1
|
Castilha EP, Biondo R, Trugilo KP, Fortunato GM, Fenton TR, de Oliveira KB. APOBEC3 Proteins: From Antiviral Immunity to Oncogenic Drivers in HPV-Positive Cancers. Viruses 2025; 17:436. [PMID: 40143363 PMCID: PMC11946020 DOI: 10.3390/v17030436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
The human APOBEC superfamily consists of eleven cytidine deaminase enzymes. Among them, APOBEC3 enzymes play a dual role in antiviral immunity and cancer development. APOBEC3 enzymes, including APOBEC3A (A3A) and APOBEC3B (A3B), induce mutations in viral DNA, effectively inhibiting viral replication but also promoting somatic mutations in the host genome, contributing to cancer development. A3A and A3B are linked to mutational signatures in over 50% of human cancers, with A3A being a potent mutagen. A3B, one of the first APOBEC3 enzymes linked to carcinogenesis, plays a significant role in HPV-associated cancers by driving somatic mutagenesis and tumor progression. The A3A_B deletion polymorphism results in a hybrid A3A_B gene, leading to increased A3A expression and enhanced mutagenic potential. Such polymorphism has been linked to an elevated risk of certain cancers, particularly in populations where it is more prevalent. This review explores the molecular mechanisms of APOBEC3 proteins, highlighting their dual roles in antiviral defense and tumorigenesis. We also discuss the clinical implications of genetic variants, such as the A3A_B polymorphism, mainly in HPV infection and associated cancers, providing a comprehensive understanding of their contributions to both viral restriction and cancer development.
Collapse
Affiliation(s)
- Eliza Pizarro Castilha
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil; (E.P.C.); (K.P.T.); (G.M.F.)
| | - Rosalba Biondo
- Leiden Academic Centre for Drug Research, Analytical Biosciences, Leiden University, P.O. Box 9502, 2311 EZ Leiden, The Netherlands;
| | - Kleber Paiva Trugilo
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil; (E.P.C.); (K.P.T.); (G.M.F.)
| | - Giulia Mariane Fortunato
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil; (E.P.C.); (K.P.T.); (G.M.F.)
| | - Timothy Robert Fenton
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Tremona Road, Southampton SO16 6YD, UK;
- Institute for Life Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Karen Brajão de Oliveira
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil; (E.P.C.); (K.P.T.); (G.M.F.)
- Polymorphism Research Laboratory, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil
| |
Collapse
|
2
|
Al Shahrani M, Abohassan M, Alshahrani M, Gahtani RM, Rajagopalan P. Identification of 8-(2-methyl phenyl)-9H-benzo[f]indeno[2,1-c]quinolin-9-one (C-5635020) as a novel and selective TGFβ RII kinase inhibitor for breast cancer therapy. Biochem Biophys Res Commun 2025; 746:151225. [PMID: 39761620 DOI: 10.1016/j.bbrc.2024.151225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/04/2024] [Accepted: 12/19/2024] [Indexed: 01/15/2025]
Abstract
OBJECTIVE AND SIGNIFICANCE Transforming growth factor-beta (TGF-β) plays a pivotal role in breast development by modulating tissue composition during the developmental phase. The TGFβ type II receptor (TGFβ RII) is implicated in breast cancer and represents a valuable therapeutic target. Due to the off-target side effects of many existing TGFβI/TGFβ RII inhibitors, a more targeted approach to drug discovery is necessary. This study used computational modeling and molecular dynamics simulations to screen the ChemBridge small molecule library against TGFβ RII. METHODS This study employed high-throughput virtual screening, molecular dynamics simulations, and binding free energy calculations to identify potential inhibitors targeting TGF-β RII. MDA-MB 231 and MCF-7 breast cancer cells were used in anti-proliferative, tans-endothelial migration, and flow cytometric assays for in vitro validations. RESULTS We identified 8-(2-methylphenyl)-9H-benzo[f]indeno[2,1-c]quinolin-9-one (C-5635020) as a potent and selective inhibitor. Protein-ligand modeling analysis revealed that C-5635020 targets the kinase domain of TGFβ RII with superior binding affinities compared to the standard drug, staurosporine. Computational results suggest that C-5635020 selectively binds and inhibits TGFβ RII activity, thereby controlling cell proliferation in breast cancer. In vitro, experiments corroborated these predictions, where C-5635020 inhibited TGFβ RII and p-Smad 2/3 positive population in MDAMB-231 and MCF-7 cells. The compound dose-dependently inhibited cell proliferation, trans-endothelial migration, and increased apoptosis in both breast cancer cell lines. CONCLUSION The strong binding affinity, stability, and favorable thermodynamics of C-5635020 with established in vitro efficacy highlight its potential as a lead compound for further preclinical and clinical developments for breast cancer treatment.
