1
|
Yao P, Cao S, Zhu Z, Wen Y, Guo Y, Liang W, Xie J. Cellular Signaling of Amino Acid Metabolism in Prostate Cancer. Int J Mol Sci 2025; 26:776. [PMID: 39859489 PMCID: PMC11765784 DOI: 10.3390/ijms26020776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/30/2025] Open
Abstract
Prostate cancer is one of the most common malignancies affecting men worldwide and a leading cause of cancer-related mortality, necessitating a deeper understanding of its underlying biochemical pathways. Similar to other cancer types, prostate cancer is also characterised by aberrantly activated metabolic pathways that support tumour development, such as amino acid metabolism, which is involved in modulating key physiological and pathological cellular processes during the progression of this disease. The metabolism of several amino acids, such as glutamine and methionine, crucial for tumorigenesis, is dysregulated and commonly discussed in prostate cancer. And the roles of some less studied amino acids, such as histidine and glycine, have also been covered in prostate cancer studies. Aberrant regulation of two major signalling pathways, mechanistic target of rapamycin (mTOR) and general amino acid control non-depressible 2 (GCN2), is a key driver of reshaping the amino acid metabolism landscape in prostate cancer. By summarising our current understanding of how amino acid metabolism is modulated in prostate cancer, here, we provide further insights into certain potential therapeutic targets for managing prostate cancer through metabolic interventions.
Collapse
Affiliation(s)
- Ping Yao
- School of Biology and Biological Engineering, South China University of Technology, University Town, Guangzhou 510006, China
| | - Shiqi Cao
- School of Biology and Biological Engineering, South China University of Technology, University Town, Guangzhou 510006, China
| | - Ziang Zhu
- School of Biology and Biological Engineering, South China University of Technology, University Town, Guangzhou 510006, China
| | - Yunru Wen
- School of Biology and Biological Engineering, South China University of Technology, University Town, Guangzhou 510006, China
| | - Yawen Guo
- School of Biology and Biological Engineering, South China University of Technology, University Town, Guangzhou 510006, China
| | - Wenken Liang
- School of Biology and Biological Engineering, South China University of Technology, University Town, Guangzhou 510006, China
| | - Jianling Xie
- School of Biology and Biological Engineering, South China University of Technology, University Town, Guangzhou 510006, China
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
2
|
Lee HT, Lin CS, Liu CY, Chen P, Tsai CY, Wei YH. Mitochondrial Plasticity and Glucose Metabolic Alterations in Human Cancer under Oxidative Stress-From Viewpoints of Chronic Inflammation and Neutrophil Extracellular Traps (NETs). Int J Mol Sci 2024; 25:9458. [PMID: 39273403 PMCID: PMC11395599 DOI: 10.3390/ijms25179458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Oxidative stress elicited by reactive oxygen species (ROS) and chronic inflammation are involved both in deterring and the generation/progression of human cancers. Exogenous ROS can injure mitochondria and induce them to generate more endogenous mitochondrial ROS to further perpetuate the deteriorating condition in the affected cells. Dysfunction of these cancer mitochondria may possibly be offset by the Warburg effect, which is characterized by amplified glycolysis and metabolic reprogramming. ROS from neutrophil extracellular traps (NETs) are an essential element for neutrophils to defend against invading pathogens or to kill cancer cells. A chronic inflammation typically includes consecutive NET activation and tissue damage, as well as tissue repair, and together with NETs, ROS would participate in both the destruction and progression of cancers. This review discusses human mitochondrial plasticity and the glucose metabolic reprogramming of cancer cells confronting oxidative stress by the means of chronic inflammation and neutrophil extracellular traps (NETs).
