1
|
Jarosz A, Wrona J, Balcerzyk-Matić A, Szyluk K, Nowak T, Iwanicki T, Iwanicka J, Kalita M, Kania W, Gawron K, Niemiec P. Association of the TGFB1 Gene Polymorphisms with Pain Symptoms and the Effectiveness of Platelet-Rich Plasma in the Treatment of Lateral Elbow Tendinopathy: A Prospective Cohort Study. Int J Mol Sci 2025; 26:2431. [PMID: 40141076 PMCID: PMC11942043 DOI: 10.3390/ijms26062431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
The regenerative properties of platelet-rich plasma (PRP) result from the high concentration of growth factors, including transforming growth factor beta 1 (TGF-β1). Nevertheless, this form of therapy may not always be effective due to the variability in genetic factors. In this study, the association of TGFB1 gene polymorphisms with the effectiveness of lateral elbow tendinopathy (LET) treatment with PRP was investigated. The effectiveness of therapy was assessed using minimal clinically important difference (MCID) and patient-reported outcome measures (PROM), specifically visual analog scale (VAS), quick version of disabilities of the arm, shoulder, and hand score (QDASH), and patient-rated tennis elbow evaluation (PRTEE) for two years (in weeks 2, 4, 8, 12, 24, 52, and 104). The most effective therapy was noticed in CC rs2278422 genotype carriers, whereas carriers of AA, CC, and CC genotypes (rs12461895, rs4803455, rs2241717) showed more severe pain before therapy. Moreover, the analyses revealed an association of studied polymorphisms with such parameters of blood morphology as eosinophils (EOS), neutrophils (NEU), and monocytes (MONO). In conclusion, genotyping of rs2278422 variant may be a valuable diagnostic method for patient selection for PRP therapy, while genotyping of rs12461895, rs4803455, and rs2241717 polymorphisms may be used for prediction of increased risk of pain sensation.
Collapse
Affiliation(s)
- Alicja Jarosz
- Department of Biochemistry and Medical Genetics, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow 18 Str., 40-752 Katowice, Poland; (A.J.); (J.W.); (A.B.-M.); (T.N.); (T.I.); (J.I.)
| | - Justyna Wrona
- Department of Biochemistry and Medical Genetics, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow 18 Str., 40-752 Katowice, Poland; (A.J.); (J.W.); (A.B.-M.); (T.N.); (T.I.); (J.I.)
| | - Anna Balcerzyk-Matić
- Department of Biochemistry and Medical Genetics, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow 18 Str., 40-752 Katowice, Poland; (A.J.); (J.W.); (A.B.-M.); (T.N.); (T.I.); (J.I.)
| | - Karol Szyluk
- District Hospital of Orthopaedics and Trauma Surgery, Bytomska 62 Str., 41-940 Piekary Slaskie, Poland; (K.S.); (M.K.)
- Department of Physiotherapy, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow 12 Str., 40-752 Katowice, Poland
| | - Tomasz Nowak
- Department of Biochemistry and Medical Genetics, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow 18 Str., 40-752 Katowice, Poland; (A.J.); (J.W.); (A.B.-M.); (T.N.); (T.I.); (J.I.)
| | - Tomasz Iwanicki
- Department of Biochemistry and Medical Genetics, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow 18 Str., 40-752 Katowice, Poland; (A.J.); (J.W.); (A.B.-M.); (T.N.); (T.I.); (J.I.)
| | - Joanna Iwanicka
- Department of Biochemistry and Medical Genetics, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow 18 Str., 40-752 Katowice, Poland; (A.J.); (J.W.); (A.B.-M.); (T.N.); (T.I.); (J.I.)
| | - Marcin Kalita
- District Hospital of Orthopaedics and Trauma Surgery, Bytomska 62 Str., 41-940 Piekary Slaskie, Poland; (K.S.); (M.K.)
| | - Wojciech Kania
- Department of Trauma and Orthopedic Surgery, Multidisciplinary Hospital in Jaworzno, Chelmonskiego 28 Str., 43-600 Jaworzno, Poland;
| | - Katarzyna Gawron
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medykow 18, 40-752 Katowice, Poland;
| | - Paweł Niemiec
- Department of Biochemistry and Medical Genetics, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow 18 Str., 40-752 Katowice, Poland; (A.J.); (J.W.); (A.B.-M.); (T.N.); (T.I.); (J.I.)
