1
|
Mulder TAM, de With M, del Re M, Danesi R, Mathijssen RHJ, van Schaik RHN. Clinical CYP2D6 Genotyping to Personalize Adjuvant Tamoxifen Treatment in ER-Positive Breast Cancer Patients: Current Status of a Controversy. Cancers (Basel) 2021; 13:cancers13040771. [PMID: 33673305 PMCID: PMC7917604 DOI: 10.3390/cancers13040771] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Tamoxifen is an important adjuvant endocrine therapy in estrogen receptor (ER)-positive breast cancer patients. It is mainly catalyzed by the enzyme CYP2D6 into the most active metabolite endoxifen. Genetic variation in the CYP2D6 gene influences endoxifen formation and thereby potentially therapy outcome. However, the association between CYP2D6 genotype and clinical outcome on tamoxifen is still under debate, as contradictory outcomes have been published. This review describes the latest insights in both CYP2D6 genotype and endoxifen concentrations, as well CYP2D6 genotype and clinical outcome, from 2018 to 2020. Abstract Tamoxifen is a major option for adjuvant endocrine treatment in estrogen receptor (ER) positive breast cancer patients. The conversion of the prodrug tamoxifen into the most active metabolite endoxifen is mainly catalyzed by the enzyme cytochrome P450 2D6 (CYP2D6). Genetic variation in the CYP2D6 gene leads to altered enzyme activity, which influences endoxifen formation and thereby potentially therapy outcome. The association between genetically compromised CYP2D6 activity and low endoxifen plasma concentrations is generally accepted, and it was shown that tamoxifen dose increments in compromised patients resulted in higher endoxifen concentrations. However, the correlation between CYP2D6 genotype and clinical outcome is still under debate. This has led to genotype-based tamoxifen dosing recommendations by the Clinical Pharmacogenetic Implementation Consortium (CPIC) in 2018, whereas in 2019, the European Society of Medical Oncology (ESMO) discouraged the use of CYP2D6 genotyping in clinical practice for tamoxifen therapy. This paper describes the latest developments on CYP2D6 genotyping in relation to endoxifen plasma concentrations and tamoxifen-related clinical outcome. Therefore, we focused on Pharmacogenetic publications from 2018 (CPIC publication) to 2021 in order to shed a light on the current status of this debate.
Collapse
Affiliation(s)
- Tessa A. M. Mulder
- Department of Clinical Chemistry, Erasmus MC University Hospital, Wytemaweg 80, 3015CN Rotterdam, The Netherlands; (T.A.M.M.); (M.d.W.); (M.d.R.); (R.D.)
| | - Mirjam de With
- Department of Clinical Chemistry, Erasmus MC University Hospital, Wytemaweg 80, 3015CN Rotterdam, The Netherlands; (T.A.M.M.); (M.d.W.); (M.d.R.); (R.D.)
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus MC, Wytemaweg 80, 3015CN Rotterdam, The Netherlands;
| | - Marzia del Re
- Department of Clinical Chemistry, Erasmus MC University Hospital, Wytemaweg 80, 3015CN Rotterdam, The Netherlands; (T.A.M.M.); (M.d.W.); (M.d.R.); (R.D.)
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, 55, Via Roma, 56126 Pisa, Italy
| | - Romano Danesi
- Department of Clinical Chemistry, Erasmus MC University Hospital, Wytemaweg 80, 3015CN Rotterdam, The Netherlands; (T.A.M.M.); (M.d.W.); (M.d.R.); (R.D.)
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, 55, Via Roma, 56126 Pisa, Italy
| | - Ron H. J. Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus MC, Wytemaweg 80, 3015CN Rotterdam, The Netherlands;
| | - Ron H. N. van Schaik
- Department of Clinical Chemistry, Erasmus MC University Hospital, Wytemaweg 80, 3015CN Rotterdam, The Netherlands; (T.A.M.M.); (M.d.W.); (M.d.R.); (R.D.)
- Correspondence: ; Tel.: +31-10-703-3119
| |
Collapse
|
2
|
Daniyal A, Santoso I, Gunawan NHP, Barliana MI, Abdulah R. Genetic Influences in Breast Cancer Drug Resistance. BREAST CANCER (DOVE MEDICAL PRESS) 2021; 13:59-85. [PMID: 33603458 PMCID: PMC7882715 DOI: 10.2147/bctt.s284453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/12/2021] [Indexed: 12/25/2022]
Abstract
Breast cancer is the most common cancer in adult women aged 20 to 50 years. The therapeutic regimens that are commonly recommended to treat breast cancer are human epidermal growth factor receptor 2 (HER2) targeted therapy, endocrine therapy, and systemic chemotherapy. The selection of pharmacotherapy is based on the characteristics of the tumor and its hormone receptor status, specifically, the presence of HER2, progesterone receptors, and estrogen receptors. Breast cancer pharmacotherapy often gives different results in various populations, which may cause therapeutic failure. Different types of congenital drug resistance in individuals can cause this. Genetic polymorphism is a factor in the occurrence of congenital drug resistance. This review explores the relationship between genetic polymorphisms and resistance to breast cancer therapy. It considers studies published from 2010 to 2020 concerning the relationship of genetic polymorphisms and breast cancer therapy. Several gene polymorphisms are found to be related to longer overall survival, worse relapse-free survival, higher pathological complete response, and increased disease-free survival in breast cancer patients. The presence of these gene polymorphisms can be considered in the treatment of breast cancer in order to shape personalized therapy to yield better results.