Collapse
Affiliation(s)
- Mesfer Al Shahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Abohassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Reem M Gahtani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Prasanna Rajagopalan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| |
Collapse
|
3
|
Lou J, Liu X, Xie Y, Wu M, Mao W, Ying X. MiR-301b-3p promotes breast cancer development through inhibiting the expression of transforming growth factor-beta receptor 2. PeerJ 2024; 12:e18324. [PMID: 39525474 PMCID: PMC11546148 DOI: 10.7717/peerj.18324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024] Open
Abstract
Background Breast cancer (BC) is a serious health threat to the patients. The present work explored the mechanism of miR-301b-3p and transforming growth factor-beta receptor 2 (TGFBR2 ) in affecting BC progression. Methods The miR-301b-3p-inhibitor and si-TGFBR2 solution were added to the DEME/F12 medium to culture the BC and normal breast epithelial cell lines to prepare negative control, miR-301b-3p-IN and miR-301b-3p-IN+si-TGFBR2 in the two types of cell lines. The relative expression of target genes and the interference effect were analyzed by quantitative real-time PCR (qRT- PCR). Cell viability was detected applying cell counting kit-8 (CCK-8) assay. Transwell and wound healing assay were conducted to evaluate the invasion and migration of BC cells after miR-301b-3p inhibition. Additionally, cell apoptosis and the expression STAT protein were measured by flow cytometry and Western blot, respectively. Results The qRT-PCR results showed that miR-301b-3p were high-expressed but the level of TGFBR2 was significantly inhibited in BC cells. The miR-301b-3p-inhibitor significantly downregulated the expression of miR-301b-3p and upregulated that of TGFBR2. Meanwhile, inhibition of miR-301b-3p suppressed the cell viability, invasion, and migration of BC cells, which, however, were restored by the inhibition of TGFBR2. MiR-301b-3p conferred anti-apoptosis ability to BC cells, while TGFBR2 promoted apoptosis of BC cells through producing an antagonistic effect with miR-301b-3p. We found that miR-301b-3p played a crucial role in the phosphorylation of STAT1 and STAT3 to promote BC progression. Conclusion The present findings demonstrated that miR-301b-3p played a crucial role in promoting BC cell growth, invasion and migration and anti-apoptosis, and that targeting TGFBR2 could inhibit the tumor-promoting effect of miR-301b-3p.