Collapse
Affiliation(s)
- Hui-Ting Lee
- Division of Allergy, Immunology & Rheumatology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei 104, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan
| | - Chen-Sung Lin
- Division of Thoracic Surgery, Department of Surgery, Taipei Hospital, Ministry of Health and Welfare, New Taipei City 242, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Center for General Education, Kainan University, Taoyuan City 338, Taiwan
| | - Chao-Yu Liu
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
| | - Po Chen
- Cancer Free Biotech, Taipei 114, Taiwan
| | - Chang-Youh Tsai
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Clinical Trial Center, Division of Immunology & Rheumatology, Fu Jen Catholic University Hospital, New Taipei City 243, Taiwan
- Faculty of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Yau-Huei Wei
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City 500, Taiwan
| |
Collapse
|
3
|
Sun M, Zhao M, Li R, Zhang Y, Shi X, Ding C, Ma C, Lu J, Yue X. SHMT2 promotes papillary thyroid cancer metastasis through epigenetic activation of AKT signaling. Cell Death Dis 2024; 15:87. [PMID: 38272883 PMCID: PMC10811326 DOI: 10.1038/s41419-024-06476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
Cancer cells alter their metabolism and epigenetics to support cancer progression. However, very few modulators connecting metabolism and epigenetics have been uncovered. Here, we reveal that serine hydroxymethyltransferase-2 (SHMT2) generates S-adenosylmethionine (SAM) to epigenetically repress phosphatase and tensin homolog (PTEN), leading to papillary thyroid cancer (PTC) metastasis depending on activation of AKT signaling. SHMT2 is elevated in PTC, and is associated with poor prognosis. Overexpressed SHMT2 promotes PTC metastasis both in vitro and in vivo. Proteomic enrichment analysis shows that AKT signaling is activated, and is positively associated with SHMT2 in PTC specimens. Blocking AKT activation eliminates the effects of SHMT2 on promoting PTC metastasis. Furthermore, SHMT2 expression is negatively associated with PTEN, a negative AKT regulator, in PTC specimens. Mechanistically, SHMT2 catalyzes serine metabolism and produces activated one-carbon units that can generate SAM for the methylation of CpG islands in PTEN promoter for PTEN suppression and following AKT activation. Importantly, interference with PTEN expression affects SHMT2 function by promoting AKT signaling activation and PTC metastasis. Collectively, our research demonstrates that SHMT2 connects metabolic reprogramming and epigenetics, contributing to the poor progression of PTC.
Collapse
Affiliation(s)
- Min Sun
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Mingjian Zhao
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Ruowen Li
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yankun Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Medicine, Shandong University, Jinan, 250012, China
| | - Xiaojia Shi
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo Medical College of Medicine, Shandong University, Jinan, 250012, China
| | - Changyuan Ding
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Medicine, Shandong University, Jinan, 250012, China
| | - Jinghui Lu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Xuetian Yue
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo Medical College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
4
|
Mesas C, Chico MA, Doello K, Lara P, Moreno J, Melguizo C, Perazzoli G, Prados J. Experimental Tumor Induction and Evaluation of Its Treatment in the Chicken Embryo Chorioallantoic Membrane Model: A Systematic Review. Int J Mol Sci 2024; 25:837. [PMID: 38255911 PMCID: PMC10815318 DOI: 10.3390/ijms25020837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/24/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The chorioallantoic membrane (CAM) model, generated during avian development, can be used in cancer research as an alternative in vivo model to perform tumorigenesis in ovo due to advantages such as simplicity, low cost, rapid growth, and being naturally immunodeficient. The aim of this systematic review has been to compile and analyze all studies that use the CAM assay as a tumor induction model. For that, a systematic search was carried out in four different databases: PubMed, Scopus, Cochrane, and WOS. After eliminating duplicates and following the established inclusion and exclusion criteria, a total of 74 articles were included. Of these, 62% use the in ovo technique, 13% use the ex ovo technique, 9% study the formation of metastasis, and 16% induce tumors from patient biopsies. Regarding the methodology followed, the main species used is chicken (95%), although some studies use quail eggs (4%), and one article uses ostrich eggs. Therefore, the CAM assay is a revolutionary technique that allows a simple and effective way to induce tumors, test the effectiveness of treatments, carry out metastasis studies, perform biopsy grafts of patients, and carry out personalized medicine. However, unification of the methodology used is necessary.
Collapse
Affiliation(s)
- Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (C.M.); (P.L.); (J.M.); (J.P.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (M.A.C.); (K.D.)
| | - Maria Angeles Chico
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (M.A.C.); (K.D.)
- Department of Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| | - Kevin Doello
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (M.A.C.); (K.D.)
- Service of Medical Oncology, Hospital Virgen de las Nieves, 18014 Granada, Spain
| | - Patricia Lara
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (C.M.); (P.L.); (J.M.); (J.P.)
| | - Javier Moreno
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (C.M.); (P.L.); (J.M.); (J.P.)
