1
|
Feng X, Han H, Guo Y, Feng X, Guo S, Zhou W. LncRNA ENST869 Targeting Nestin Transcriptional Region to Affect the Pharmacological Effects of Chidamide in Breast Cancer Cells. Front Oncol 2022; 12:874343. [PMID: 35444938 PMCID: PMC9014306 DOI: 10.3389/fonc.2022.874343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/07/2022] [Indexed: 01/04/2023] Open
Abstract
Breast cancer is one of the leading threats to the health of women. It has the highest incidence and mortality in women worldwide. Although progress has been made in the development and application of anti-breast cancer drugs such as Chidamide and others, the occurrence of drug resistance limits the effective application of chemotherapies. The purpose of this study is to explore the role of LncRNA in the pharmacological effect of Chidamide in breast cancer therapy. The human breast cancer MCF-7 or MDA-MB-231 cells were used as the research cell models. The RNA library screening and high-throughput sequencing comparative analysis was conducted. The binding of LncRNA and its downstream target genes in RNA and protein levels was tested. The results showed that the expression of LncRNA ENST869 in cells treated with Chidamide increased significantly, as demonstrated by real-time PCR and cell viability assay. RNAplex analysis showed that LncRNA ENST869 and Nestin mRNA may interact. RNA interference and Western blot analysis indicated that LncRNA ENST869 could target and regulate the expression of Nestin. Luciferase assay and RNA-protein pulldown showed that LncRNA ENST869 affected Nestin transcription. There might be a highly active binding region of LncRNA ENST869 in regulating Nestin transcriptional activity within the site of 250 bp upstream of the transcription starting point of Nestin. In addition, LncRNA ENST869 did not directly interact with Nestin protein to affect its activity. In conclusion, our results demonstrated that LncRNA ENST869 could affect the function of Nestin in breast cancer cells treated with Chidamide. Nestin is a key player in influencing the pharmacological activity of Chidamide and an essential factor in drug resistance of breast cancer cells.
Collapse
Affiliation(s)
- Xiuyan Feng
- Medical Administration Division, The Second Affiliated Hospital of Shenyang Medical College, Shenyang City, China
| | - Han Han
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang City, China
| | - Yarui Guo
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, China
| | - Xue Feng
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, China
| | - Shanchun Guo
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA, United States
| | - Weiqiang Zhou
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, China
| |
Collapse
|
2
|
Varentsov VE, Rumyanceva TA, Verzilina AD, Pshenisnov KK, Rudenko EE, Nikolenko VN, Shevchuk IV, Sinelnikov MY. Effect of a neurostimulator on postnatal neurogenesis in rodent olfactory bulbs. Neuropeptides 2021; 89:102181. [PMID: 34271452 DOI: 10.1016/j.npep.2021.102181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 11/18/2022]
Abstract
The aim of the study was to reveal the effect of neurostimulation with the TKPRPGP neuropeptide on the expression intensity of Doublecortin and Nestin in the olfactory bulb of white Wistar rats using immunohistochemical and computer analysis methods. An isolated assessment of early progenitor differentiation by the density of nestin-positive structures showed that stimulation from birth to 14 days preserves the level of nestin expression, preventing its decrease. When the administration of the neuropeptide is stopped, the expression of nestin decreases sharply, starting from the central zones of the bulb, and after three weeks it is no longer present. The dynamics of doublecortin positive structure density reflects an increase upon neuropeptide administration. Each course of neuropeptide administration caused an increase in the density of the marker, but the degree of effectiveness decreased with age, and the duration of the effect decreased. In conclusion, administration of the neuropeptide TKPRPGP to rats at an early age prolongs the expression of nestin and doublecortin in the olfactory bulbs of rats up to 35 days and up to 74 days of observation, respectively. The administration of the neuropeptide in adulthood does not lead to re-expression of these markers.
Collapse
Affiliation(s)
| | | | | | | | - Ekaterina E Rudenko
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Vladimir N Nikolenko
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Ivan V Shevchuk
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Mikhail Y Sinelnikov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation.
