Pecs, Szigeti 12, Hungary; Janos Szentagothai Research Centre, Human Genetic and Pharmacogenomic Research Group, H-7624 Pecs, Ifjusag 20, Hungary
| | - Alma Ganczer
- University of Pecs, Clinical Center, Department of Medical Genetics, H-7624 Pecs, Szigeti 12, Hungary
| | - Lili Magyari
- University of Pecs, Clinical Center, Department of Medical Genetics, H-7624 Pecs, Szigeti 12, Hungary; Janos Szentagothai Research Centre, Human Genetic and Pharmacogenomic Research Group, H-7624 Pecs, Ifjusag 20, Hungary
| | - Petra Matyas
- University of Pecs, Clinical Center, Department of Medical Genetics, H-7624 Pecs, Szigeti 12, Hungary
| | - Judit Bene
- University of Pecs, Clinical Center, Department of Medical Genetics, H-7624 Pecs, Szigeti 12, Hungary
| | - Bela Melegh
- University of Pecs, Clinical Center, Department of Medical Genetics, H-7624 Pecs, Szigeti 12, Hungary; Janos Szentagothai Research Centre, Human Genetic and Pharmacogenomic Research Group, H-7624 Pecs, Ifjusag 20, Hungary.
| |
Collapse
|
46
|
Mittag F, Römer M, Zell A. Influence of Feature Encoding and Choice of Classifier on Disease Risk Prediction in Genome-Wide Association Studies. PLoS One 2015; 10:e0135832. [PMID: 26285210 PMCID: PMC4540285 DOI: 10.1371/journal.pone.0135832] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/27/2015] [Indexed: 12/31/2022] Open
Abstract
Various attempts have been made to predict the individual disease risk based on genotype data from genome-wide association studies (GWAS). However, most studies only investigated one or two classification algorithms and feature encoding schemes. In this study, we applied seven different classification algorithms on GWAS case-control data sets for seven different diseases to create models for disease risk prediction. Further, we used three different encoding schemes for the genotypes of single nucleotide polymorphisms (SNPs) and investigated their influence on the predictive performance of these models. Our study suggests that an additive encoding of the SNP data should be the preferred encoding scheme, as it proved to yield the best predictive performances for all algorithms and data sets. Furthermore, our results showed that the differences between most state-of-the-art classification algorithms are not statistically significant. Consequently, we recommend to prefer algorithms with simple models like the linear support vector machine (SVM) as they allow for better subsequent interpretation without significant loss of accuracy.
Collapse
Affiliation(s)
- Florian Mittag
- Cognitive Systems Group, University of Tübingen, Tübingen, Germany
- * E-mail:
| | - Michael Römer
- Cognitive Systems Group, University of Tübingen, Tübingen, Germany
| | - Andreas Zell
- Cognitive Systems Group, University of Tübingen, Tübingen, Germany
| |
Collapse
|
47
|
Reyes-Gibby CC, Wang J, Yeung SCJ, Shete S. Informative gene network for chemotherapy-induced peripheral neuropathy. BioData Min 2015; 8:24. [PMID: 26269716 PMCID: PMC4534051 DOI: 10.1186/s13040-015-0058-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/04/2015] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Host genetic variability has been implicated in chemotherapy-induced peripheral neuropathy (CIPN). A dose-limiting toxicity for chemotherapy agents, CIPN is also a debilitating condition that may progress to chronic neuropathic pain. We utilized a bioinformatics approach, which captures the complexity of intracellular and intercellular interactions, to identify genes for CIPN. METHODS Using genes pooled from the literature as a starting point, we used Ingenuity Pathway Analysis (IPA) to generate gene networks for CIPN. RESULTS We performed IPA core analysis for genes associated with platinum-, taxane- and platinum-taxane-induced neuropathy. We found that IL6, TNF, CXCL8, IL1B and ERK1/2 were the top genes in terms of the number of connections in platinum-induced neuropathy and TP53, MYC, PARP1, P38 MAPK and TNF for combined taxane-platinum-induced neuropathy. CONCLUSION Neurotoxicity is common in cancer patients treated with platinum compounds and anti-microtubule agents and CIPN is one of the debilitating sequela. The bioinformatic approach helped identify genes associated with CIPN in cancer patients.