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (C.M.); (P.L.); (J.M.); (J.P.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (M.A.C.); (K.D.)
- Department of Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (C.M.); (P.L.); (J.M.); (J.P.)
- Department of Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (C.M.); (P.L.); (J.M.); (J.P.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (M.A.C.); (K.D.)
- Department of Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| |
Collapse
|
5
|
Demicco M, Liu XZ, Leithner K, Fendt SM. Metabolic heterogeneity in cancer. Nat Metab 2024; 6:18-38. [PMID: 38267631 DOI: 10.1038/s42255-023-00963-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/06/2023] [Indexed: 01/26/2024]
Abstract
Cancer cells rewire their metabolism to survive during cancer progression. In this context, tumour metabolic heterogeneity arises and develops in response to diverse environmental factors. This metabolic heterogeneity contributes to cancer aggressiveness and impacts therapeutic opportunities. In recent years, technical advances allowed direct characterisation of metabolic heterogeneity in tumours. In addition to the metabolic heterogeneity observed in primary tumours, metabolic heterogeneity temporally evolves along with tumour progression. In this Review, we summarize the mechanisms of environment-induced metabolic heterogeneity. In addition, we discuss how cancer metabolism and the key metabolites and enzymes temporally and functionally evolve during the metastatic cascade and treatment.
Collapse
Affiliation(s)
- Margherita Demicco
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Xiao-Zheng Liu
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Katharina Leithner
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.
| |
Collapse
|
6
|
Lei P, Wang W, Sheldon M, Sun Y, Yao F, Ma L. Role of Glucose Metabolic Reprogramming in Breast Cancer Progression and Drug Resistance. Cancers (Basel) 2023; 15:3390. [PMID: 37444501 PMCID: PMC10341343 DOI: 10.3390/cancers15133390] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The involvement of glucose metabolic reprogramming in breast cancer progression, metastasis, and therapy resistance has been increasingly appreciated. Studies in recent years have revealed molecular mechanisms by which glucose metabolic reprogramming regulates breast cancer. To date, despite a few metabolism-based drugs being tested in or en route to clinical trials, no drugs targeting glucose metabolism pathways have yet been approved to treat breast cancer. Here, we review the roles and mechanisms of action of glucose metabolic reprogramming in breast cancer progression and drug resistance. In addition, we summarize the currently available metabolic inhibitors targeting glucose metabolism and discuss the challenges and opportunities in targeting this pathway for breast cancer treatment.
Collapse
Affiliation(s)
- Pan Lei
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (P.L.); (W.W.)
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Wenzhou Wang
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (P.L.); (W.W.)
| | - Marisela Sheldon
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Fan Yao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (P.L.); (W.W.)
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston TX 77030, USA
| |
Collapse
|
7
|
Duan X, Chen Y, Zhang K, Chen W, Zhao J, Dai X, Cao W, Dong Z, Mo S, Lu J. PHGDH promotes esophageal squamous cell carcinoma progression via Wnt/β-catenin pathway. Cell Signal 2023:110736. [PMID: 37263462 DOI: 10.1016/j.cellsig.2023.110736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/05/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023]
Abstract
PURPOSE Esophageal squamous carcinoma (ESCC) with a high incidence in China, lacks effective therapeutic targets. Phosphoglycerate dehydrogenase (PHGDH) is a key enzyme in serine biosynthesis. However, the biological role of PHGDH in ESCC has not been revealed. METHODS The expression of PHGDH in ESCC was investigated by UALCAN. The relationship between PHGDH expression and its prognostic value was analyzed by Kaplan-Meier and univariate Cox regression. Further, the potential functions of PHGDH involved in ESCC were explored through DAVID database and GSEA software. In addition, the expression of PHGDH was verified in ESCC. Then, the effects of PHGDH knockdown on ESCC were evaluated in vitro and in vivo by cell proliferation, clone formation, cell cycle, apoptosis, tube formation assays and ESCC cells derived xenograft model. In addition, western blotting and immunohistochemistry were used to detect the expression of Wnt/β-catenin pathway which was associated with PHGDH. RESULTS Bioinformatics analysis found that PHGDH was highly expressed in ESCC, and meaningfully, patients with high PHGDH expression had a poor prognosis. Moreover, the overexpression of PHGDH was verified in ESCC. Afterwards, PHGDH knockdown inhibited the cell proliferation, induced cell cycle arrest and apoptosis in ESCC cells, and inhibited the angiogenesis of HUVECs induced by ESCC conditioned medium, as well as inhibited the growth of xenograft tumor. Mechanistically, PHGDH knockdown inhibited Wnt/β-catenin signaling pathway in ESCC. CONCLUSION High expression of PHGDH predicts a poor prognosis for ESCC. PHGDH knockdown inhibits ESCC progression by suppressing Wnt/β-catenin signaling pathway, indicating that PHGDH might be a potential target for ESCC therapy.