| |
Collapse
|
3
|
Troschel FM, Palenta H, Borrmann K, Heshe K, Hua SH, Yip GW, Kiesel L, Eich HT, Götte M, Greve B. Knockdown of the prognostic cancer stem cell marker Musashi-1 decreases radio-resistance while enhancing apoptosis in hormone receptor-positive breast cancer cells via p21 WAF1/CIP1. J Cancer Res Clin Oncol 2021; 147:3299-3312. [PMID: 34291358 PMCID: PMC8484224 DOI: 10.1007/s00432-021-03743-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/13/2021] [Indexed: 02/02/2023]
Abstract
Purpose While the stem cell marker Musashi-1 (MSI-1) has been identified as a key player in a wide array of malignancies, few findings exist on its prognostic relevance and relevance for cancer cell death and therapy resistance in breast cancer. Methods First, we determined prognostic relevance of MSI-1 in database analyses regarding multiple survival outcomes. To substantiate findings, MSI-1 was artificially downregulated in MCF-7 breast cancer cells and implications for cancer stem cell markers, cell apoptosis and apoptosis regulator p21, proliferation and radiation response were analyzed via flow cytometry and colony formation. Radiation-induced p21 expression changes were investigated using a dataset containing patient samples obtained before and after irradiation and own in vitro experiments. Results MSI-1 is a negative prognostic marker for disease-free and distant metastasis-free survival in breast cancer and tends to negatively influence overall survival. MSI-1 knockdown downregulated stem cell gene expression and proliferation, but increased p21 levels and apoptosis. Similar to the MSI-1 knockdown effect, p21 expression was strongly increased after irradiation and was expressed at even higher levels in MSI-1 knockdown cells after irradiation. Finally, combined use of MSI-1 silencing and irradiation reduced cancer cell survival. Conclusion MSI-1 is a prognostic marker in breast cancer. MSI-1 silencing downregulates proliferation while increasing apoptosis. The anti-proliferation mediator p21 was upregulated independently after both MSI-1 knockdown and irradiation and even more after both treatments combined, suggesting synergistic potential. Radio-sensitization effects after combining radiation and MSI-1 knockdown underline the potential of MSI-1 as a therapeutic target. Supplementary Information The online version contains supplementary material available at 10.1007/s00432-021-03743-y.
Collapse
Affiliation(s)
- Fabian M Troschel
- Department of Radiation Oncology, University Hospital Münster, 48149, Münster, Germany.
| | - Heike Palenta
- Department of Gynecology and Obstetrics, University Hospital Münster, 48149, Münster, Germany
| | - Katrin Borrmann
- Department of Radiation Oncology, University Hospital Münster, 48149, Münster, Germany
| | - Kristin Heshe
- Department of Radiation Oncology, University Hospital Münster, 48149, Münster, Germany
| | - San Hue Hua
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117594, Singapore
| | - George W Yip
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117594, Singapore
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, University Hospital Münster, 48149, Münster, Germany
| | - Hans Theodor Eich
- Department of Radiation Oncology, University Hospital Münster, 48149, Münster, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, University Hospital Münster, 48149, Münster, Germany
| | - Burkhard Greve
- Department of Radiation Oncology, University Hospital Münster, 48149, Münster, Germany
| |
Collapse
|
4
|
Chappell K, Manna K, Washam CL, Graw S, Alkam D, Thompson MD, Zafar MK, Hazeslip L, Randolph C, Gies A, Bird JT, Byrd AK, Miah S, Byrum SD. Multi-omics data integration reveals correlated regulatory features of triple negative breast cancer. Mol Omics 2021; 17:677-691. [PMID: 34142686 PMCID: PMC8504614 DOI: 10.1039/d1mo00117e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Triple negative breast cancer (TNBC) is an aggressive type of breast cancer with very little treatment options. TNBC is very heterogeneous with large alterations in the genomic, transcriptomic, and proteomic landscapes leading to various subtypes with differing responses to therapeutic treatments. We applied a multi-omics data integration method to evaluate the correlation of important regulatory features in TNBC BRCA1 wild-type MDA-MB-231 and TNBC BRCA1 5382insC mutated HCC1937 cells compared with non-tumorigenic epithelial breast MCF10A cells. The data includes DNA methylation, RNAseq, protein, phosphoproteomics, and histone post-translational modification. Data integration methods identified regulatory features from each omics method that had greater than 80% positive correlation within each TNBC subtype. Key regulatory features at each omics level were identified distinguishing the three cell lines and were involved in important cancer related pathways such as TGFβ signaling, PI3K/AKT/mTOR, and Wnt/beta-catenin signaling. We observed overexpression of PTEN, which antagonizes the PI3K/AKT/mTOR pathway, and MYC, which downregulates the same pathway in the HCC1937 cells relative to the MDA-MB-231 cells. The PI3K/AKT/mTOR and Wnt/beta-catenin pathways are both downregulated in HCC1937 cells relative to MDA-MB-231 cells, which likely explains the divergent sensitivities of these cell lines to inhibitors of downstream signaling pathways. The DNA methylation and RNAseq data is freely available via GEO GSE171958 and the proteomics data is available via the ProteomeXchange PXD025238.