Collapse
Affiliation(s)
- Adhitiya Daniyal
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Ivana Santoso
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Nadira Hasna Putri Gunawan
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Melisa Intan Barliana
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Rizky Abdulah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
| |
Collapse
|
3
|
Sanchez-Spitman AB, Swen JJ, Dezentjé VO, Moes DJAR, Gelderblom H, Guchelaar HJ. Effect of CYP2C19 genotypes on tamoxifen metabolism and early-breast cancer relapse. Sci Rep 2021; 11:415. [PMID: 33432065 PMCID: PMC7801676 DOI: 10.1038/s41598-020-79972-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
CYP2C19*2 and CYP2C19*17 might influence tamoxifen metabolism and clinical outcome. Our aim was to investigate the effect of CYP2C19 genotypes on tamoxifen concentrations and metabolic ratios (MRs) and breast cancer recurrence in a large cohort of Caucasian women. Genetic variants (CYP2D6 and CYP2C19 genotypes), tamoxifen and metabolites concentrations, baseline characteristics, and breast cancer recurrence from the CYPTAM study (NTR1509) were used. CYP2C19*2 and CYP2C19*17 genotypes were evaluated as alleles and as groups based on CYP2D6 genotypes (high, intermediate and low activity). Log-rank test and Kaplan–Meier analysis were used to evaluate differences in recurrence defined as relapse-free survival (RFS). Classification tree analyses (CTAs) were conducted to assess the levels of interactions per polymorphism (CYP2D6 and CYP2C19 genotypes) on endoxifen concentrations. No differences in mean concentrations and MRs were observed when comparing CYP2C19 genotypes (CYP2C19*1/*1; CYP2C19*1/*2; CYP2C19*2/*2; CYP2C19*1/*17; CYP2C19*17/*17; CYP2C19*2/*17). Only significant differences (p value < 0.05) in mean concentrations and MRs were observed when comparing tamoxifen activity groups (high, intermediate and low activity). A log-rank test did not find an association across CYP2C19 genotypes (p value 0.898). CTAs showed a significant relationship between CYP2D6 and endoxifen (p value < 0.0001), but no association with CYP2C19 genotypes was found. CYP2C19 polymorphisms do not have a significant impact on tamoxifen metabolism or breast cancer relapse.
Collapse
Affiliation(s)
- A B Sanchez-Spitman
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.,Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
| | - J J Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.,Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
| | - V O Dezentjé
- Department of Medical Oncology, Netherlands Cancer Institute/Antoni Van Leeuwenhoek, Amsterdam, The Netherlands
| | - D J A R Moes
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.,Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
| | - H Gelderblom
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands.,Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - H J Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands. .,Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
4
|
Polymorphisms of genes encoding drug transporters or cytochrome P450 enzymes and association with clinical response in cancer patients: a systematic review. Cancer Chemother Pharmacol 2019; 84:959-975. [DOI: 10.1007/s00280-019-03932-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
|
5
|
Sim S, Lövrot J, Lindh JD, Bergh J, Xie H. Effect of CYP2C19 and CYP2D6 genotype on tamoxifen treatment outcome indicates endogenous and exogenous interplay. Pharmacogenomics 2018; 19:1027-1037. [DOI: 10.2217/pgs-2018-0089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Aim: We investigated the interaction of CYP2C19 and CYP2D6 genotype on clinical outcome in tamoxifen-treated breast cancer patients. Materials & methods: A cohort of 306 patients on tamoxifen treatment for a minimum of 1 year were employed to analyze the effect of genotype-predicted phenotype on relapse-free survival. Results & conclusion: We show that the group with worst outcome and highest risk of relapse is that of 2C19↑–2D6↓ (hazard ratio: 2.94), when adjusting for age, Nottingham prognostic index and adjuvant chemotherapy. Furthermore, the effect of 2C19↑–2D6↓genotype-predicted phenotype is greatly enhanced in premenopausal patients (hazard ratio: 21.08). We hypothesize that poor bioactivation of tamoxifen in patients with low CYP2D6 activity and high CYP2C19 metabolism represents a tamoxifen-treated patient group that has the worst clinical outcome.