Collapse
Affiliation(s)
- Xiaoxuan Duan
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Yihuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Kai Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Wei Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Jun Zhao
- Department of Oncology, Changzhi People's Hospital, Changzhi, Shanxi 046000, PR China
| | - Xiaoshuo Dai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Wenbo Cao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China
| | - Ziming Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China
| | - Saijun Mo
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China.
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China.
| |
Collapse
|
8
|
Miebach L, Berner J, Bekeschus S. In ovo model in cancer research and tumor immunology. Front Immunol 2022; 13:1006064. [PMID: 36248802 PMCID: PMC9556724 DOI: 10.3389/fimmu.2022.1006064] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022] Open
Abstract
Considering cancer not only as malignant cells on their own but as a complex disease in which tumor cells interact and communicate with their microenvironment has motivated the establishment of clinically relevant 3D models in past years. Technological advances gave rise to novel bioengineered models, improved organoid systems, and microfabrication approaches, increasing scientific importance in preclinical research. Notwithstanding, mammalian in vivo models remain closest to mimic the patient’s situation but are limited by cost, time, and ethical constraints. Herein, the in ovo model bridges the gap as an advanced model for basic and translational cancer research without the need for ethical approval. With the avian embryo being a naturally immunodeficient host, tumor cells and primary tissues can be engrafted on the vascularized chorioallantoic membrane (CAM) with high efficiencies regardless of species-specific restrictions. The extraembryonic membranes are connected to the embryo through a continuous circulatory system, readily accessible for manipulation or longitudinal monitoring of tumor growth, metastasis, angiogenesis, and matrix remodeling. However, its applicability in immunoncological research is largely underexplored. Dual engrafting of malignant and immune cells could provide a platform to study tumor-immune cell interactions in a complex, heterogenic and dynamic microenvironment with high reproducibility. With some caveats to keep in mind, versatile methods for in and ex ovo monitoring of cellular and molecular dynamics already established in ovo are applicable alike. In this view, the present review aims to emphasize and discuss opportunities and limitations of the chicken embryo model for pre-clinical research in cancer and cancer immunology.
Collapse
Affiliation(s)
- Lea Miebach
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Department of General, Thoracic, Vascular, and Visceral Surgery, Greifswald University Medical Center, Greifswald, Germany
| | - Julia Berner
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Department of General, Thoracic, Vascular, and Visceral Surgery, Greifswald University Medical Center, Greifswald, Germany
- Department of Oral and Maxillofacial Surgery, Plastic Surgery, Greifswald University Medical Center, Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Department of General, Thoracic, Vascular, and Visceral Surgery, Greifswald University Medical Center, Greifswald, Germany
- *Correspondence: Sander Bekeschus,
| |
Collapse
|
9
|
