1
|
Peng Y, Zhang P, Mei W, Zeng C. Exploring FGFR signaling inhibition as a promising approach in breast cancer treatment. Int J Biol Macromol 2024; 267:131524. [PMID: 38608977 DOI: 10.1016/j.ijbiomac.2024.131524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/18/2023] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
As our grasp of cancer genomics deepens, we are steadily progressing towards the domain of precision medicine, where targeted therapy stands out as a revolutionary breakthrough in the landscape of cancer therapeutics. The fibroblast growth factor receptors (FGFR) pathway has been unveiled as a fundamental instigator in the pathophysiological mechanisms underlying breast carcinoma, paving the way for the exhilarating development of precision-targeted therapeutics. In the pursuit of exploring inhibitors that specifically target the FGFR signaling pathways, a multitude of kinase inhibitors targeting FGFR has been assiduously engineered to address the heterogeneous landscape of human malignancies. This review offers an exhaustive exploration of aberrations within the FGFR pathway and their functional implications in breast cancer. Additionally, we delve into cutting-edge therapeutic approaches for the treatment of breast cancer patients bearing FGFR alterations and the management of toxicity associated with FGFR inhibitors. Furthermore, our contemplation of the evolution of cutting-edge FGFR inhibitors foresees their potential to spearhead innovative therapeutic approaches in the ongoing combat against cancer.
Collapse
Affiliation(s)
- Yan Peng
- Department of Obstetrics, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
| | - Pengfei Zhang
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
| | - Wuxuan Mei
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China; Department of General Medicine, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China.
| |
Collapse
|
2
|
Saridogan T, Akcakanat A, Zhao M, Evans KW, Yuca E, Scott S, Kirby BP, Zheng X, Ha MJ, Chen H, Ng PKS, DiPeri TP, Mills GB, Rodon Ahnert J, Damodaran S, Meric-Bernstam F. Efficacy of futibatinib, an irreversible fibroblast growth factor receptor inhibitor, in FGFR-altered breast cancer. Sci Rep 2023; 13:20223. [PMID: 37980453 PMCID: PMC10657448 DOI: 10.1038/s41598-023-46586-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/02/2023] [Indexed: 11/20/2023] Open
Abstract
Several alterations in fibroblast growth factor receptor (FGFR) genes have been found in breast cancer; however, they have not been well characterized as therapeutic targets. Futibatinib (TAS-120; Taiho) is a novel, selective, pan-FGFR inhibitor that inhibits FGFR1-4 at nanomolar concentrations. We sought to determine futibatinib's efficacy in breast cancer models. Nine breast cancer patient-derived xenografts (PDXs) with various FGFR1-4 alterations and expression levels were treated with futibatinib. Antitumor efficacy was evaluated by change in tumor volume and time to tumor doubling. Alterations indicating sensitization to futibatinib in vivo were further characterized in vitro. FGFR gene expression between patient tumors and matching PDXs was significantly correlated; however, overall PDXs had higher FGFR3-4 expression. Futibatinib inhibited tumor growth in 3 of 9 PDXs, with tumor stabilization in an FGFR2-amplified model and prolonged regression (> 110 days) in an FGFR2 Y375C mutant/amplified model. FGFR2 overexpression and, to a greater extent, FGFR2 Y375C expression in MCF10A cells enhanced cell growth and sensitivity to futibatinib. Per institutional and public databases, FGFR2 mutations and amplifications had a population frequency of 1.1%-2.6% and 1.5%-2.5%, respectively, in breast cancer patients. FGFR2 alterations in breast cancer may represent infrequent but highly promising targets for futibatinib.
Collapse
Affiliation(s)
- Turcin Saridogan
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
- Department of Basic Oncology, Graduate School of Health Sciences, Hacettepe University, Ankara, 06100, Turkey
| | - Argun Akcakanat
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
| | - Ming Zhao
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
| | - Kurt W Evans
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
| | - Erkan Yuca
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
| | - Stephen Scott
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
| | - Bryce P Kirby
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
| | - Xiaofeng Zheng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Min Jin Ha
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Biostatistics, Graduate School of Public Health, Yonsei University, Seoul, Republic of Korea
| | - Huiqin Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Patrick K S Ng
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Timothy P DiPeri
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Gordon B Mills
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97239, USA
- Precision Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Jordi Rodon Ahnert
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
- The Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Senthil Damodaran
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Houston, TX, 77030, USA.