Collapse
Affiliation(s)
- Jian Lou
- Tumor Center, Lishui Central Hospital, Lishui, China
| | - Xueni Liu
- Tumor Center, Lishui Central Hospital, Lishui, China
| | - Yanru Xie
- Tumor Center, Lishui Central Hospital, Lishui, China
| | - Minhua Wu
- Tumor Center, Lishui Central Hospital, Lishui, China
| | - Weibo Mao
- Pathology Department, Lishui Central Hospital, Lishui, China
| | - Xiaozhen Ying
- Tumor Center, Lishui Central Hospital, Lishui, China
| |
Collapse
|
4
|
Shukla N, Naik A, Moryani K, Soni M, Shah J, Dave H. TGF-β at the crossroads of multiple prognosis in breast cancer, and beyond. Life Sci 2022; 310:121011. [PMID: 36179816 DOI: 10.1016/j.lfs.2022.121011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/16/2022] [Accepted: 09/25/2022] [Indexed: 10/25/2022]
Abstract
Transforming growth factor β (TGF-β), a pluripotent cytokine and a multifunctional growth factor has a crucial role in varied biological mechanisms like invasion, migration, epithelial-mesenchymal transition, apoptosis, wound healing, and immunosuppression. Moreover, it also has an imperative role both in normal mammary gland development as well as breast carcinogenesis. TGF-β has shown to have a paradoxical role in breast carcinogenesis, by transitioning from a growth inhibitor to a growth promoter with the disease advancement. The inter-communication and crosstalk of TGF-β with different signaling pathways has strengthened the likelihood to explore it as a comprehensive biomarker. In the last two decades, TGF-β has been studied extensively and has been found to be a promising biomarker for early detection, disease monitoring, treatment selection, and tumor progression making it beneficial for disease management. In this review, we focus on the signaling pathways and biological activities of the TGF-β family in breast cancer pathogenesis and its role as a circulatory and independent biomarker for breast cancer progression and metastasis. Moreover, this review highlights TGF-β as a drug target, and the underlying mechanisms through which it is involved in tumorigenesis that will aid in the development of varied therapies targeting the different stages of breast cancer.
Collapse
Affiliation(s)
- Nirali Shukla
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Ankit Naik
- Ahmedabad University, Ahmedabad, Gujarat 390009, India
| | - Kamlesh Moryani
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Molisha Soni
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Jigna Shah
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Heena Dave
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
5
|
Transforming Growth Factor Beta Receptor 2 (TGFBR2) Promoter Region Polymorphisms May Be Involved in Mandibular Retrognathism. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1503052. [PMID: 35757474 PMCID: PMC9217526 DOI: 10.1155/2022/1503052] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022]
Abstract
Skeletal malocclusions are common phenotypes in humans and have a strong influence on genetic factors. Transforming growth factor beta (TGFβ) controls numerous functions of the human body, including cell proliferation, differentiation, and migration. Thus, this study is aimed at evaluating whether genetic polymorphisms in TGFB1 and its receptor TGFBR2 are associated with mandibular retrognathism in German children and adolescents. Children and teenagers older than 8 years in the mixed or permanent dentition were included in this study. Patients with syndromes and facial trauma and patients with congenital alterations were excluded. Digital cephalometric tracings were performed using the anatomical landmarks point A, point B, sella (S), and nasion (N). Patients that have a retrognathic mandible (SNB < 78°) were selected as case group, and the patients with an orthognathic mandible (SNB = 78°– 82°) were selected as the control group. Genomic deoxyribonucleic acid (DNA) from saliva was used to evaluate four genetic polymorphisms in TGFB1 (rs1800469 and rs4803455) and TGBR2 (rs3087465 and rs764522) using real-time PCR. Chi-square or Fisher exact tests were used to compare gender, genotype, and allele distribution among groups. Genotype distribution was calculated in an additive and recessive model. Haplotype analysis was also performed. The established alpha of this study was 5%. A total of 146 patients (age ranging from 8 to 18 years) were included in this epidemiological genetic study. The genetic polymorphism rs3087465 in TGFBR2 was associated with mandibular retrognathism. Carrying the AA genotype in the rs3087465 polymorphism decreased the chance of having mandibular retrognathism (odds ratio = 0.25, confidence interval 95% = 0.06 to 0.94, p = 0.045). None of the haplotypes was associated with mandibular retrognathism (p > 0.05). In conclusion, we found that the genetic polymorphism rs3087465 in the promoter region of the TGFBR2 was associated with mandibular retrognathism in Germans.