Collapse
Affiliation(s)
- Kevin Chappell
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA.
| | - Kanishka Manna
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA.
| | - Charity L Washam
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA. and Arkansas Children's Research Institute, 13 Children's Way, Little Rock, AR 72202, USA
| | - Stefan Graw
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA. and Arkansas Children's Research Institute, 13 Children's Way, Little Rock, AR 72202, USA and Emory University, Atlanta, GA, USA
| | - Duah Alkam
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA.
| | - Matthew D Thompson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA.
| | - Maroof Khan Zafar
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA.
| | - Lindsey Hazeslip
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA.
| | - Christopher Randolph
- Arkansas Children's Research Institute, 13 Children's Way, Little Rock, AR 72202, USA
| | - Allen Gies
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA.
| | - Jordan T Bird
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA.
| | - Alicia K Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA. and Winthrop P. Rockefeller Cancer Institute, 449 Jack Stephens Dr, Little Rock, AR 72205, USA
| | - Sayem Miah
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA. and Winthrop P. Rockefeller Cancer Institute, 449 Jack Stephens Dr, Little Rock, AR 72205, USA
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA. and Arkansas Children's Research Institute, 13 Children's Way, Little Rock, AR 72202, USA and Winthrop P. Rockefeller Cancer Institute, 449 Jack Stephens Dr, Little Rock, AR 72205, USA
| |
Collapse
|
5
|
Yoshimura H, Moriya M, Yoshida A, Yamamoto M, Machida Y, Ochiai K, Michishita M, Nakagawa T, Matsuda Y, Takahashi K, Kamiya S, Ishiwata T. Involvement of Nestin in the Progression of Canine Mammary Carcinoma. Vet Pathol 2021; 58:994-1003. [PMID: 34056976 DOI: 10.1177/03009858211018656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nestin, a class VI intermediate filament protein, is known to be expressed in various types of human neoplasms, including breast cancer, and is associated with their progression. However, its expression and role in canine mammary tumors remain unknown. We analyzed nestin expression in canine mammary tumors using in situ hybridization and immunohistochemistry. We also investigated its role in a canine mammary carcinoma cell line using RNA interference. Nestin expression was not observed in luminal epithelial cells of any of the 62 cases of benign mammary lesions examined, although myoepithelial cells showed its expression in most cases. In 16/50 (32%) primary mammary carcinomas and 6/15 (40%) metastases of mammary carcinomas, cytoplasmic nestin expression was detected in luminal epithelial cells. In luminal cells of primary mammary carcinomas, its expression was positively related to several pathological parameters that indicate high-grade malignancy, including histological grading (P < .01), vascular/lymphatic invasion (P < .01), Ki-67 index (P < .01), and metastasis (P < .05). Immunohistochemistry revealed that nestin expression was related to vimentin expression in mammary carcinomas (P < .01). This relationship was confirmed using reverse transcription-quantitative polymerase chain reaction using 9 cell lines derived from canine mammary carcinoma (P < .01). Finally, nestin knockdown in canine mammary carcinoma cells using small interfering RNA inhibited cell proliferation and migration based on WST-8, Boyden chamber, and cell-tracking assays. These findings suggest that nestin may at least partially mediate these behaviors of canine mammary carcinoma cells.