| |
Collapse
|
2
|
Neagu AN, Bruno P, Johnson KR, Ballestas G, Darie CC. Biological Basis of Breast Cancer-Related Disparities in Precision Oncology Era. Int J Mol Sci 2024; 25:4113. [PMID: 38612922 PMCID: PMC11012526 DOI: 10.3390/ijms25074113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Precision oncology is based on deep knowledge of the molecular profile of tumors, allowing for more accurate and personalized therapy for specific groups of patients who are different in disease susceptibility as well as treatment response. Thus, onco-breastomics is able to discover novel biomarkers that have been found to have racial and ethnic differences, among other types of disparities such as chronological or biological age-, sex/gender- or environmental-related ones. Usually, evidence suggests that breast cancer (BC) disparities are due to ethnicity, aging rate, socioeconomic position, environmental or chemical exposures, psycho-social stressors, comorbidities, Western lifestyle, poverty and rurality, or organizational and health care system factors or access. The aim of this review was to deepen the understanding of BC-related disparities, mainly from a biomedical perspective, which includes genomic-based differences, disparities in breast tumor biology and developmental biology, differences in breast tumors' immune and metabolic landscapes, ecological factors involved in these disparities as well as microbiomics- and metagenomics-based disparities in BC. We can conclude that onco-breastomics, in principle, based on genomics, proteomics, epigenomics, hormonomics, metabolomics and exposomics data, is able to characterize the multiple biological processes and molecular pathways involved in BC disparities, clarifying the differences in incidence, mortality and treatment response for different groups of BC patients.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania
| | - Pathea Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.B.); (K.R.J.); (G.B.)
| | - Kaya R. Johnson
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.B.); (K.R.J.); (G.B.)
| | - Gabriella Ballestas
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.B.); (K.R.J.); (G.B.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.B.); (K.R.J.); (G.B.)
| |
Collapse
|
3
|
Oreschak K, Saba LM, Rafaels N, Ambardekar AV, Deininger KM, Page RL, Lindenfeld J, Aquilante CL. Association Between Variants in Calcineurin Inhibitor Pharmacokinetic and Pharmacodynamic Genes and Renal Dysfunction in Adult Heart Transplant Recipients. Front Genet 2021; 12:658983. [PMID: 33868389 PMCID: PMC8047196 DOI: 10.3389/fgene.2021.658983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/15/2021] [Indexed: 11/30/2022] Open
Abstract
Background: The goal of the study was to assess the relationship between single nucleotide variants (SNVs) in calcineurin inhibitor (CNI) pharmacokinetic and pharmacodynamic genes and renal dysfunction in adult heart transplant (HTx) recipients. Methods: This retrospective analysis included N = 192 patients receiving a CNI at 1-year post-HTx. Using a candidate gene approach, 93 SNVs in eight pharmacokinetic and 35 pharmacodynamic genes were chosen for investigation. The primary outcome was renal dysfunction 1-year after HTx, defined as an estimated glomerular filtration rate (eGFR) <45 ml/min/1.73m2. Results: Renal dysfunction was present in 28.6% of patients 1-year after HTx. Two SNVs [transforming growth factor beta 1 (TGFB1) rs4803455 C > A and phospholipase C beta 1 (PLCB1) rs170549 G > A] were significantly associated with renal dysfunction after accounting for a false discovery rate (FDR) of 20%. In a multiple-SNV adjusted model, variant A allele carriers of TGFB1 rs4803455 had lower odds of renal dysfunction compared to C/C homozygotes [odds ratio (OR) 0.28, 95% CI 0.12-0.62; p = 0.002], whereas PLCB1 rs170549 variant A allele carriers had higher odds of the primary outcome vs. patients with the G/G genotype (OR 2.66, 95% CI 1.21-5.84, p = 0.015). Conclusion: Our data suggest that genetic variation in TGFB1 and PLCB1 may contribute to the occurrence of renal dysfunction in HTx recipients receiving CNIs. Pharmacogenetic markers, such as TGFB1 rs4803455 and PLCB1 rs170549, could help identify patients at increased risk of CNI-associated renal dysfunction following HTx, potentially allowing clinicians to provide more precise and personalized care to this population.