Collapse
Affiliation(s)
- Sarah Sim
- Department of Physiology & Pharmacology, Karolinska Institutet, SE171-76 Stockholm, Sweden
| | - John Lövrot
- Department of Oncology & Pathology, Karolinska Institutet, SE171-76 Stockholm, Sweden
| | - Jonatan D Lindh
- Department of Clinical Pharmacology, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
| | - Jonas Bergh
- Department of Oncology & Pathology, Karolinska Institutet, SE171-76 Stockholm, Sweden
- Department of Clinical Oncology, Karolinska University Hospital, SE171-76 Stockholm, Sweden
| | - Hanjing Xie
- Department of Oncology & Pathology, Karolinska Institutet, SE171-76 Stockholm, Sweden
- Department of Clinical Oncology, Karolinska University Hospital, SE171-76 Stockholm, Sweden
- Department of Oncology, Capio S:t Görans Hospital, SE112-81 Stockholm, Sweden
| |
Collapse
|
6
|
Beelen K, Opdam M, Severson T, Koornstra R, Vincent A, Wesseling J, Sanders J, Vermorken J, van Diest P, Linn S. Mitotic count can predict tamoxifen benefit in postmenopausal breast cancer patients while Ki67 score cannot. BMC Cancer 2018; 18:761. [PMID: 30041599 PMCID: PMC6057037 DOI: 10.1186/s12885-018-4516-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 05/18/2018] [Indexed: 12/13/2022] Open
Abstract
Background Controversy exists for the use of Ki67 protein expression as a predictive marker to select patients who do or do not derive benefit from adjuvant endocrine therapy. Whether other proliferation markers, like Cyclin D1, and mitotic count can also be used to identify those estrogen receptor α (ERα) positive breast cancer patients that derive benefit from tamoxifen is not well established. We tested the predictive value of these markers for tamoxifen benefit in ERα positive postmenopausal breast cancer patients. Methods We collected primary tumor blocks from 563 ERα positive patients who had been randomized between tamoxifen (1 to 3 years) vs. no adjuvant therapy (IKA trial) with a median follow-up of 7.8 years. Mitotic count, Ki67 and Cyclin D1 protein expression were centrally assessed by immunohistochemistry on tissue microarrays. In addition, we tested the predictive value of CCND1 gene copy number variation using MLPA technology. Multivariate Cox proportional hazard models including interaction between marker and treatment were used to test the predictive value of these markers. Results Patients with high Ki67 (≥5%) as well as low (< 5%) expressing tumors equally benefitted from adjuvant tamoxifen (adjusted hazard ratio (HR) 0.5 for both groups)(p for interaction 0.97). We did not observe a significant interaction between either Cyclin D1 or Ki67 and tamoxifen, indicating that the relative benefit from tamoxifen was not dependent on the level of these markers. Patients with tumors with low mitotic count derived substantial benefit from tamoxifen (adjusted HR 0.24, p < 0.0001), while patients with tumors with high mitotic count derived no significant benefit (adjusted HR 0.64, p = 0.14) (p for interaction 0.03). Conclusion Postmenopausal breast cancer patients with high Ki67 counts do significantly benefit from adjuvant tamoxifen, while those with high mitotic count do not. Mitotic count is a better selection marker for reduced tamoxifen benefit than Ki67. Electronic supplementary material The online version of this article (10.1186/s12885-018-4516-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karin Beelen
- Molecular Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Mark Opdam
- Molecular Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tesa Severson
- Molecular Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Rutger Koornstra
- Molecular Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Andrew Vincent
- Departments of Biometrics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jelle Wesseling
- Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joyce Sanders
- Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jan Vermorken
- Department of Medical Oncology, University Hospital Antwerpen, Edegem, Belgium
| | - Paul van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sabine Linn
- Molecular Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands. .,Medical Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Feng W, Liu X, Zhao X, Huang M, Guo W, Yin J, Chen Z, Zhu X. Influence of SLCO1B1 in gastric cancer patients treated with EOF chemotherapy. Oncol Lett 2018; 16:4489-4497. [PMID: 30214584 PMCID: PMC6126332 DOI: 10.3892/ol.2018.9147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 06/28/2018] [Indexed: 11/06/2022] Open
Abstract
Cytochrome-P450 enzymes, ATP-binding cassette transporters, and solute carriers mediate drug metabolism as metabolic enzymes and membrane transporters, respectively. The present study investigated whether single nucleotide polymorphisms (SNPs) in genes encoding these proteins were predictive or prognostic factors in patients with metastatic gastric cancer (MGC) undergoing chemotherapy. A retrospective study of 108 MGC patients who received epirubicin, oxaliplatin, and 5-fluorouracil (EOF) as first-line treatment was performed. A total of 13 SNPs were genotyped, including SLCO1B1 (rs4149056), SLC2A9 (rs16890979, rs6449213, rs734553), ABCG2 (rs2231142), CYP2C9 (rs1057910, rs1799853), CYP2C19 (rs72552267, rs28399504, rs56337013, rs41291556) and CYP1A2 (rs12720461, rs56107638). The associations between these genotypes and disease-control rate (DCR), progression-free survival (PFS) and overall survival (OS) were analyzed. Patients with SLCO1B1 rs4149056 TT genotype had a significantly shorter OS compared with those with a C allele (CC + CT; 312 vs. 565 days, P=0.039). Multivariate analysis revealed that the rs4149056 TT homozygous genotype was an independent prognostic factor for shorter OS (hazard ratio: 2.565, 95% confidence interval: 1.215–5.415, P=0.014). However, no significant associations between SLCO1B1 rs4149056 and PFS were observed, between the other 12 SNPs and PFS or OS, or between any of the 13 SNPs and DCR. In conclusion, SLCO1B1 rs4149056 TT may be an independent predictor of survival in patients with MCG treated with EOF chemotherapy.