Collapse
Affiliation(s)
| | - Maiko Moriya
- 12989Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Ayaka Yoshida
- 12989Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Masami Yamamoto
- 12989Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Yukino Machida
- 12989Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Kazuhiko Ochiai
- 12989Nippon Veterinary and Life Science University, Tokyo, Japan
| | | | | | | | | | - Shinji Kamiya
- 12989Nippon Veterinary and Life Science University, Tokyo, Japan
| | | |
Collapse
|
6
|
Clinicopathological and prognostic significance of nestin expression in patients with breast cancer: a systematic review and meta-analysis. Cancer Cell Int 2020; 20:169. [PMID: 32467665 PMCID: PMC7227264 DOI: 10.1186/s12935-020-01252-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 05/10/2020] [Indexed: 12/21/2022] Open
Abstract
Background Nestin has been revealed to promote tumorigenesis, progression, metastasis, and angiogenesis of breast cancer. Although the prognostic and clinicopathological impact of nestin expression on breast cancer patients has been assessed in several independent studies, their results remained conflicting. Therefore, we performed this meta-analysis to elucidate the prognostic and clinicopathological association of nestin expression with breast cancer. Methods A comprehensive literature search was performed in the electronic databases PubMed, EMBASE, Web of Science, the Cochrane Library, China National Knowledge Infrastructure (CNKI), and the Wangfang Data. The statistical analysis was conducted using Stata 15.0 and Review Manager 5.3. Results A total of 15 studies with 6066 breast cancer patients were included in this meta-analysis. Pooled results indicated that positive expression of nestin was significantly associated with reduced breast cancer-specific survival (BCSS, univariate analysis, HR = 2.11, 95% CI [1.79, 2.49], P < 0.00001; multivariate analysis, HR = 1.30, 95% CI [1.06, 1.60], P = 0.01), worse overall survival (OS, univariate analysis, HR = 1.88, 95% CI [1.31, 2.71], P = 0.0007; multivariate analysis, HR = 1.89, 95% CI [1.34, 2.67], P = 0.0003) and poorer recurrence-free survival (univariate analysis, HR = 2.60, 95% CI [1.52, 4.46], P = 0.0005), but not with distant metastasis-free survival in univariate analysis (P > 0.05). In addition, increased nestin expression was correlated with younger age, higher tumor grade, larger tumor size, positive blood vessel invasion and high vascular proliferation index, but not with lymph node metastasis or lymph vessel invasion. Nestin was preferentially expressed in invasive ductal carcinoma, triple-negative breast cancer and basal-like subtypes. Nestin expression was inversely associated with the expression of ER and PR, but not with HER-2. Conversely, nestin expression was positively correlated with the expression of basal-like markers CK5, P-cadherin and EGFR. Moreover, nestin expression was strongly associated with the presence of five basal-like profiles (BLP1-5). Conclusions This meta-analysis revealed the prognostic value and clinicopathological significance of nestin expression in breast cancer. Nestin is an independent prognostic factor for worse BCSS and OS of breast cancer patients. Nestin is also a valuable biomarker for unfavorable clinicopathological features and tumor angiogenesis of breast cancer. Therefore, nestin is a promising therapeutic target for malignant breast cancer, especially for TNBC and basal-like phenotype.
Collapse
|
7
|
De Lara S, Nyqvist J, Werner Rönnerman E, Helou K, Kenne Sarenmalm E, Einbeigi Z, Karlsson P, Parris TZ, Kovács A. The prognostic relevance of FOXA1 and Nestin expression in breast cancer metastases: a retrospective study of 164 cases during a 10-year period (2004-2014). BMC Cancer 2019; 19:187. [PMID: 30819139 PMCID: PMC6394077 DOI: 10.1186/s12885-019-5373-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/17/2019] [Indexed: 12/30/2022] Open
Abstract
Background Current prognostic markers cannot adequately predict the clinical outcome of breast cancer patients. Therefore, additional biomarkers need to be included in routine immune panels. FOXA1 was a significant predictor of favorable outcome in primary breast cancer, while Nestin expression is preferentially found in triple-negative tumors with increased rate of nodal metastases, and reduced survival. No studies have investigated the prognostic value of FOXA1 and Nestin expression in breast cancer metastases. Methods Breast cancer metastases (n = 164) from various anatomical sites were retrospectively analyzed by immunohistochemistry for FOXA1, Nestin and GATA3 expression. Cox regression analysis assessed the prognostic value of FOXA1 and Nestin expression. Results In breast cancer metastases, FOXA1 expression was associated with Nestin-negativity, GATA3-positivity, ER-positivity, HER2-positivity and non-triple-negative status (P < 0.05). In contrast, Nestin expression was associated with FOXA1-negative, GATA3-negative, ER-negative, and triple-negative metastases (P < 0.05). Univariate Cox regression analysis showed FOXA1 expression was predictive of overall survival (OS, P = 0.00048) and metastasis-free survival (DMFS, P = 0.0011), as well as, distant metastasis-free survival in ER-positive patients (P = 0.036) and overall survival in ER-negative patients (P = 0.024). Multivariate analysis confirmed the significance of FOXA1 for both survival endpoints in metastatic breast cancer patients (OS, P = 0.0033; DMFS, P = 0.015). Conclusions In our study, FOXA1 was expressed mostly in ER-positive breast cancer metastases. Expression of Nestin was related to triple-negative metastases, where brain was the most frequent metastatic site. These findings highlight the clinical utility of FOXA1 and Nestin expression and warrant their inclusion in routine immunohistochemical panels for breast carcinoma.