Collapse
Affiliation(s)
- Kris Oreschak
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, United States
| | - Laura M. Saba
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, United States
| | - Nicholas Rafaels
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - Amrut V. Ambardekar
- Division of Cardiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Kimberly M. Deininger
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, United States
| | - Robert L. Page
- Division of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, United States
| | - JoAnn Lindenfeld
- Division of Cardiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Christina L. Aquilante
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, United States
| |
Collapse
|
4
|
Ayala de Miguel P, Enguix-Riego MV, Cacicedo J, Delgado BD, Perez M, Praena-Fernández JM, Quintana Cortés L, Borrega García P, Del Campo ER, Lopez Guerra JL. Prognostic value of the TGFβ1 rs4803455 single nucleotide polymorphism in small cell lung cancer. TUMORI JOURNAL 2020; 107:209-215. [PMID: 32779517 DOI: 10.1177/0300891620946841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Small cell lung cancer (SCLC) is one of the greatest therapeutic challenges of oncology. Potential associations between single nucleotide polymorphisms in heat shock protein β1 (HSPB1) and transforming growth factor β1 (TGFβ1) and survival have been investigated. METHODS A prospective multicenter study of 94 patients with SCLC treated between 2013 and 2016 was conducted. Clinical, tumour-related, therapeutic, and genetic (9 SNPs of TGFβ1 gene and 5 of HSPB1 gene) variables were analyzed. RESULTS The cohort included 77 men and 17 women with a median age of 61 years. Eighty percent presented with limited stage at diagnosis and received thoracic radiation with a median dose of 45 Gy (twice-daily radiation in 42%). Forty-seven percent received concurrent platinum-based chemotherapy and 57% received prophylactic cranial irradiation (PCI). Overall survival (OS) was 34% at 2 years and 16% at 3 years. In multivariate analysis, the rs4803455:CA genotype of the TGFβ1 gene showed a statistically significant association with lower disease-free survival (DFS; hazard ratio [HR] 3.13; confidence interval [CI] 1.19-8.17; p = 0.020) and higher local recurrence (HR 3.80; CI 1.37-10.5; p = 0.048), and a marginal association with lower OS (HR 1.94; CI 0.98-3.83; p = 0.057). A combined analysis showed that patients receiving PCI and carrying the rs4803455:CA genotype had statistically significant lower OS (p < 0.001) and DFS (p < 0.001) than patients receiving PCI and carrying the rs4803455:AA genotype. CONCLUSIONS Genetic analysis showed the CA genotype of TGFβ1 SNP rs4803455 was associated with worse prognosis in patients with SCLC and could be considered as a potential biomarker.
Collapse
Affiliation(s)
- Pablo Ayala de Miguel
- Department of Medical Oncology, San Pedro de Alcántara University Hospital, Caceres, Spain
| | - María Valle Enguix-Riego
- Department of Radiation Oncology, University Hospital Virgen del Rocío, Seville, Spain.,Instituto de Biomedicina de Sevilla (IBIS/HUVR/CSIC/Universidad de Sevilla), Seville, Spain
| | - Jon Cacicedo
- Departament of Radiation Oncology, Cruces University Hospital, Barakaldo, Spain
| | - Blas David Delgado
- Department of Radiation Oncology, University Hospital Virgen del Rocío, Seville, Spain
| | - Marco Perez
- Instituto de Biomedicina de Sevilla (IBIS/HUVR/CSIC/Universidad de Sevilla), Seville, Spain
| | | | - Laura Quintana Cortés
- Department of Medical Oncology, San Pedro de Alcántara University Hospital, Caceres, Spain
| | - Pablo Borrega García
- Department of Medical Oncology, San Pedro de Alcántara University Hospital, Caceres, Spain
| | - Eleonor Rivin Del Campo