Collapse
Affiliation(s)
- Wanjing Feng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Xin Liu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Xiaoying Zhao
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Mingzhu Huang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Weijian Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Jiliang Yin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Zhiyu Chen
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Xiaodong Zhu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| |
Collapse
|
8
|
Goetz MP, Sangkuhl K, Guchelaar HJ, Schwab M, Province M, Whirl-Carrillo M, Symmans WF, McLeod HL, Ratain MJ, Zembutsu H, Gaedigk A, van Schaik RH, Ingle JN, Caudle KE, Klein TE. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and Tamoxifen Therapy. Clin Pharmacol Ther 2018; 103:770-777. [PMID: 29385237 PMCID: PMC5931215 DOI: 10.1002/cpt.1007] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/14/2017] [Accepted: 12/23/2017] [Indexed: 12/15/2022]
Abstract
Tamoxifen is biotransformed by CYP2D6 to 4-hydroxytamoxifen and 4-hydroxy N-desmethyl tamoxifen (endoxifen), both with greater antiestrogenic potency than the parent drug. Patients with certain CYP2D6 genetic polymorphisms and patients who receive strong CYP2D6 inhibitors exhibit lower endoxifen concentrations and a higher risk of disease recurrence in some studies of tamoxifen adjuvant therapy of early breast cancer. We summarize evidence from the literature and provide therapeutic recommendations for tamoxifen based on CYP2D6 genotype.
Collapse
Affiliation(s)
- Matthew P. Goetz
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Katrin Sangkuhl
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias Schwab
- Dr Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- Department of Clinical Pharmacology, University Hospital, Tuebingen, Germany
- Department of Pharmacy and Biochemistry, University of Tuebingen, Tuebingen, Germany
| | - Michael Province
- Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - W. Fraser Symmans
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Mark J. Ratain
- Center for Personalized Therapeutics, University of Chicago, Chicago, IL
| | - Hitoshi Zembutsu
- Division of Human Genetics, National Cancer Center, Research Institute, Tokyo, Japan
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children’s Mercy Kansas City and Department of Pediatrics, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Ron H. van Schaik
- International Expertcenter Pharmacogenetics, Dept Clinical Chemistry, Erasmus MC, Rotterdam, The Netherlands
- LKCH UMC Utrecht, The Netherlands
| | - James N Ingle
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Kelly E. Caudle
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Teri E. Klein
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| |
Collapse
|
9
|
van Rossum AGJ, Kok M, McCool D, Opdam M, Miltenburg NC, Mandjes IAM, van Leeuwen-Stok E, Imholz ALT, Portielje JEA, Bos MMEM, van Bochove A, van Werkhoven E, Schmidt MK, Oosterkamp HM, Linn SC. Independent replication of polymorphisms predicting toxicity in breast cancer patients randomized between dose-dense and docetaxel-containing adjuvant chemotherapy. Oncotarget 2017; 8:113531-113542. [PMID: 29371927 PMCID: PMC5768344 DOI: 10.18632/oncotarget.22697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 10/27/2017] [Indexed: 12/12/2022] Open
Abstract
Introduction Although pharmacogenomics has evolved substantially, a predictive test for chemotherapy toxicity is still lacking. We compared the toxicity of adjuvant dose-dense doxorubicin-cyclophosphamide (ddAC) and docetaxel-doxorubicin-cyclophosphamide (TAC) in a randomized multicenter phase III trial and replicated previously reported associations between genotypes and toxicity. Results 646 patients (97%) were evaluable for toxicity (grade 2 and higher). Whereas AN was more frequent after ddAC (P < 0.001), TAC treated patients more often had PNP (P < 0.001). We could replicate 2 previously reported associations: TECTA (rs1829; OR 4.18, 95% CI 1.84-9.51, P = 0.001) with PNP, and GSTP1 (rs1138272; OR 2.04, 95% CI 1.13-3.68, P = 0.018) with PNP. Materials and methods Patients with pT1-3, pN0-3 breast cancer were randomized between six cycles A60C600 every 2 weeks or T75A50C500 every 3 weeks. Associations of 13 previously reported single nucleotide polymorphisms (SNPs) with the most frequent toxicities: anemia (AN), febrile neutropenia (FN) and peripheral neuropathy (PNP) were analyzed using logistic regression models. Conclusions In this independent replication, we could replicate an association between 2 out of 13 SNPs and chemotherapy toxicities. These results warrant further validation in order to enable tailored treatment for breast cancer patients.