Collapse
Affiliation(s)
- Shahin De Lara
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gula stråket 8, SE-41345, Gothenburg, Sweden
| | - Jenny Nyqvist
- Department of Surgery, Skaraborgs Hospital, Lidköping and Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Elisabeth Werner Rönnerman
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gula stråket 8, SE-41345, Gothenburg, Sweden.,Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | | | - Zakaria Einbeigi
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Per Karlsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Anikó Kovács
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gula stråket 8, SE-41345, Gothenburg, Sweden.
| |
Collapse
|
8
|
Asleh K, Lyck Carstensen S, Tykjaer Jørgensen CL, Burugu S, Gao D, Won JR, Jensen MB, Balslev E, Laenkholm AV, Nielsen DL, Ejlertsen B, Nielsen TO. Basal biomarkers nestin and INPP4B predict gemcitabine benefit in metastatic breast cancer: Samples from the phase III SBG0102 clinical trial. Int J Cancer 2018; 144:2578-2586. [PMID: 30411790 DOI: 10.1002/ijc.31969] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 10/04/2018] [Accepted: 10/23/2018] [Indexed: 01/14/2023]
Abstract
In a formal prospective-retrospective analysis of the phase III SBG0102 clinical trial randomizing metastatic breast cancer patients to gemcitabine-docetaxel or to single agent docetaxel, patients with basal-like tumors by PAM50 gene expression had significantly better overall survival in the gemcitabine arm. By immunohistochemistry (IHC), triple negative status was not predictive, but more specific biomarkers have since become available defining basal-like by nestin positivity or loss of inositol-polyphosphate-4-phosphate (INPP4B). Here, we evaluate their capacity to identify which patients benefit from gemcitabine in the metastatic setting. Nestin and INPP4B staining and interpretation followed published methods. A prespecified statistical plan evaluated the primary hypothesis that patients with basal-like breast cancer, defined as "nestin+ or INPP4B-", would have superior overall survival on gemcitabine-docetaxel when compared to docetaxel. Interaction tests, Kaplan-Meier curves and forest plots were used to assess prognostic and predictive capacities of biomarkers relative to treatment. Among 239 cases evaluable for our study, 36 (15%) had been classified as basal-like by PAM50. "Nestin+ or INPP4B-" was observed in 41 (17%) of the total cases and was significantly associated with PAM50 basal-like subtype. Within an estimated median follow-up of 13 years, patients assigned as IHC basal "nestin+ or INPP4B-" had significantly better overall survival on gemcitabine-docetaxel versus docetaxel monotherapy (HR = 0.31, 95%CI: 0.16-0.60), whereas no differences were observed for other patients (HR = 0.99), p-interaction < 0.01. In the metastatic setting, women with IHC basal breast cancers defined as "nestin+ or INPP4B-" have superior overall survival when randomized to gemcitabine-containing chemotherapy compared to docetaxel alone. These findings need to be validated using larger prospective-retrospective phase III clinical trials series.
Collapse
Affiliation(s)
- Karama Asleh
- Department of Pathology and Laboratory Medicine, Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver, Canada
| | | | | | - Samantha Burugu
- Department of Pathology and Laboratory Medicine, Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver, Canada
| | - Dongxia Gao
- Department of Pathology and Laboratory Medicine, Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver, Canada
| | - Jennifer R Won
- Department of Pathology and Laboratory Medicine, Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver, Canada.,Canadian Immunohistochemistry Quality Control, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | | | - Eva Balslev
- Department of Pathology, Herlev and Gentofte Hospital, Herlev, Denmark
| | | | - Dorte L Nielsen
- Department of Oncology, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Bent Ejlertsen
- Danish Breast Cancer Cooperative Group, Copenhagen, Denmark
| | - Torsten O Nielsen
- Department of Pathology and Laboratory Medicine, Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver, Canada
| |
Collapse
|
9
|
Nowak A, Dziegiel P. Implications of nestin in breast cancer pathogenesis (Review). Int J Oncol 2018; 53:477-487. [PMID: 29901100 DOI: 10.3892/ijo.2018.4441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/14/2018] [Indexed: 11/06/2022] Open
Abstract
The aim of the present review was to summarize the current knowledge of the involvement of nestin in breast cancer (BC) pathogenesis. Nestin is a member of the class VI family of intermediate filament proteins, originally identified as a marker of neural stem cells and subsequently demonstrated to be expressed in BC and other cancer types. In normal breast tissue, nestin is expressed in the basal/myoepithelial cells of the mammary gland. In BC, nestin identifies basal-like tumours and predicts aggressive behaviour and poor prognosis. Nestin expression has also been detected in BC stem cells and newly-formed tumour vessels, being a factor in promoting invasion and metastasis. The present review provides an up-to-date overview of the involvement of nestin in processes facilitating BC pathogenesis and progression.
Collapse
Affiliation(s)
- Aleksandra Nowak
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Piotr Dziegiel
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|