- Department of Radiation Oncology, Tenon University Hospital, Sorbonne University, Paris, France
| | - Jose Luis Lopez Guerra
- Department of Radiation Oncology, University Hospital Virgen del Rocío, Seville, Spain.,Instituto de Biomedicina de Sevilla (IBIS/HUVR/CSIC/Universidad de Sevilla), Seville, Spain
| |
Collapse
|
5
|
Lee E, Eum SY, Slifer SH, Martin ER, Takita C, Wright JL, Hines RB, Hu JJ. Association Between Polymorphisms in DNA Damage Repair Genes and Radiation Therapy-Induced Early Adverse Skin Reactions in a Breast Cancer Population: A Polygenic Risk Score Approach. Int J Radiat Oncol Biol Phys 2020; 106:948-957. [PMID: 32007367 DOI: 10.1016/j.ijrobp.2019.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Genetic variations in DNA damage repair (DDR) genes may influence radiation therapy (RT)-induced acute normal tissue toxicity in patients with breast cancer. Identifying an individual or multiple single-nucleotide polymorphisms (SNPs) associated with RT-induced early adverse skin reactions (EASR) is critical for precision medicine in radiation oncology. METHODS AND MATERIALS At the completion of RT, EASR was assessed using the Oncology Nursing Society scale (0-6) in 416 patients with breast cancer, and Oncology Nursing Society score ≥4 was considered RT-induced EASR. PLINK set-based tests and subsequent individual SNP association analyses were conducted to identify genes and SNPs associated with EASR among the 53 DDR genes and 1968 SNPs. A weighted polygenic risk score (PRS) model was constructed to ascertain the association between the joint effect of risk alleles and EASR. RESULTS The study population consisted of 264 Hispanic whites, 86 blacks or African Americans, 55 non-Hispanic whites, and 11 others. A total of 115 patients (27.6%) developed EASR. Five genes (ATM, CHEK1, ERCC2, RAD51C, and TGFB1) were significantly associated with RT-induced EASR. Nine SNPs within these 5 genes were further identified: ATM rs61915066, CHEK1 rs11220184, RAD51C rs302877, rs405684, TBFB1 rs4803455, rs2241714, and ERCC2 rs60152947, rs10404465, rs1799786. In a multivariable-adjusted PRS model, patients in a higher quartile of PRS were more likely to develop EASR compared with patients in the lowest quartile (ORq2 vs.q1 = 1.94, 95% CI, 0.86-4.39; ORq3 vs.q1 = 3.46, 95% CI, 1.57-7.63; ORq4 vs.q1 = 8.64, 95% CI, 3.92-19.02; and Ptrend < .0001). CONCLUSIONS We newly identified the associations between 9 SNPs in ATM, CHEK1, RAD51C, TGFB1, and ERCC2 and RT-induced EASR. PRS modeling showed its potential in identifying populations at risk. Multiple SNPs in DDR genes may jointly contribute to interindividual variation in RT-induced EASR. Validation in an independent external cohort is required to determine the clinical significance of these predictive biomarkers.
Collapse
Affiliation(s)
- Eunkyung Lee
- Department of Health Sciences, University of Central Florida College of Health Professions and Sciences, Orlando, Florida.
| | - Sung Y Eum
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida
| | - Susan H Slifer
- Center for Genetic Epidemiology and Statistical Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida
| | - Eden R Martin
- Dr. John T. Macdonald Department of Human Genetics, Center for Genetic Epidemiology and Statistical Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida
| | - Cristiane Takita
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida; Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida
| | - Jean L Wright
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Robert B Hines
- Department of Population Health Sciences, University of Central Florida College of Medicine, Orlando, Florida
| | - Jennifer J Hu
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida; Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, Florida.