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Boraka Ö, Klintman M, Vallon-Christersson J, Zackrisson S, Hall P, Borgquist S, Rosendahl AH. FGF/FGFR1 system in paired breast tumor-adjacent and tumor tissues, associations with mammographic breast density and tumor characteristics. Front Oncol 2023; 13:1230821. [PMID: 37546410 PMCID: PMC10400328 DOI: 10.3389/fonc.2023.1230821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Mammographic breast density (MBD) is an established breast cancer risk factor, yet the underlying molecular mechanisms remain to be deciphered. Fibroblast growth factor receptor 1 (FGFR1) amplification is associated with breast cancer development and aberrant FGF signaling found in the biological processes related to both high mammographic density and breast cancer microenvironment. The aim of this study was to investigate the FGF/FGFR1 expression in-between paired tumor-adjacent and tumor tissues from the same patient, and its associations with MBD and tumor characteristics. Methods FGFR1 expression in paired tissues from 426 breast cancer patients participating in the Karolinska Mammography Project for Risk Prediction of Breast Cancer (KARMA) cohort study was analyzed by immunohistochemistry. FGF ligand expression was obtained from RNA-sequencing data for 327 of the included patients. Results FGFR1 levels were differently expressed in tumor-adjacent and tumor tissues, with increased FGFR1 levels detected in 58% of the tumors. High FGFR1 expression in tumor tissues was associated with less favorable tumor characteristics; high histological grade (OR=1.86, 95% CI 1.00-3.44), high Ki67 proliferative index (OR=2.18, 95% CI 1.18-4.02) as well as tumors of Luminal B-like subtype (OR=2.56, 95%CI 1.29-5.06). While no clear association between FGFR1 expression and MBD was found, FGF ligand (FGF1, FGF11, FGF18) expression was positively correlated with MBD. Discussion Taken together, these findings support a role of the FGF/FGFR1 system in early breast cancer which warrants further investigation in the MBD-breast cancer context.
Collapse
Affiliation(s)
- Öykü Boraka
- Department of Clinical Sciences Lund, Oncology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Marie Klintman
- Department of Clinical Sciences Lund, Oncology, Lund University, Skåne University Hospital, Lund, Sweden
| | | | - Sophia Zackrisson
- Department of Translational Medicine, Diagnostic Radiology, Lund University, Malmö, Sweden
| | - Per Hall
- Department of Medical Epidemiology and Biostatics, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Signe Borgquist
- Department of Clinical Sciences Lund, Oncology, Lund University, Skåne University Hospital, Lund, Sweden
- Department of Oncology, Aarhus University, Aarhus University Hospital, Aarhus, Denmark
| | - Ann H. Rosendahl
- Department of Clinical Sciences Lund, Oncology, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
4
|
Schulmeyer CE, Fasching PA, Häberle L, Meyer J, Schneider M, Wachter D, Ruebner M, Pöschke P, Beckmann MW, Hartmann A, Erber R, Gass P. Expression of the Immunohistochemical Markers CK5, CD117, and EGFR in Molecular Subtypes of Breast Cancer Correlated with Prognosis. Diagnostics (Basel) 2023; 13:diagnostics13030372. [PMID: 36766486 PMCID: PMC9914743 DOI: 10.3390/diagnostics13030372] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Molecular-based subclassifications of breast cancer are important for identifying treatment options and stratifying the prognosis in breast cancer. This study aimed to assess the prognosis relative to disease-free survival (DFS) and overall survival (OS) in patients with triple-negative breast cancer (TNBC) and other subtypes, using a biomarker panel including cytokeratin 5 (CK5), cluster of differentiation 117 (CD117), and epidermal growth factor receptor (EGFR). This cohort-case study included histologically confirmed breast carcinomas as cohort arm. From a total of 894 patients, 572 patients with early breast cancer, sufficient clinical data, and archived tumor tissue were included. Using the immunohistochemical markers CK5, CD117, and EGFR, two subgroups were formed: one with all three biomarkers negative (TBN) and one with at least one of those three biomarkers positive (non-TBN). There were significant differences between the two biomarker subgroups (TBN versus non-TBN) in TNBC for DFS (p = 0.04) and OS (p = 0.02), with higher survival rates (DFS and OS) in the non-TBN subgroup. In this study, we found the non-TBN subgroup of TNBC lesions with at least one positive biomarker of CK5, CD117, and/or EGFR, to be associated with longer DFS and OS.