Collapse
Affiliation(s)
- Annelot G J van Rossum
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marleen Kok
- Division of Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Danielle McCool
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Mark Opdam
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Nienke C Miltenburg
- Department of Neurology, Medical Center Slotervaart, Amsterdam, The Netherlands
| | | | | | - Alex L T Imholz
- Department of Medical Oncology, Deventer Ziekenhuis, Deventer, The Netherlands
| | | | - Monique M E M Bos
- Department of Medical Oncology, Reinier de Graaf Groep, Delft, The Netherlands
| | - Aart van Bochove
- Department of Medical Oncology, Zaans Medisch Centrum, Zaandam, The Netherlands
| | - Erik van Werkhoven
- Biometrics Division, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marjanka K Schmidt
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hendrika M Oosterkamp
- Department of Medical Oncology, Haaglanden Medisch Centrum, The Hague, The Netherlands
| | - Sabine C Linn
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Pathology, University Medical Center, Utrecht, The Netherlands
| |
Collapse
|
10
|
Marcath LA, Deal AM, Van Wieren E, Danko W, Walko CM, Ibrahim JG, Weck KE, Jones DR, Desta Z, McLeod HL, Carey LA, Irvin WJ, Hertz DL. Comprehensive assessment of cytochromes P450 and transporter genetics with endoxifen concentration during tamoxifen treatment. Pharmacogenet Genomics 2017; 27:402-409. [PMID: 28877533 PMCID: PMC5659294 DOI: 10.1097/fpc.0000000000000311] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Tamoxifen bioactivation to endoxifen is mediated primarily by CYP2D6; however, considerable variability remains unexplained. Our aim was to perform a comprehensive assessment of the effect of genetic variation in tamoxifen-relevant enzymes and transporters on steady-state endoxifen concentrations. PATIENTS AND METHODS Comprehensive genotyping of CYP enzymes and transporters was performed using the iPLEX ADME PGx Pro Panel in 302 tamoxifen-treated breast cancer patients. Predicted activity phenotype for 19 enzymes and transporters were analyzed for univariate association with endoxifen concentration, and then adjusted for CYP2D6 and clinical covariates. RESULTS In univariate analysis, higher activity of CYP2C8 (regression β=0.22, P=0.020) and CYP2C9 (β=0.20, P=0.04), lower body weight (β=-0.014, P<0.0001), and endoxifen measurement during winter (each β<-0.39, P=0.002) were associated with higher endoxifen concentrations. After adjustment for the CYP2D6 diplotype, weight, and season, CYP2C9 remained significantly associated with higher concentrations (P=0.02), but only increased the overall model R by 1.3%. CONCLUSION Our results further support a minor contribution of CYP2C9 genetic variability toward steady-state endoxifen concentrations. Integration of clinician and genetic variables into individualized tamoxifen dosing algorithms would marginally improve their accuracy and potentially enhance tamoxifen treatment outcomes.
Collapse
Affiliation(s)
- Lauren A Marcath
- aDepartment of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan bUNC Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina cDeBartolo Family Personalized Medicine Institute, Moffitt Cancer Center, Tampa, Florida dDepartment of Clinical Pharmacology, Indiana University, Indianapolis, Indiana eBon Secours Cancer Institute, Richmond, Virginia, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Cardoso JV, Abrão MS, Berardo PT, Ferrari R, Nasciutti LE, Machado DE, Perini JA. Role of cytochrome P450 2C19 polymorphisms and body mass index in endometriosis: A case-control study. Eur J Obstet Gynecol Reprod Biol 2017; 219:119-123. [PMID: 29102810 DOI: 10.1016/j.ejogrb.2017.10.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/17/2017] [Accepted: 10/30/2017] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To investigate the contribution of CYP2C19 polymorphisms and body mass index (BMI) in the development of endometriosis. STUDY DESIGN This is a case-control study that includes 356 women (187 cases and 169 controls) recruited from two hospitals in the Brazilian public health system. The genotyping analyses of the CYP2C19*2 and CYP2C19*17 polymorphisms were performed using TaqMan allelic discrimination assays, and the association of the studied polymorphisms with endometriosis was evaluated by multivariate logistic regression. Pearson correlation coefficients were used to investigate the interaction between BMI and CYP2C19 polymorphisms. RESULTS The variant allele frequencies of CYP2C19*2 were significantly different between cases and controls, and after adjusting for confounding factors, the CYP2C19*2 polymorphism was more frequent in women with endometriosis, considering all cases (CYP2C19*2: OR=1.83; 95% CI=1.17-2.85) and only deeply infiltrating endometriosis (DIE) cases (CYP2C19*2: OR=2.32; 95% CI=1.42-3.77). BMI was significantly lower in endometriosis patients (26.5±4.68) than in controls (27.8±5.65, P<0.02). Among obese women (BMI 30-40), the CYP2C19*2 polymorphism had a greater association with endometriosis (CYP2C19*2: OR=3.27; 95% CI=1.55-6.89). There was a positive correlation between CYP2C19*2 and BMI 30-40 (P=0.004). CONCLUSIONS The findings of our study suggest that CYP2C19*2 is positively associated with endometriosis and that BMI may have a significant interaction with CYP2C19*2 and the risk of endometriosis.
Collapse
Affiliation(s)
- Jéssica Vilarinho Cardoso
- Program of Post-graduation in Public Health and Environment, National School of Public Health, Oswald Cruz Foundation, Rio de Janeiro, RJ, Brazil; Research Laboratory of Pharmaceutical Sciences, West Zone State University, Rio de Janeiro, Brazil
| | - Maurício Simões Abrão
- Endometriosis Section, Gynecologic Division, Hospital das Clinicas, HCFMUSP, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil; Gynecologic Division, BP - The Portuguese Beneficence of São Paulo, São Paulo, SP, Brazil
| | - Plínio Tostes Berardo
- Gynecology Service, Hospital Federal dos Servidores do Estado, Rio de Janeiro, RJ, Brazil
| | - Renato Ferrari
- Gynecology Institute, Hospital Moncorvo Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Luiz Eurico Nasciutti
- Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Daniel Escorsim Machado
- Research Laboratory of Pharmaceutical Sciences, West Zone State University, Rio de Janeiro, Brazil; Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jamila Alessandra Perini
- Program of Post-graduation in Public Health and Environment, National School of Public Health, Oswald Cruz Foundation, Rio de Janeiro, RJ, Brazil; Research Laboratory of Pharmaceutical Sciences, West Zone State University, Rio de Janeiro, Brazil.