| |
Collapse
|
6
|
Knobloch TJ, Peng J, Hade EM, Cohn DE, Ruffin MT, Schiano MA, Calhoun BC, McBee WC, Lesnock JL, Gallion HH, Pollock J, Lu B, Oghumu S, Zhang Z, Sears MT, Ogbemudia BE, Perrault JT, Weghorst LC, Strawser E, DeGraffinreid CR, Paskett ED, Weghorst CM. Inherited alterations of TGF beta signaling components in Appalachian cervical cancers. Cancer Causes Control 2019; 30:1087-1100. [PMID: 31435875 PMCID: PMC6768402 DOI: 10.1007/s10552-019-01221-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 08/15/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE This study examined targeted genomic variants of transforming growth factor beta (TGFB) signaling in Appalachian women. Appalachian women with cervical cancer were compared to healthy Appalachian counterparts to determine whether these polymorphic alleles were over-represented within this high-risk cancer population, and whether lifestyle or environmental factors modified the aggregate genetic risk in these Appalachian women. METHODS Appalachian women's survey data and blood samples from the Community Awareness, Resources, and Education (CARE) CARE I and CARE II studies (n = 163 invasive cervical cancer cases, 842 controls) were used to assess gene-environment interactions and cancer risk. Polymorphic allele frequencies and socio-behavioral demographic measurements were compared using t tests and χ2 tests. Multivariable logistic regression was used to evaluate interaction effects between genomic variance and demographic, behavioral, and environmental characteristics. RESULTS Several alleles demonstrated significant interaction with smoking (TP53 rs1042522, TGFB1 rs1800469), alcohol consumption (NQO1 rs1800566), and sexual intercourse before the age of 18 (TGFBR1 rs11466445, TGFBR1 rs7034462, TGFBR1 rs11568785). Interestingly, we noted a significant interaction between "Appalachian self-identity" variables and NQO1 rs1800566. Multivariable logistic regression of cancer status in an over-dominant TGFB1 rs1800469/TGFBR1 rs11568785 model demonstrated a 3.03-fold reduction in cervical cancer odds. Similar decreased odds (2.78-fold) were observed in an over-dominant TGFB1 rs1800469/TGFBR1 rs7034462 model in subjects who had no sexual intercourse before age 18. CONCLUSIONS This study reports novel associations between common low-penetrance alleles in the TGFB signaling cascade and modified risk of cervical cancer in Appalachian women. Furthermore, our unexpected findings associating Appalachian identity and NQO1 rs1800566 suggests that the complex environmental exposures that contribute to Appalachian self-identity in Appalachian cervical cancer patients represent an emerging avenue of scientific exploration.
Collapse
Affiliation(s)
- Thomas J Knobloch
- College of Public Health, The Ohio State University, Columbus, OH, 43210, USA.
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| | - Juan Peng
- Department of Biomedical Informatics, Center for Biostatistics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Erinn M Hade
- Department of Biomedical Informatics, Center for Biostatistics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - David E Cohn
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Wexner Medical Center, College of Medicine, The Ohio State University Columbus, Columbus, OH, 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Mack T Ruffin
- Department of Family and Community Medicine, Milton S. Hershey Medical Center, Penn State University, Hersey, PA, 17033, USA
| | - Michael A Schiano
- Department of Obstetrics & Gynecology, West Virginia University, Charleston, WV, 26505, USA
- Charleston Area Medical Center Health System, Charleston, WV, 25302, USA
| | - Byron C Calhoun
- Department of Obstetrics & Gynecology, West Virginia University, Charleston, WV, 26505, USA
- Charleston Area Medical Center Health System, Charleston, WV, 25302, USA
| | | | | | | | - Jondavid Pollock
- Wheeling Hospital, Schiffler Cancer Center, Wheeling, WV, 26003, USA
| | - Bo Lu
- College of Public Health, The Ohio State University, Columbus, OH, 43210, USA
| | - Steve Oghumu
- College of Public Health, The Ohio State University, Columbus, OH, 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Zhaoxia Zhang
- College of Public Health, The Ohio State University, Columbus, OH, 43210, USA
| | - Marta T Sears
- College of Public Health, The Ohio State University, Columbus, OH, 43210, USA
| | | | - Joseph T Perrault
- Division of Cancer Prevention and Control, Wexner Medical Center, College of Medicine, The Ohio State University Columbus, Columbus, OH, 43210, USA
| | - Logan C Weghorst
- College of Public Health, The Ohio State University, Columbus, OH, 43210, USA
| | - Erin Strawser
- College of Public Health, The Ohio State University, Columbus, OH, 43210, USA
| | - Cecilia R DeGraffinreid
- Division of Cancer Prevention and Control, Wexner Medical Center, College of Medicine, The Ohio State University Columbus, Columbus, OH, 43210, USA
| | - Electra D Paskett