Collapse
Affiliation(s)
- Carla E. Schulmeyer
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen–Nuremberg, 91054 Erlangen, Germany
| | - Peter A. Fasching
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen–Nuremberg, 91054 Erlangen, Germany
| | - Lothar Häberle
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen–Nuremberg, 91054 Erlangen, Germany
| | - Julia Meyer
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen–Nuremberg, 91054 Erlangen, Germany
| | - Michael Schneider
- Würzburg University Hospital, Institut für Pathologie, Julius-Maximilians-Universität Würzburg, 97070 Würzburg, Germany
| | - David Wachter
- Institute of Pathology, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen–Nuremberg, 91054 Erlangen, Germany
- Institute of Pathology, Weiden Hospital, Weiden in der Oberpfalz, 92637 Weiden in der Oberpfalz, Germany
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen–Nuremberg, 91054 Erlangen, Germany
| | - Patrik Pöschke
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen–Nuremberg, 91054 Erlangen, Germany
| | - Matthias W. Beckmann
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen–Nuremberg, 91054 Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen–Nuremberg, 91054 Erlangen, Germany
| | - Ramona Erber
- Institute of Pathology, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen–Nuremberg, 91054 Erlangen, Germany
| | - Paul Gass
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen–Nuremberg, 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-(0)9131-85-33553; Fax: +49-(0)9131-85-33938
| |
Collapse
|
5
|
TNFAIP3 promotes ALDH-positive breast cancer stem cells through FGFR1/MEK/ERK pathway. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:230. [PMID: 36175778 DOI: 10.1007/s12032-022-01844-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/05/2022] [Indexed: 10/14/2022]
Abstract
Breast cancer stem cells (BCSCs) are a tiny population of self-renewing cells that may contribute to cancer initiation, progression, and resistance to therapy in patients. In our prior study, we found that tumor necrosis factor alpha-induced protein 3 (TNFAIP3) is necessary for fibroblast growth factors receptor 1 (FGFR1) signaling-promoted tumor growth and progression in breast cancer (BC). This study aims to investigate the involvement of TNFAIP3 in regulating BCSCs. In this work, we showed that ALDH-positive BCSCs were increased by activating the FGFR1-MEK-ERK pathway, meanwhile utilizing FGFR1 inhibitor, MEK inhibitor, or ERK inhibitor reversed the phenomenon in BC cells. Moreover, ALDH-positive BCSCs were decreased in TNFAIP3-knockout or TNFAIP3-depressing cells. In vivo analysis displayed that TNFAIP3-silenced MDA-MB-231 xenografts developed smaller tumors and ALDH immunostaining levels were significantly lower in TNFAIP3-depressing or TNFAIP3-knockout tumor tissues. Besides, our results also revealed that TNFAIP3 influences the transcription stemness factors gene expression. Taken together, TNFAIP3 could be a potential regulator in FGFR1-MEK-ERK-promoted ALDH-positive BCSCs.
Collapse
|
6
|
Hao C, Wang C, Lu N, Zhao W, Li S, Zhang L, Meng W, Wang S, Tong Z, Zeng Y, Lu L. Gene Mutations Associated With Clinical Characteristics in the Tumors of Patients With Breast Cancer. Front Oncol 2022; 12:778511. [PMID: 35494043 PMCID: PMC9046571 DOI: 10.3389/fonc.2022.778511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
Background Clinical characteristics including estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor 2 (HER2) are important biomarkers in the treatment of breast cancer, but how genomic mutations affect their status is rarely studied. This study aimed at finding genomic mutations associated with these clinical characteristics. Methods There were 160 patients with breast cancer enrolled in this study. Samples from those patients were used for next-generation sequencing, targeting a panel of 624 pan-cancer genes. Short nucleotide mutations, copy number variations, and gene fusions were identified for each sample. Fisher’s exact test compared each pair of genes. A similarity score was constructed with the resulting P-values. Genes were clustered with the similarity scores. The identified gene clusters were compared to the status of clinical characteristics including ER, PR, HER2, and a family history of cancer (FH) in terms of the mutations in patients. Results Gene-by-gene analysis found that CCND1 mutations were positively correlated with ER status while ERBB2 and CDK12 mutations were positively correlated with HER2 status. Mutation-based clustering identified four gene clusters. Gene cluster 1 (ADGRA2, ZNF703, FGFR1, KAT6A, and POLB) was significantly associated with PR status; gene cluster 2 (COL1A1, AXIN2, ZNF217, GNAS, and BRIP1) and gene cluster 3 (FGF3, FGF4, FGF19, and CCND1) were significantly associated with ER status; gene cluster 2 was also negatively associated with a family history of cancer; and gene cluster 4 was significantly negatively associated with age. Patients were classified into four corresponding groups. Patient groups 1, 2, 3, and 4 had 24.1%, 36.5%, 38.7%, and 41.3% of patients with an FDA-recognized biomarker predictive of response to an FDA-approved drug, respectively. Conclusion This study identified genomic mutations positively associated with ER and PR status. These findings not only revealed candidate genes in ER and PR status maintenance but also provided potential treatment targets for patients with endocrine therapy resistance.