Collapse
Affiliation(s)
- Cielito C. Reyes-Gibby
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Jian Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Sai-Ching J. Yeung
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Sanjay Shete
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| |
Collapse
|
48
|
Tsukada C, Saito T, Maekawa M, Mano N, Oda A, Hirasawa N, Hiratsuka M. Functional characterization of 12 allelic variants of CYP2C8 by assessment of paclitaxel 6α-hydroxylation and amodiaquine N-deethylation. Drug Metab Pharmacokinet 2015; 30:366-73. [PMID: 26427316 DOI: 10.1016/j.dmpk.2015.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/14/2015] [Accepted: 07/21/2015] [Indexed: 12/25/2022]
Abstract
Cytochrome P450 2C8 (CYP2C8) is one of the enzymes primarily responsible for the metabolism of many drugs, including paclitaxel and amodiaquine. CYP2C8 genetic variants contribute to interindividual variations in the therapeutic efficacy and toxicity of paclitaxel. Although it is difficult to investigate the enzymatic function of most CYP2C8 variants in vivo, this can be investigated in vitro using recombinant CYP2C8 protein variants. The present study used paclitaxel to evaluate 6α-hydroxylase activity and amodiaquine for the N-deethylase activity of wild-type and 11 CYP2C8 variants resulting in amino acid substitutions in vitro. The wild-type and variant CYP2C8 proteins were heterologously expressed in COS-7 cells. Paclitaxel 6α-hydroxylation and amodiaquine N-deethylation activities were determined by measuring the concentrations of 6α-hydroxypaclitaxel and N-desethylamodiaquine, respectively, and the kinetic parameters were calculated. Compared to the wild-type enzyme (CYP2C8.1), CYP2C8.11 and CYP2C8.14 showed little or no activity with either substrate. In addition, the intrinsic clearance values of CYP2C8.8 and CYP2C8.13 for paclitaxel were 68% and 67% that of CYP2C8.1, respectively. In contrast, the CLint values of CYP2C8.2 and CYP2C8.12 were 1.4 and 1.9 times higher than that of CYP2C8.1. These comprehensive findings could inform for further genotype-phenotype studies on interindividual differences in CYP2C8-mediated drug metabolism.
Collapse
Affiliation(s)
- Chiharu Tsukada
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Takahiro Saito
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Masamitsu Maekawa
- Department of Pharmacy, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Nariyasu Mano
- Department of Pharmacy, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Akifumi Oda
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Masahiro Hiratsuka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.
| |
Collapse
|
49
|
Abstract
Breast cancer is a heterogeneous disease that necessitates proper patient classification to direct surgery, pharmacotherapy, and radiotherapy. Despite patients within the same subgroup receiving similar pharmacotherapy, substantial variation in clinical outcomes is observed. Pharmacogenetic variations with direct effect on pharmacokinetics and pharmacodynamics play a central role in clinical outcomes. Pharmacogenetic markers associated with clinical outcome are known as biomarkers. They are termed prognostic biomarkers when their presence is associated with a specific clinical outcome. If the presence of such biomarkers guides treatment, they are termed predictive biomarkers. A number of pharmacogenetic markers have been described in relation to breast cancer pharmacotherapy both in the adjuvant and neoadjuvant setting. CYP2D6 allelic variants produce variable rates of tamoxifen metabolism and are associated with survival outcomes. Other biomarkers have been described in relation to other forms of endocrine therapy and trastuzumab. In neoadjuvant and adjuvant breast cancer chemotherapy, specific biomarkers were correlated with clinical outcomes and risk of drug toxicity. This review highlights key biomarkers in breast cancer pharmacotherapy with the potential of translating such study outcomes into clinical practice.
Collapse
|
50
|
Are pharmacogenomic biomarkers an effective tool to predict taxane toxicity and outcome in breast cancer patients? Literature review. Cancer Chemother Pharmacol 2015. [PMID: 26198313 DOI: 10.1007/s00280-015-2818-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Breast cancer is a heterogeneous disease, characterized by various molecular phenotypes that correlate with different prognosis and response to treatments. Taxanes are some of the most active chemotherapeutic agents for breast cancer; however, their utilization is limited, due to hematologic and cumulative neurotoxicity on treated patients. To understand why only some patients experience severe adverse effects and why patients respond and develop resistance with different rates to taxane therapy, the metabolic pathways of these drugs should be completely unraveled. The variant forms of several genes, related to taxane pharmacokinetics, can be indicative markers of clinical parameters, such as toxicity or outcome. METHODS The search of the data has been conducted through PubMed database, presenting clinical data, clinical trials and basic research restricted to English language until June 2015. RESULTS We studied the literature in order to find any possible association between the major pharmacogenomic variants and specific taxane-related toxicity and patient outcome. We found that the data of these studies are sometimes discordant, due to both the small number of enrolled patients and the heterogeneity of the examined population. CONCLUSIONS Among all analyzed genes, only CYP1B1 and ABCB1 resulted the strongest candidates to become biomarkers of clinical response to taxane therapy in breast cancer, although their utilization still remains an experimental procedure. In the future, greater studies on genetic polymorphisms should be performed in order to identify differentiating signatures for patients with higher toxicity and with resistant or responsive outcome, before the administration of taxanes.
Collapse
|