- College of Public Health, The Ohio State University, Columbus, OH, 43210, USA
- Division of Cancer Prevention and Control, Wexner Medical Center, College of Medicine, The Ohio State University Columbus, Columbus, OH, 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Christopher M Weghorst
- College of Public Health, The Ohio State University, Columbus, OH, 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| |
Collapse
|
7
|
Hadj-Ahmed M, Ghali RM, Bouaziz H, Habel A, Stayoussef M, Ayedi M, Hachiche M, Rahal K, Yacoubi-Loueslati B, Almawi WY. Transforming growth factor beta 1 polymorphisms and haplotypes associated with breast cancer susceptibility: A case-control study in Tunisian women. Tumour Biol 2019; 41:1010428319869096. [PMID: 31405342 DOI: 10.1177/1010428319869096] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Variable association of transforming growth factor beta 1 (TGFβ1) in breast cancer (BC) pathogenesis was documented, and the contribution of specific TGFB1 polymorphisms to the progression of BC and associated features remains poorly understood. We investigated the contribution of TGFB1 rs1800469, rs1800470, rs1800471, and rs1800472 variants and 4-locus TGFB1 haplotypes on BC susceptibility, and pathological presentation of BC subtypes. Study subjects comprised 430 female BC cases, and 498 cancer-free control women. BC-associated pathological parameters were also evaluated for correlation with TGFB1 variants. Results obtained showed that the minor allele frequency (MAF) of rs1800471 (+74G>C) was higher seen in BC cases than in control subjects, and was associated with increased risk of BC. Significant differences in rs1800471 and rs1800469 (-509C>T) genotype distribution were noted between BC cases and controls, which persisted after controlling for key covariates. TGFB1 rs1800472 was positively, while rs1800470 was negatively associated with triple negativity, while rs1800470 positively correlated with menarche, but negatively with tumor size and molecular type, and rs1800469 correlated positively with menstrual irregularity, distant metastasis, nodal status, and hormonotherapy. Heterogeneity in LD pattern was noted between the tested TGFB1 variants. Four-locus (rs1800472-rs1800471-rs1800470-rs1800469) Haploview analysis identified haplotype TGCT to be negatively associated, and haplotypes CGTT and CCCC to be positively associated with BC. This association of CGTT and CCCC, but not TGCT, with BC remained significant after controlling for key covariates. In conclusion, TGFB1 alleles and specific genotypes, and 4-locus TGFB1 haplotypes influence BC susceptibility, suggesting dual association imparted by specific SNP, consistent with dual role for TGFB1 in BC pathogenesis.
Collapse
Affiliation(s)
- Mariem Hadj-Ahmed
- 1 Laboratory of Mycology, Pathologies and Biomarkers, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Rabeb M Ghali
- 2 Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | - Hanen Bouaziz
- 3 Department of Carcinological Surgery, Salah Azaïz Institute, Tunis, Tunisia
| | - Azza Habel
- 1 Laboratory of Mycology, Pathologies and Biomarkers, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Mouna Stayoussef
- 1 Laboratory of Mycology, Pathologies and Biomarkers, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Mouna Ayedi
- 4 Department of Medical Oncology, Salah Azaïz Institute, Tunis, Tunisia
| | - Monia Hachiche
- 2 Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | - Khaled Rahal
- 2 Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | - Besma Yacoubi-Loueslati
- 1 Laboratory of Mycology, Pathologies and Biomarkers, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Wassim Y Almawi
- 1 Laboratory of Mycology, Pathologies and Biomarkers, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia.,5 Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
8
|
Furler RL, Nixon DF, Brantner CA, Popratiloff A, Uittenbogaart CH. TGF-β Sustains Tumor Progression through Biochemical and Mechanical Signal Transduction. Cancers (Basel) 2018; 10:E199. [PMID: 29903994 PMCID: PMC6025279 DOI: 10.3390/cancers10060199] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 02/07/2023] Open
Abstract
Transforming growth factor β (TGF-β) signaling transduces immunosuppressive biochemical and mechanical signals in the tumor microenvironment. In addition to canonical SMAD transcription factor signaling, TGF-β can promote tumor growth and survival by inhibiting proinflammatory signaling and extracellular matrix (ECM) remodeling. In this article, we review how TGF-β activated kinase 1 (TAK1) activation lies at the intersection of proinflammatory signaling by immune receptors and anti-inflammatory signaling by TGF-β receptors. Additionally, we discuss the role of TGF-β in the mechanobiology of cancer. Understanding how TGF-β dampens proinflammatory responses and induces pro-survival mechanical signals throughout cancer development is critical for designing therapeutics that inhibit tumor progression while bolstering the immune response.