Collapse
|
6
|
Pan M, Li M, Guo M, Zhou H, Xu H, Zhao F, Mei F, Xue R, Dou J. Knockdown of ALDH1A3 reduces breast cancer stem cell marker CD44 via the miR-7-TGFBR2-Smad3-CD44 regulatory axis. Exp Ther Med 2021; 22:1093. [PMID: 34504547 PMCID: PMC8383762 DOI: 10.3892/etm.2021.10527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/22/2021] [Indexed: 12/21/2022] Open
Abstract
Inhibition of aldehyde dehydrogenase 1 family member A3 (ALDH1A3) has been revealed to lead to significant increase of microRNA (miR)-7 expression and decrease of CD44 expression in breast cancer stem cells (BCSCs), however the mechanism is not clear. The aim of the present study was to investigate the regulatory relationship between ALDH1A3, miR-7, and CD44 in BCSCs. The expression of ALDH1A3 was inhibited by small interfering RNA (siRNA or si), and the expression of miR-7 was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Then, the ratio of CD44+ cells was analyzed by flow cytometry in MDA-MB-231 cells. The dual-luciferase reporter system was used to demonstrate that miR-7 binds to transforming growth factor-β receptor 2 (TGFBR2) 3'UTR, and ChIP-PCR determined whether the transcription factor Smad3 binds to the upstream regulatory region of the CD44 promoter. The results revealed that siALDH1A3 downregulated ALDH1A3 and promoted miR-7 expression, which resulted in downregulation of CD44 expression. siALDH1A3 also downregulated the CD44 expression on the surface of MDA-MB-231 cells and inhibited the G2/M phase in BCSCs as analyzed by flow cytometry. In addition, lenti-miR-7 cells transfected with TGF-β1 + SB431542 revealed that lenti-miR-7 inhibited the TGF-β1 pathway by inhibiting Smad2/3/4 expression and, thus, downregulated CD44 expression. miR-7 was revealed to directly bind to the TGFBR2 3'UTR through dual-luciferase reporter assay, and Smad3, a transcription factor, through ChIP-PCR was demonstrated to bind to the upstream region of the CD44 promoter. These results demonstrated the existence of the ALDH1A3-miR-7-TGFBR2-Smad3-CD44 axis in MDA-MB-231 cells. RT-qPCR results of 12 breast cancer surgical specimens and SK-BR-3, MCF-7, and LD cell lines further confirmed the presence of the regulatory axis. In conclusion the findings from the present study demonstrated that the ALDH1A3-miR-7-TGFBR2-Smad3-CD44 regulatory axis was highly efficient in the inhibition of CD44 expression in BCSCs, and that the regulatory expression of ALDH1A3 and miR-7 may provide a strategy in the therapy of breast cancer.
Collapse
Affiliation(s)
- Meng Pan
- Department of Judicial Identification, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China.,Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Miao Li
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Mei Guo
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Huiying Zhou
- Department of Judicial Identification, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hui Xu
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Fengshu Zhao
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Feng Mei
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Rui Xue
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Jun Dou
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
7
|
Vitiello GAF, Amarante MK, Crespigio J, Banin Hirata BK, de Sousa Pereira N, de Oliveira KB, Guembarovski RL, Watanabe MAE. TGFβ1 pathway components in breast cancer tissue from aggressive subtypes correlate with better prognostic parameters in ER-positive and p53-negative cancers. SURGICAL AND EXPERIMENTAL PATHOLOGY 2021. [DOI: 10.1186/s42047-021-00097-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
TGFβ signaling exerts context-specific effects in breast cancer (BC) pathogenesis and single nucleotide polymorphisms (SNPs) in TGFβ-signaling components play a role in the genetic control of their expression and in BC susceptibility and clinical presentation. However, studies investigating the association between the TGFβ-signaling molecules and BC prognosis rarely considered disease subtypes and SNPs. Therefore, the present study aimed to evaluate the expression of TGFβ-signaling components in BC tissue from patients with available data regarding TGFB1 and TGFBR2 SNPs and plasmatic TGFβ1 levels.