Liu W, Cai S, Pu R, Li Z, Liu D, Zhou X, Yin J, Chen X, Chen L, Wu J, Tan X, Wang X, Cao G. HBV preS Mutations Promote Hepatocarcinogenesis by Inducing Endoplasmic Reticulum Stress and Upregulating Inflammatory Signaling. Cancers (Basel) 2022; 14:cancers14133274. [PMID: 35805045 PMCID: PMC9265300 DOI: 10.3390/cancers14133274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Viral mutations at the preS region of hepatitis B virus (HBV) significantly increase the risk of developing hepatocellular carcinoma (HCC). Compared to HBV preS deletion, the oncogenic effect of preS combo mutation has rarely been investigated. With a cohort including 2114 subjects, we demonstrated that preS combo mutations G2950A/G2951A/A2962G/C2964A and C3116T/T31C significantly increased the risk of HCC in patients without antiviral treatment, whereas preS2 deletion significantly increased the risk of HCC in patients with antiviral treatment. The prevalence of C3116T/T31C (43.61%) was higher than preS2 deletion (7.16%). By using Sleeping Beauty mouse models and in vitro experiments, we found G2950A/G2951A/A2962G/C2964A, C3116T/T31C, and preS2 deletion promoted hepatocarcinogenesis by increasing levels of inflammatory cytokines, activating STAT3 pathway, enhancing endoplasmic reticulum stress, and altering gene expression profiles in inflammation- and metabolism-related pathways. These results suggest that preS combo mutations G2950A/G2951A/A2962G/C2964A and C3116T/T31C had similar oncogenic effects of preS2 deletion and should also be monitored. Abstract This study aimed to elucidate the effects and underlying mechanisms of hepatitis B virus (HBV) preS mutations on hepatocarcinogenesis. The effect of the preS mutations on hepatocellular carcinoma (HCC) occurrence was evaluated using a prospective cohort study with 2114 HBV-infected patients, of whom 612 received antiviral treatments. The oncogenic functions of HBV preS mutations were investigated using cancer cell lines and Sleeping Beauty (SB) mouse models. RNA-sequencing and microarray were applied to identify key molecules involved in the mutant-induced carcinogenesis. Combo mutations G2950A/G2951A/A2962G/C2964A and C3116T/T31C significantly increased HCC risk in patients without antiviral treatment, whereas the preS2 deletion significantly increased HCC risk in patients with antiviral treatment. In SB mice, the preS1/preS2/S mutants induced a higher rate of tumor and higher serum levels of inflammatory cytokines than did wild-type counterpart. The preS1/preS2/S mutants induced altered gene expression profiles in the inflammation- and metabolism-related pathways, activated pathways of endoplasmic reticulum (ER) stress, affected the response to hypoxia, and upregulated the protein level of STAT3. Inhibiting the STAT3 pathway attenuated the effects of the preS1/preS2/S mutants on cell proliferation. G2950A/G2951A/A2962G/C2964A, C3116T/T31C, and preS2 deletion promote hepatocarcinogenesis via inducing ER stress, metabolism alteration, and STAT3 pathways, which might be translated into HCC prophylaxis.
Collapse
Affiliation(s)
- Wenbin Liu
- Department of Epidemiology, Second Military Medical University, 800 Xiangyin Rd., Shanghai 200433, China; (W.L.); (S.C.); (R.P.); (Z.L.); (X.Z.); (J.Y.); (X.C.); (L.C.); (X.T.)
| | - Shiliang Cai
- Department of Epidemiology, Second Military Medical University, 800 Xiangyin Rd., Shanghai 200433, China; (W.L.); (S.C.); (R.P.); (Z.L.); (X.Z.); (J.Y.); (X.C.); (L.C.); (X.T.)
| | - Rui Pu
- Department of Epidemiology, Second Military Medical University, 800 Xiangyin Rd., Shanghai 200433, China; (W.L.); (S.C.); (R.P.); (Z.L.); (X.Z.); (J.Y.); (X.C.); (L.C.); (X.T.)
| | - Zixiong Li
- Department of Epidemiology, Second Military Medical University, 800 Xiangyin Rd., Shanghai 200433, China; (W.L.); (S.C.); (R.P.); (Z.L.); (X.Z.); (J.Y.); (X.C.); (L.C.); (X.T.)
| | - Donghong Liu
- Department of Liver Cancer Surgery, Third Affiliated Hospital, Second Military Medical University, Shanghai 200433, China;
| | - Xinyu Zhou
- Department of Epidemiology, Second Military Medical University, 800 Xiangyin Rd., Shanghai 200433, China; (W.L.); (S.C.); (R.P.); (Z.L.); (X.Z.); (J.Y.); (X.C.); (L.C.); (X.T.)
| | - Jianhua Yin
- Department of Epidemiology, Second Military Medical University, 800 Xiangyin Rd., Shanghai 200433, China; (W.L.); (S.C.); (R.P.); (Z.L.); (X.Z.); (J.Y.); (X.C.); (L.C.); (X.T.)