Collapse
Affiliation(s)
- Robert L Furler
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, 413 E 69th St., Belfer Research Building, New York, NY 10021, USA.
| | - Douglas F Nixon
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, 413 E 69th St., Belfer Research Building, New York, NY 10021, USA.
| | - Christine A Brantner
- GW Nanofabrication and Imaging Center, Office of the Vice President for Research, George Washington University, Washington, DC 20052, USA.
| | - Anastas Popratiloff
- GW Nanofabrication and Imaging Center, Office of the Vice President for Research, George Washington University, Washington, DC 20052, USA.
| | - Christel H Uittenbogaart
- Departments of Microbiology, Immunology and Molecular Genetics, Medicine, Pediatrics, UCLA AIDS Institute and the Jonsson Comprehensive Cancer Center, University of California, 615 Charles E. Young Drive South, BSRB2, Los Angeles, CA 90095, USA.
| |
Collapse
|
9
|
Lynce F, Graves KD, Jandorf L, Ricker C, Castro E, Moreno L, Augusto B, Fejerman L, Vadaparampil ST. Genomic Disparities in Breast Cancer Among Latinas. Cancer Control 2017; 23:359-372. [PMID: 27842325 DOI: 10.1177/107327481602300407] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Breast cancer is the most common cancer diagnosed among Latinas in the United States and the leading cause of cancer-related death among this population. Latinas tend to be diagnosed at a later stage and have worse prognostic features than their non-Hispanic white counterparts. Genetic and genomic factors may contribute to observed breast cancer health disparities in Latinas. METHODS We provide a landscape of our current understanding and the existing gaps that need to be filled across the cancer prevention and control continuum. RESULTS We summarize available data on mutations in high and moderate penetrance genes for inherited risk of breast cancer and the associated literature on disparities in awareness of and uptake of genetic counseling and testing in Latina populations. We also discuss common genetic polymorphisms and risk of breast cancer in Latinas. In the treatment setting, we examine tumor genomics and pharmacogenomics in Latina patients with breast cancer. CONCLUSIONS As the US population continues to diversify, extending genetic and genomic research into this underserved and understudied population is critical. By understanding the risk of breast cancer among ethnically diverse populations, we will be better positioned to make treatment advancements for earlier stages of cancer, identify more effective and ideally less toxic treatment regimens, and increase rates of survival.
Collapse
Affiliation(s)
- Filipa Lynce
- Health Outcomes and Behavior Program, Moffitt Cancer Center, Tampa, FL, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
A systematic SNP selection approach to identify mechanisms underlying disease aetiology: linking height to post-menopausal breast and colorectal cancer risk. Sci Rep 2017; 7:41034. [PMID: 28117334 PMCID: PMC5259777 DOI: 10.1038/srep41034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/15/2016] [Indexed: 01/28/2023] Open
Abstract
Data from GWAS suggest that SNPs associated with complex diseases or traits tend to co-segregate in regions of low recombination, harbouring functionally linked gene clusters. This phenomenon allows for selecting a limited number of SNPs from GWAS repositories for large-scale studies investigating shared mechanisms between diseases. For example, we were interested in shared mechanisms between adult-attained height and post-menopausal breast cancer (BC) and colorectal cancer (CRC) risk, because height is a risk factor for these cancers, though likely not a causal factor. Using SNPs from public GWAS repositories at p-values < 1 × 10−5 and a genomic sliding window of 1 mega base pair, we identified SNP clusters including at least one SNP associated with height and one SNP associated with either post-menopausal BC or CRC risk (or both). SNPs were annotated to genes using HapMap and GRAIL and analysed for significantly overrepresented pathways using ConsensuspathDB. Twelve clusters including 56 SNPs annotated to 26 genes were prioritised because these included at least one height- and one BC risk- or CRC risk-associated SNP annotated to the same gene. Annotated genes were involved in Indian hedgehog signalling (p-value = 7.78 × 10−7) and several cancer site-specific pathways. This systematic approach identified a limited number of clustered SNPs, which pinpoint potential shared mechanisms linking together the complex phenotypes height, post-menopausal BC and CRC.