Collapse
Affiliation(s)
- Chunfang Hao
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Chen Wang
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ning Lu
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Weipeng Zhao
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Shufen Li
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Li Zhang
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wenjing Meng
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Shuling Wang
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhongsheng Tong
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- *Correspondence: Zhongsheng Tong, ; Yanwu Zeng, ; Leilei Lu,
| | - Yanwu Zeng
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Operations Department, Shanghai OrigiMed Co., Ltd., Shanghai, China
- *Correspondence: Zhongsheng Tong, ; Yanwu Zeng, ; Leilei Lu,
| | - Leilei Lu
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Operations Department, Shanghai OrigiMed Co., Ltd., Shanghai, China
- *Correspondence: Zhongsheng Tong, ; Yanwu Zeng, ; Leilei Lu,
| |
Collapse
|
7
|
Hernández-Gómez C, Hernández-Lemus E, Espinal-Enríquez J. The Role of Copy Number Variants in Gene Co-Expression Patterns for Luminal B Breast Tumors. Front Genet 2022; 13:806607. [PMID: 35432489 PMCID: PMC9010943 DOI: 10.3389/fgene.2022.806607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/03/2022] [Indexed: 12/20/2022] Open
Abstract
Gene co-expression networks have become a usual approach to integrate the vast amounts of information coming from gene expression studies in cancer cohorts. The reprogramming of the gene regulatory control and the molecular pathways depending on such control are central to the characterization of the disease, aiming to unveil the consequences for cancer prognosis and therapeutics. There is, however, a multitude of factors which have been associated with anomalous control of gene expression in cancer. In the particular case of co-expression patterns, we have previously documented a phenomenon of loss of long distance co-expression in several cancer types, including breast cancer. Of the many potential factors that may contribute to this phenomenology, copy number variants (CNVs) have been often discussed. However, no systematic assessment of the role that CNVs may play in shaping gene co-expression patterns in breast cancer has been performed to date. For this reason we have decided to develop such analysis. In this study, we focus on using probabilistic modeling techniques to evaluate to what extent CNVs affect the phenomenon of long/short range co-expression in Luminal B breast tumors. We analyzed the co-expression patterns in chromosome 8, since it is known to be affected by amplifications/deletions during cancer development. We found that the CNVs pattern in chromosome 8 of Luminal B network does not alter the co-expression patterns significantly, which means that the co-expression program in this cancer phenotype is not determined by CNV structure. Additionally, we found that region 8q24.3 is highly dense in interactions, as well as region p21.3. The most connected genes in this network belong to those cytobands and are associated with several manifestations of cancer in different tissues. Interestingly, among the most connected genes, we found MAF1 and POLR3D, which may constitute an axis of regulation of gene transcription, in particular for non-coding RNA species. We believe that by advancing on our knowledge of the molecular mechanisms behind gene regulation in cancer, we will be better equipped, not only to understand tumor biology, but also to broaden the scope of diagnostic, prognostic and therapeutic interventions to ultimately benefit oncologic patients.
Collapse
Affiliation(s)
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: Jesús Espinal-Enríquez, ; Enrique Hernández-Lemus,
| | - Jesús Espinal-Enríquez
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: Jesús Espinal-Enríquez, ; Enrique Hernández-Lemus,
| |
Collapse
|
8
|
Crosstalk between Tumor-Infiltrating Immune Cells and Cancer-Associated Fibroblasts in Tumor Growth and Immunosuppression of Breast Cancer. J Immunol Res 2021; 2021:8840066. [PMID: 34337083 PMCID: PMC8294979 DOI: 10.1155/2021/8840066] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 03/04/2021] [Accepted: 06/30/2021] [Indexed: 02/08/2023] Open
Abstract
Signals from the tumor microenvironment (TME) have a profound influence on the maintenance and progression of cancers. Chronic inflammation and the infiltration of immune cells in breast cancer (BC) have been strongly associated with early carcinogenic events and a switch to a more immunosuppressive response. Cancer-associated fibroblasts (CAFs) are the most abundant stromal component and can modulate tumor progression according to their secretomes. The immune cells including tumor-infiltrating lymphocytes (TILs) (cytotoxic T cells (CTLs), regulatory T cells (Tregs), and helper T cell (Th)), monocyte-infiltrating cells (MICs), myeloid-derived suppressor cells (MDSCs), mast cells (MCs), and natural killer cells (NKs) play an important part in the immunological balance, fluctuating TME between protumoral and antitumoral responses. In this review article, we have summarized the impact of these immunological players together with CAF secreted substances in driving BC progression. We explain the crosstalk of CAFs and tumor-infiltrating immune cells suppressing antitumor response in BC, proposing these cellular entities as predictive markers of poor prognosis. CAF-tumor-infiltrating immune cell interaction is suggested as an alternative therapeutic strategy to regulate the immunosuppressive microenvironment in BC.