| | - Xi Chen
- Department of Epidemiology, Second Military Medical University, 800 Xiangyin Rd., Shanghai 200433, China; (W.L.); (S.C.); (R.P.); (Z.L.); (X.Z.); (J.Y.); (X.C.); (L.C.); (X.T.)
| | - Liping Chen
- Department of Epidemiology, Second Military Medical University, 800 Xiangyin Rd., Shanghai 200433, China; (W.L.); (S.C.); (R.P.); (Z.L.); (X.Z.); (J.Y.); (X.C.); (L.C.); (X.T.)
| | - Jianfeng Wu
- Department of Pathology, Xijing Hospital, Xi’an 710032, China;
| | - Xiaojie Tan
- Department of Epidemiology, Second Military Medical University, 800 Xiangyin Rd., Shanghai 200433, China; (W.L.); (S.C.); (R.P.); (Z.L.); (X.Z.); (J.Y.); (X.C.); (L.C.); (X.T.)
| | - Xin Wang
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200433, China;
| | - Guangwen Cao
- Department of Epidemiology, Second Military Medical University, 800 Xiangyin Rd., Shanghai 200433, China; (W.L.); (S.C.); (R.P.); (Z.L.); (X.Z.); (J.Y.); (X.C.); (L.C.); (X.T.)
- Correspondence: ; Tel.: +86-21-8187-1060
| |
Collapse
|
10
|
Dragic D, Chang SL, Ennour-Idrissi K, Durocher F, Severi G, Diorio C. Association between alcohol consumption and DNA methylation in blood: a systematic review of observational studies. Epigenomics 2022; 14:793-810. [PMID: 35762294 DOI: 10.2217/epi-2022-0055] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: We systematically reviewed and evaluated current literature on alcohol consumption and DNA methylation (DNAm) at the genome-wide and probe-wise level in blood of adults. Materials & methods: Five databases (PubMed, Embase, Web of Science, CINAHL and PsycInfo) were searched until 20 December 2020. Studies assessing the effect of alcohol dependence on DNAm were not eligible. Results: 11 cross-sectional studies were included with 88 to 9643 participants. Overall, all studies had a risk of bias criteria unclear or unmet. Epigenome-wide association studies identified between 0 and 5458 differentially methylated positions, and 15 were observed in at least four studies. Conclusion: Potential methylation markers for alcohol consumption have been identified, but further validation in large cohorts is needed.
Collapse
Affiliation(s)
- Dzevka Dragic
- Department of Social & Preventive Medicine, Faculty of Medicine, Université Laval, Quebec, QC, G1V 0A6, Canada.,Cancer Research Center, CHU de Québec Research Center, Oncology division, Quebec, QC, G1R 3S3, Canada.,Université Paris-Saclay, UVSQ, Inserm, CESP U1018, "Exposome & Heredity" team, Gustave Roussy, Villejuif, 94807, France
| | - Sue-Ling Chang
- Cancer Research Center, CHU de Québec Research Center, Oncology division, Quebec, QC, G1R 3S3, Canada
| | - Kaoutar Ennour-Idrissi
- Department of Social & Preventive Medicine, Faculty of Medicine, Université Laval, Quebec, QC, G1V 0A6, Canada.,Cancer Research Center, CHU de Québec Research Center, Oncology division, Quebec, QC, G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry & Pathology, Faculty of Medicine, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Francine Durocher
- Cancer Research Center, CHU de Québec Research Center, Oncology division, Quebec, QC, G1R 3S3, Canada.,Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Gianluca Severi
- Université Paris-Saclay, UVSQ, Inserm, CESP U1018, "Exposome & Heredity" team, Gustave Roussy, Villejuif, 94807, France.,Department of Statistics, Computer Science & Applications "G. Parenti" (DISIA), University of Florence, Florence, 50134, Italy
| | - Caroline Diorio
- Department of Social & Preventive Medicine, Faculty of Medicine, Université Laval, Quebec, QC, G1V 0A6, Canada.,Cancer Research Center, CHU de Québec Research Center, Oncology division, Quebec, QC, G1R 3S3, Canada.,Deschênes-Fabia Center for Breast Diseases, Saint-Sacrement Hospital, Quebec, QC, G1S 4L8, Canada
| |
Collapse
|