| |
Collapse
|
12
|
BRCA1-like profile is not significantly associated with survival benefit of non-myeloablative intensified chemotherapy in the GAIN randomized controlled trial. Breast Cancer Res Treat 2017; 166:775-785. [PMID: 28822007 DOI: 10.1007/s10549-017-4444-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 08/05/2017] [Indexed: 01/06/2023]
Abstract
PURPOSE The BRCA1-like profile identifies tumors with a defect in homologous recombination due to inactivation of BRCA1. This profile has been shown to predict which stage III breast cancer patients benefit from myeloablative, DNA double-strand-break-inducing chemotherapy. We tested the predictive potential of the BRCA1-like profile for adjuvant non-myeloablative, intensified dose-dense chemotherapy in the GAIN trial. METHODS Lymph node positive breast cancer patients were randomized to 3 × 3 dose-dense cycles of intensified epirubicin, paclitaxel, and cyclophosphamide (ETC) or 4 cycles concurrent epirubicin and cyclophosphamide followed by 10 cycles of weekly paclitaxel combined with 4 cycles capecitabine (EC-TX). Only triple negative breast cancer patients (TNBC) for whom tissue was available were included in these planned analyses. BRCA1-like or non-BRCA1-like copy number profiles were derived from low coverage sequencing data. RESULTS 119 out of 163 TNBC patients (73%) had a BRCA1-like profile. After median follow-up of 83 months, disease free survival (DFS) was not significantly different between BRCA1-like and non-BRCA1-like patients [adjusted hazard ratio (adj.HR) 1.02; 95% confidence interval (CI) 0.55-1.86], neither was overall survival (OS; adj.HR 1.26; 95% CI 0.58-2.71). When split by BRCA1-like status, DFS and OS were not significantly different between treatments. However, EC-TX seemed to result in a trend to an improvement in DFS in patients with a BRCA1-like tumor, while the reverse accounted for ETC treatment in patients with a non-BRCA1-like tumor (p for interaction = 0.094). CONCLUSIONS The BRCA1-like profile is not associated with survival benefit for a non-myeloablative, intensified regimen in this study population. Considering the limited cohort size, capecitabine might have additional benefit for TNBC patients.
Collapse
|
13
|
Damkier P, Kjærsgaard A, Barker KA, Cronin-Fenton D, Crawford A, Hellberg Y, Janssen EAM, Langefeld C, Ahern TP, Lash TL. CYP2C19*2 and CYP2C19*17 variants and effect of tamoxifen on breast cancer recurrence: Analysis of the International Tamoxifen Pharmacogenomics Consortium dataset. Sci Rep 2017; 7:7727. [PMID: 28798474 PMCID: PMC5552748 DOI: 10.1038/s41598-017-08091-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/06/2017] [Indexed: 12/13/2022] Open
Abstract
The role of cytochrome P450 drug metabolizing enzymes in the efficacy of tamoxifen treatment of breast cancer is subject to substantial interest and controversy. CYP2D6 have been intensively studied, but the role of CYP2C19 is less elucidated, and we studied the association of CYPC19 genotype and recurrence of breast cancer. We used outcome and genotyping data from the large publicly available International Tamoxifen Pharmacogenomics Consortium (ITPC) dataset. Cox regression was used to compute the hazard ratios (HRs) for recurrence. CYP2C19 genotype data was available for 2 423 patients and the final sample cohort comprised 2 102 patients. CYP2C19*2 or *19 alleles did not influence DFS. For the CYP2C19*2 allele, the HR was 1.05 (CI 0.78–1.42) and 0.79 (CI 0.32–1.94) for hetero- and homozygote carriers, respectively. The corresponding HR for hetero- and homozygote carriers of the CYP2C19*17 allele were 1.02 (CI 0.71–1.46) and 0.57 (CI 0.26–1.24), respectively. Accounting for CYP2D6 genotype status did not change these estimates. We found no evidence to support a clinically meaningful role of CYP2C19 polymorphisms and response to tamoxifen in breast cancer patients and, consequently, CYP2C19 genotype status should not be included in clinical decisions on tamoxifen treatment.
Collapse
Affiliation(s)
- Per Damkier
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark. .,Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Anders Kjærsgaard
- Department of Clinical Epidemiology, Aarhus University, Aarhus, Denmark
| | - Kimberly A Barker
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | - Anatasha Crawford
- Department of Epidemiology, Rollins School of Public Health and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Ylva Hellberg
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Carl Langefeld
- Center for Public Health Genomics and Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Thomas P Ahern
- Departments of Surgery and Biochemistry, The Robert Larner, M.D. College of Medicine at The University of Vermont, Burlington, Vermont, USA
| | - Timothy L Lash
- Department of Clinical Epidemiology, Aarhus University, Aarhus, Denmark.,Department of Epidemiology, Rollins School of Public Health and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
14
|
Physical Confirmation and Comparative Genomics of the Rat Mammary carcinoma susceptibility 3 Quantitative Trait Locus. G3-GENES GENOMES GENETICS 2017; 7:1767-1773. [PMID: 28391240 PMCID: PMC5473756 DOI: 10.1534/g3.117.039388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Human breast and rat mammary cancer susceptibility are complex phenotypes where complete sets of risk associated loci remain to be identified for both species. We tested multiple congenic rat strains to physically confirm and positionally map rat Mammary carcinoma susceptibility 3 (Mcs3)-a mammary cancer resistance allele previously predicted at Rattus norvegicus chromosome 1 (RNO1). The mammary cancer susceptible Wistar Furth (WF) strain was the recipient, and the mammary cancer resistant Copenhagen (Cop) strain was the RNO1-segment donor for congenics. Inbred WF females averaged 6.3 carcinogen-induced mammary carcinomas per rat. Two WF.Cop congenic strains averaged 2.8 and 3.4 mammary carcinomas per rat, which confirmed Mcs3 as an independently acting allele. Two other WF.Cop congenic strains averaged 6.6 and 8.1 mammary carcinomas per rat, and, thus, did not contain Mcs3 Rat Mcs3 was delimited to 27.8 Mb of RNO1 from rs8149408 to rs105131702 (RNO1:143700228-171517317 of RGSC 6.0/rn6). Human genetic variants with p values for association to breast cancer risk below 10-7 had not been reported for Mcs3 orthologous loci; however, human variants located in Mcs3-orthologous regions with potential association to risk (10-7 < p < 10-3) were listed in some population-based studies. Further, rat Mcs3 contains sequence orthologous to human 11q13/14-a region frequently amplified in female breast cancer. We conclude that Mcs3 is an independently acting mammary carcinoma resistance allele. Human population-based, genome-targeted association studies interrogating Mcs3 orthologous loci may yield novel breast cancer risk associated variants and genes.