Collapse
|
9
|
Bofin AM, Ytterhus B, Klæstad E, Valla M. FGFR1 copy number in breast cancer: associations with proliferation, histopathological grade and molecular subtypes. J Clin Pathol 2021; 75:459-464. [PMID: 33753561 DOI: 10.1136/jclinpath-2021-207456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/23/2022]
Abstract
AIMS FGFR1 is located on 8p11.23 and regulates cell proliferation and survival. Increased copy number of FGFR1 is found in several cancers including cancer of the breast. ZNF703 is located close to FGFR1 at 8p11-12 and is frequently expressed in the luminal B subtype of breast cancer. Using tissue samples from a well-described cohort of patients with breast cancer with long-term follow-up, we studied associations between FGFR1 copy number in primary breast cancer tumours and axillary lymph node metastases, and proliferation status, molecular subtype and prognosis. Furthermore, we studied associations between copy number increase of FGFR1 and copy number of ZNF703. METHODS We used fluorescence in situ hybridisation for FGFR1 and the chromosome 8 centromere applied to tissue microarray sections from a series of 534 breast cancer cases. RESULTS We found increased copy number (≥4) of FGFR1 in 74 (13.9%) of tumours. Only 6 of the 74 cases with increased copy number were non-luminal. Increased FGFR1 copy number was significantly associated with high Ki-67 status, high mitotic count and high histopathological grade, but not with prognosis. Forty-two (7.9%) cases had mean copy number ≥6. Thirty of these showed ZNF708 copy number ≥6. CONCLUSIONS Our results show that FGFR1 copy number increase is largely found among luminal subtypes of breast cancer, particularly luminal B (HER2-). It is frequently accompanied by increased copy number of ZNF703. FGFR1 copy number increase is associated with high histopathological grade and high proliferation. However, we did not discover an association with prognosis.
Collapse
Affiliation(s)
- Anna M Bofin
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Borgny Ytterhus
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Elise Klæstad
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marit Valla
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Pathology, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
10
|
PNSA, a Novel C-Terminal Inhibitor of HSP90, Reverses Epithelial-Mesenchymal Transition and Suppresses Metastasis of Breast Cancer Cells In Vitro. Mar Drugs 2021; 19:md19020117. [PMID: 33672529 PMCID: PMC7923764 DOI: 10.3390/md19020117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Metastasis accounts for the vast majority of deaths in breast cancer, and novel and effective treatments to inhibit cancer metastasis remain urgently developed. The expression level of heat shock protein 90 (HSP90) in invasive breast cancer tissue is higher than in adjacent non-cancerous tissue. In the present study, we investigated the inhibitory effect of penisuloxazin A (PNSA), a novel C- terminal inhibitor of HSP90, on metastasis of breast cancer cells and related mechanism in vitro. We found that PNSA obviously affected adhesion, migration, and invasion of triple-negative breast cancer (TNBC) MDA-MB-231 cells and Trastuzumab-resistant JIMT-1 cells. Furthermore, PNSA was capable of reversing epithelial-mesenchymal transformation (EMT) of MDA-MB-231 cells with change of cell morphology. PNSA increases E-cadherin expression followed by decreasing amounts of N-cadherin, vimentin, and matrix metalloproteinases9 (MMP9) and proteolytic activity of matrix metalloproteinases2 (MMP2) and MMP9. Comparatively, the N-terminal inhibitor of HSP90 17-allyl-17-demethoxygeldanamycin (17-AAG) had no effect on EMT of MDA-MB-231 cells. PNSA was uncovered to reduce the stability of epidermal growth factor receptor (EGFR) and fibroblast growth factor receptor (FGFR) proteins and thereby inhibiting their downstream signaling transductions by inhibition of HSP90. In addition, PNSA reduced the expression of programmed cell death-ligand 1 (PD-L1) to promote natural killer (NK) cells to kill breast cancer cells with a dose far less than that of cytotoxicity to NK cell itself, implying the potential of PNSA to enhance immune surveillance against metastasis in vivo. All these results indicate that PNSA is a promising anti-metastasis agent worthy of being studied in the future.
Collapse
|