Methods
Immunostaining for TGFβ1, TGFβRII and phosphorylated (p)-SMAD2/3 was investigated in primary tumor tissue from 34 patients with luminal-B-HER2+ (LB-HER2), HER2-enriched (HER2) and triple negative (TN) BC subtypes genotyped for TGFB1 (rs1800468, rs1800469, rs1800470 and rs1800471) and TGFBR2 (rs3087465) SNPs.
Results
Strong positive correlations were observed between TGFβ1, TGFβRII and p-SMAD2/3 in tumor tissue, and an inverse correlation was observed between intratumor and plasmatic TGFβ1 levels in TN BCs. In LB-HER2+ tumors, p-SMAD2/3 was associated with older age at diagnosis and inversely correlated with p53 staining and lymph-node metastasis, while tumor-size negatively correlated with TGFβ1 and TGFβRII in this BC subgroup. Also, in p53-negative BCs, tumor size and Ki67 negatively correlated with both TGFβ1, TGFβRII and p-SMAD2/3. No correlation was found between SNPs and TGFβ1-signaling components expression.
Conclusion
TGFβ1 canonical signaling is activated in approximately half of BCs, and correlation between TGFβ components indicate a paracrine activation, which may exert tumor suppressor effects in p53-negative or Luminal-B-HER2+ subgroups.
Collapse
|
8
|
Germline APOBEC3B deletion influences clinicopathological parameters in luminal-A breast cancer: evidences from a southern Brazilian cohort. J Cancer Res Clin Oncol 2020; 146:1523-1532. [PMID: 32285256 DOI: 10.1007/s00432-020-03208-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/02/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE APOBEC3A and APOBEC3B cytidine deaminases have been implicated in the pathogenesis of multiple cancers, including breast cancer (BC). A germline deletion linking APOBEC3A and APOBEC3B loci (A3A/B) has been associated with higher APOBEC-mediated mutational burden, but its association with BC risk have been controversial. Therefore, this study investigated the association between A3A/B and BC susceptibility and clinical presentation in a Brazilian cohort. METHODS A3A/B deletion was evaluated through allele-specific PCR in 341 BC patients and 397 women without familial or personal history of neoplasia from Brazil and associations with susceptibility to BC subtypes were tested through age-adjusted logistic models while correlations with clinicopathological parameters were tested using Kendall's tests. RESULTS No association was found between A3A/B and BC susceptibility; however, in Luminal-A BCs, it was positively correlated with tumor size (Tau-c = 0.125) and Ki67 (Tau-c = 0.116) and negatively correlated with lymph node metastasis (LNM) (Tau-c = - 0.162). The negative association between A3A/B with LNM in Luminal-A BCs remained significant even after adjusting for tumor size and Ki67 in logistic models (OR = 0.22; p = 0.008). CONCLUSION These results show that although A3A/B may not modify BC susceptibility in Brazilian population, it may affect clinicopathological features in BC subtypes, promoting tumor cell proliferation while being negatively associated with LNM in Luminal-A BCs.