Collapse
|
15
|
Huang W, Ji CM, Guo M, Ni WW, Meng L, Wei JF. Pharmacogenomics of proton pump inhibitors. Shijie Huaren Xiaohua Zazhi 2016; 24:4458-4466. [DOI: 10.11569/wcjd.v24.i33.4458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
At present, proton pump inhibitors (PPIs), as a class of strong antacid agents, are widely used in the clinical treatment of gastrointestinal diseases. PPIs achieved a strong effect of acid suppression with high specificity and long duration. However, the issue of PPI abuse exists worldwide because of the lack of relevant knowledge. Due to tremendous inter-individual differences in uptake, the clinical application of PPIs appears to be limited. Therefore, rational use of PPIs in daily clinical practice is an important research topic. In addition, PPIs were found with many side effects. CYP2C19, as one of the most important enzymes in cytochrome P450 enzyme family, is responsible for the metabolism of over 10% of drugs. The bioavailability and metabolism of PPIs are mainly affected by drug-metabolizing enzymes CYP2C19 and CYP3A4, which are located in the liver. By suppressing cytochrome P450 isoenzyme, PPIs may affect the metabolism of multiple drugs, thus leading to unwanted side effects in case of combined medication. What's more, the individual difference in PPI administration is derived from distinct molecular mechanisms mediated by CYP3A4 and/or CYP2C19. Non-genetic factors, such as combined medication and food pyramid, also impact on the effectiveness of PPIs. Gene mutations can also alter the enzymatic activity of CY2C19, thereby resulting in different blood concentrations of drugs metabolized by CYP2C19. In conclusion, PPIs have the advantages of safety and effectiveness; however, the problem of drug resistance still exists, which indicates their selective application in clinical practice. In this paper, we review the advances in pharmacogenomics of PPIs, with an aim to provide reference to individualized clinical medication.
Collapse
|
16
|
de Vries Schultink AHM, Zwart W, Linn SC, Beijnen JH, Huitema ADR. Effects of Pharmacogenetics on the Pharmacokinetics and Pharmacodynamics of Tamoxifen. Clin Pharmacokinet 2016; 54:797-810. [PMID: 25940823 PMCID: PMC4513218 DOI: 10.1007/s40262-015-0273-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The antiestrogenic drug tamoxifen is widely used in the treatment of estrogen receptor-α-positive breast cancer and substantially decreases recurrence and mortality rates. However, high interindividual variability in response is observed, calling for a personalized approach to tamoxifen treatment. Tamoxifen is bioactivated by cytochrome P450 (CYP) enzymes such as CYP2B6, CYP2C9, CYP2C19, CYP2D6 and CYP3A4/5, resulting in the formation of active metabolites, including 4-hydroxy-tamoxifen and endoxifen. Therefore, polymorphisms in the genes encoding these enzymes are proposed to influence tamoxifen and active tamoxifen metabolites in the serum and consequently affect patient response rates. To tailor tamoxifen treatment, multiple studies have been performed to clarify the influence of polymorphisms on its pharmacokinetics and pharmacodynamics. Nevertheless, personalized treatment of tamoxifen based on genotyping has not yet met consensus. This article critically reviews the published data on the effect of various genetic polymorphisms on the pharmacokinetics and pharmacodynamics of tamoxifen, and reviews the clinical implications of its findings. For each CYP enzyme, the influence of polymorphisms on pharmacokinetic and pharmacodynamic outcome measures is described throughout this review. No clear effects on pharmacokinetics and pharmacodynamics were seen for various polymorphisms in the CYP encoding genes CYP2B6, CYP2C9, CYP2C19 and CYP3A4/5. For CYP2D6, there was a clear gene-exposure effect that was able to partially explain the interindividual variability in plasma concentrations of the pharmacologically most active metabolite endoxifen; however, a clear exposure-response effect remained controversial. These controversial findings and the partial contribution of genotype in explaining interindividual variability in plasma concentrations of, in particular, endoxifen, imply that tailored tamoxifen treatment may not be fully realized through pharmacogenetics of metabolizing enzymes alone.