Collapse
|
11
|
Rooney N, Riggio AI, Mendoza-Villanueva D, Shore P, Cameron ER, Blyth K. Runx Genes in Breast Cancer and the Mammary Lineage. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:353-368. [PMID: 28299668 DOI: 10.1007/978-981-10-3233-2_22] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A full understanding of RUNX gene function in different epithelial lineages has been thwarted by the lethal phenotypes observed when constitutively knocking out these mammalian genes. However temporal expression of the Runx genes throughout the different phases of mammary gland development is indicative of a functional role in this tissue. A few studies have emerged describing how these genes impact on the fate of mammary epithelial cells by regulating lineage differentiation and stem/progenitor cell potential, with implications for the transformed state. The importance of the RUNX/CBFβ core factor binding complex in breast cancer has very recently been highlighted with both RUNX1 and CBFβ appearing in a comprehensive gene list of predicted breast cancer driver mutations. Nonetheless, the evidence to date shows that the RUNX genes can have dualistic outputs with respect to promoting or constraining breast cancer phenotypes, and that this may be aligned to individual subtypes of the clinical disease. We take this opportunity to review the current literature on RUNX and CBFβ in the normal and neoplastic mammary lineage while appreciating that this is likely to be the tip of the iceberg in our knowledge.
Collapse
Affiliation(s)
- Nicholas Rooney
- Beatson Institute for Cancer Research, Bearsden, Glasgow, G61 1BD, UK
| | | | | | - Paul Shore
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Ewan R Cameron
- School of Veterinary Medicine, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
| | - Karen Blyth
- Beatson Institute for Cancer Research, Bearsden, Glasgow, G61 1BD, UK.
| |
Collapse
|
12
|
Song XY, Li BY, Zhou EX, Wu FX. The clinicopathological significance of RUNX3 hypermethylation and mRNA expression in human breast cancer, a meta-analysis. Onco Targets Ther 2016; 9:5339-47. [PMID: 27616890 PMCID: PMC5008647 DOI: 10.2147/ott.s77828] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aberrant promoter methylation of RUNX3 has been reported in several tumors including human breast cancer (BC). However, the association between RUNX3 hypermethylation and incidence of BC remains elusive. In this study, a detailed literature search was performed in Medline and Google Scholar for related research publications. Analysis of pooled data were executed. Odds ratios with corresponding confidence intervals were determined and summarized, respectively. Finally, 13 studies were identified for the meta-analysis. Analysis of the pooled data showed that RUNX3 hypermethylation was significantly higher in both ductal carcinoma in situ and invasive ductal carcinoma (IDC) than in normal breast tissues. In addition, RUNX3 methylation was significantly higher in IDC than in benign tumor. However, RUNX3 methylation was not significantly higher in IDC than in ductal carcinoma in situ. We also determined that RUNX3 hypermethylation was significantly higher in ER positive BC than in ER negative BC. In addition, high RUNX3 mRNA expression was found to be correlated with better overall survival and relapse-free survival for all BC patients. Our results strongly support that RUNX3 hypermethylation may play an important role in BC incidence. RUNX3 methylation is a valuable early biomarker for the diagnosis of BC. Further large-scale studies will provide more insight into the role of RUNX3 hypermethylation in the carcinogenesis and clinical diagnosis of BC patients.
Collapse
Affiliation(s)
- Xiao-Yun Song
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Bo-Yan Li
- Department of Breast Surgery, Inner Mongolia Forestry General Hospital, Inner Mongolia, People's Republic of China
| | - En-Xiang Zhou
- Department of General Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Feng-Xia Wu
- Department of Breast Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|