Collapse
|
9
|
Vitiello GAF, Amarante MK, Oda JMM, Hirata BKB, de Oliveira CEC, Campos CZ, de Oliveira KB, Guembarovski RL, Watanabe MAE. Transforming growth factor beta 1 (TGFβ1) plasmatic levels in breast cancer and neoplasia-free women: Association with patients' characteristics and TGFB1 haplotypes. Cytokine 2020; 130:155079. [PMID: 32229413 DOI: 10.1016/j.cyto.2020.155079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/11/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023]
Abstract
Transforming growth factor beta 1 (TGFβ1) is a pleiotropic cytokine that acts in a context-dependent manner. In breast cancer (BC) this cytokine exerts subtype- and stage-specific roles, inhibiting poorly aggressive tumors while enhances the invasive potential of highly aggressive cancers. Single-nucleotide polymorphisms (SNPs) affecting TGFβ1 production largely reflect this pattern of association, but studies investigating systemic TGFβ1 levels in BC patients and their association with clinical features or SNPs produced conflicting conclusions. Therefore, the present work investigated plasmatic TGFβ1 levels through enzyme linked immunosorbent assay (ELISA) in 341 individuals previously genotyped for four TGFB1 SNPs [G-800A (rs1800468), C-509T (rs1800469), T29C (rs1800470) and G74C (rs1800471)], encompassing 184 neoplasia-free women with clinical information regarding health status, 113 treatment-free pre-surgery BC patients and 44 treated BC patients. Results have shown that TGFβ1 levels varied greatly in function of health status in neoplasia-free women, and disease-free individuals had higher TGFβ1 levels than both treatment-free or treated BC patients. There was no correlation between TGFβ1 with clinicopathological features in treatment-free BC general group, but it was negatively correlated with tumor size in luminal-B-HER2+ patients and with histopathological grade in triple-negative group. Also, TGFB1 ACTG haplotype (from G-800A to G74C) was associated with decreased TGFβ1 levels compared to the reference GCTG haplotype, and regression analyses showed that this association was independent of age, health status or BC diagnosis. In conclusion, several factors may influence TGFβ1 levels, and ACTG haplotype seems to be an important factor regulating TGFβ1 production.
Collapse
Affiliation(s)
| | - Marla Karine Amarante
- Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Londrina, PR, Brazil
| | - Julie Massayo Maeda Oda
- Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Londrina, PR, Brazil
| | - Bruna Karina Banin Hirata
- Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Londrina, PR, Brazil
| | | | - Clodoaldo Zago Campos
- Department of Clinical Research, Londrina Cancer Hospital, Londrina, PR, Brazil; Department of Clinical Medicine, Health Sciences Center, Londrina State University, Londrina, PR, Brazil
| | - Karen Brajão de Oliveira
- Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Londrina, PR, Brazil
| | - Roberta Losi Guembarovski
- Department of General Biology, Biological Sciences Center, Londrina State University, Londrina, PR, Brazil
| | | |
Collapse
|
10
|
Vitiello GAF, Amarante MK, Banin-Hirata BK, Campos CZ, de Oliveira KB, Losi-Guembarovski R, Watanabe MAE. Authors' reply to the comment "Transforming growth factor beta receptor II (TGFBR2) promoter region polymorphism". Breast Cancer Res Treat 2019; 179:519-520. [PMID: 31562571 DOI: 10.1007/s10549-019-05452-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 09/19/2019] [Indexed: 11/28/2022]
Affiliation(s)
| | - Marla Karine Amarante
- Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Londrina, PR, 86057-970, Brazil
| | - Bruna Karina Banin-Hirata
- Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Londrina, PR, 86057-970, Brazil
| | - Clodoaldo Zago Campos
- Department of Clinical Research, Londrina Cancer Hospital, Londrina, PR, 86015-520, Brazil
| | - Karen Brajão de Oliveira
- Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Londrina, PR, 86057-970, Brazil
| | - Roberta Losi-Guembarovski
- Department of General Biology, Biological Sciences Center, Londrina State University, Londrina, PR, 86057-970, Brazil
| | - Maria Angelica Ehara Watanabe
- Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Londrina, PR, 86057-970, Brazil. .,Laboratory DNA Polymorphisms and Immunology, Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Celso Garcia Cid highway (PR445), Km380, Londrina, PR, 86057-970, Brazil.
| |
Collapse
|
11
|
Transforming growth factor beta receptor II (TGFBR2) promoter region polymorphism. Breast Cancer Res Treat 2019; 178:713. [PMID: 31451976 DOI: 10.1007/s10549-019-05414-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 08/19/2019] [Indexed: 02/02/2023]
|