Collapse
Affiliation(s)
- Aurelia H M de Vries Schultink
- Department of Pharmacy and Pharmacology, Antoni van Leeuwenhoek-The Netherlands Cancer Institute, Louwesweg 6, 1066 EC, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
17
|
Koornstra R, Beelen K, Vincent A, van der Noort V, van Diest P, Linn S. St. Gallen endocrine response classes predict recurrence rates over time. Breast 2015; 24:705-12. [DOI: 10.1016/j.breast.2015.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 07/06/2015] [Accepted: 08/21/2015] [Indexed: 01/03/2023] Open
|
18
|
Ciccolini J, Fanciullino R, Serdjebi C, Milano G. Pharmacogenetics and breast cancer management: current status and perspectives. Expert Opin Drug Metab Toxicol 2015; 11:719-29. [PMID: 25690018 DOI: 10.1517/17425255.2015.1008447] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Breast cancer has benefited from a number of innovative therapeutics over the last decade. Cytotoxics, hormone therapy, targeted therapies and biologics can now be given to ensure optimal management of patients. As life expectancy of breast cancer patients has been significantly stretched and that several lines of treatment are now made available, determining the best drug or drug combinations to be primarily given and the best dosing and scheduling for each patient is critical for ensuring an optimal toxicity/efficacy balance. AREAS COVERED Defining patient's characteristics at the tumor level (pharmacogenomics) and the constitutional level (pharmacogenetics) is a rising trend in oncology. This review covers the latest strategies based upon the search of relevant biomarkers for efficacy, resistance and toxicity to be undertaken at the bedside to shift towards precision medicine in breast cancer patients. EXPERT OPINION In the expanding era of bioguided medicine, identifying relevant and clinically validated biomarkers from the plethora of published material remains an uneasy task. Sorting the variety of genetic and molecular markers that have been investigated over the last decade on their level of evidence and addressing the issue of drug exposure should help to improve the management of breast cancer therapy.
Collapse
Affiliation(s)
- Joseph Ciccolini
- SMARTc Pharmacokinetics Unit, UMR S_911 CRO2, AMU , Marseille , France
| | | | | | | |
Collapse
|
19
|
Tayeb HT, Bakheet DH, Zaza K, Wakil SM, Dzimiri N. Genotyping of CYP2C19 polymorphisms and its clinical validation in the ethnic Arab population. J Pharm Pharmacol 2015; 67:972-9. [PMID: 25684066 DOI: 10.1111/jphp.12391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/21/2014] [Indexed: 12/25/2022]
Abstract
OBJECTIVES The drug-metabolizing enzymes and transporters (DMET) Plus microarray and x-Tag assays have recently been developed for genotyping individuals in personalized medicine. Furthermore, the cytochrome 450-2C19 (CYP2C19) is a key metabolic enzyme encoded by a polymorphic gene commonly associated with diminished metabolism and variable clinical responses to several drugs in an ethnicity-dependent fashion. Therefore, validation of these clinical procedures as well as knowledge of the ethnic-specific incidences of these gene variants is prerequisite for determining their clinical relevance in any given population. METHODS We determined the distribution of familiar CYP2C19 variants by the DMET Plus chip in 600 candidates and replicated the findings by the Affymetrix Axiom Genome-Wide Asian Structure Identification Array in 5413 individuals, all Saudis of ethic Arab origin. We then tested the robustness of employing the Luminex xMAP system clinically by comparing the results of genotyping 500 Saudi individuals visiting the Blood Bank of our institution with the findings of the two platforms. KEY FINDINGS The DMET Plus genotyping revealed that eight of the CYP2C19 variants showed some changes. Thereby, the CYP2C19*17 exhibited the highest minor allele frequency (MAF) of 0.256, followed by the CYP2C19_801 (frequency = 0.055). Six other variants, including the CYP2C19*3, showed MAF in the range of 0.001-0.002. We replicated the frequencies of the CYP2C19*17 and CYP2C19*3, and additionally established that of the CYP2C19*2 (0.099) using the Axiom platform. The xTag genotyping also indicated that 0.834 of the 500 Saudi individuals were extensive metabolizers (*1/*1), 0.158 carried the *1/*2 genotype, 0.01% carried *2/*2 (poor metabolizers) and one each (0.2%) harboured the *1/*8, *2/*3 (intermediate metabolizers) and *8/*8 (poor metabolizers) genotypes. CONCLUSIONS The results showed reproducible genotyping of the CYP2C19 variants in the Saudi Arab population using two Affymetrix platforms and phenotyping using the Luminex xTag assay. The prevalence of two clinically relevant genotypes (CYP2C19*2 and CYP2C19*3) were similar to other ethnic groups, while that of the CYP2C19*17 was comparably higher.
Collapse
Affiliation(s)
- Hamsa T Tayeb
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Dana H Bakheet
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Khaled Zaza
- Faculty of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
| | - Salma M Wakil
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Nduna Dzimiri
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
20
|
Bai L, He J, He GH, He JC, Xu F, Xu GL. Association of CYP2C19 Polymorphisms with Survival of Breast Cancer Patients Using Tamoxifen: Results of a Meta-analysis. Asian Pac J Cancer Prev 2014; 15:8331-5. [DOI: 10.7314/apjcp.2014.15.19.8331] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|