1
|
Zhang J, Cai Y, Qin Y, Liu J, Ding J, Xu M, Yang L, Zheng Y, Zhang X. miR-1225-3p regulates fibrosis in mesangial cells via SMURF2-mediated ubiquitination of ChREBP in diabetic kidney disease. Ren Fail 2025; 47:2484632. [PMID: 40211762 PMCID: PMC11995769 DOI: 10.1080/0886022x.2025.2484632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/27/2025] [Accepted: 03/19/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD), characterized by mesangial fibrosis and renal dysfunction, is a major microvascular complication of diabetes. Studies have shown that miRNAs are closely related to the progression of DKD. Therefore, in this study, we aimed to explore whether miR-1225-3p can regulate Smad ubiquitin regulatory factor 2 (SMURF2)-mediated carbohydrate response element binding protein (ChREBP) ubiquitination through Rho GTPase-activating protein 5 (ARHGAP5) to affect fibrosis in DKD. METHODS DKD mice were established by intraperitoneally injecting streptozocin (STZ), and a DKD cell model was generated by culturing in media supplemented with 25 mmol/L glucose (high glucose, HG). StarBase was used to predict the target binding sites between miR-1225-3p and ARHGAP5, and a dual-luciferase reporter gene assay was used to verify this relationship. Western blotting, RT-qPCR, flow cytometry, immunoprecipitation, ELISAs, HE staining, and Masson staining were used to detect relevant indicators. RESULTS ARHGAP5 and SMURF2 expression was decreased, but ChREBP was highly expressed in the renal tissue of DKD mice and HG-induced mouse mesangial cells (MMCs). miR-1225-3p could target and regulate the transcription of ARHGAP5, and an association between ARHGAP5 and SMURF2 was revealed. miR-1225-3p facilitated fibrosis and oxidative stress in MCCs by inhibiting ARHGAP5. In addition, SMURF2 promoted the ubiquitination of HA-ChREBP, and miR-1225-3p facilitated fibrosis and oxidative stress by mediating the ARHGAP5/SMURF2-mediated ubiquitination of ChREBP in MCCs. Furthermore, the miR-1225-3p inhibitor inhibited fibrosis and inflammation in the renal tissues of DKD mice. CONCLUSION miR-1225-3p facilitates fibrosis and oxidative stress by mediating ARHGAP5/SMURF2-mediated ubiquitination of ChREBP.
Collapse
Affiliation(s)
- Juntai Zhang
- Department of Nephrology & Immunology, Affiliated Ganmei Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yan Cai
- Department of Nephrology, The Fifth Affiliated Hospital of Kunming Medical University, Gejiu, Yunnan, China
| | - Yan Qin
- Department of Nephrology & Immunology, Affiliated Ganmei Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jie Liu
- Department of Pathology, Affiliated Ganmei Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jie Ding
- Department of Ultrasound, Affiliated Ganmei Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Mengying Xu
- Department of Nephrology & Immunology, Affiliated Ganmei Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Li Yang
- Department of Nephrology & Immunology, Affiliated Ganmei Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yuanxin Zheng
- Department of Nephrology & Immunology, Affiliated Ganmei Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xi Zhang
- Department of Nephrology & Immunology, Affiliated Ganmei Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
2
|
Al-Noshokaty TM, Abdelhamid R, Reda T, Alaaeldien A, Abdellatif N, Mansour A, Gendi D, Abdelmaksoud NM, Elshaer SS, Doghish AS, Sobhy MH, Mohammed OA, Abulsoud AI. Exploring the clinical potential of circulating LncRNAs in breast cancer: insights into primary signaling pathways and therapeutic interventions. Funct Integr Genomics 2024; 24:209. [PMID: 39508907 DOI: 10.1007/s10142-024-01476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024]
Abstract
Breast cancer (BC) occupies the top spot among women on a global scale. The tumor has a significant degree of heterogeneity, displaying a notable prevalence of medication resistance, recurrence, and metastasis, rendering it one of the most lethal forms of malignant neoplasms. The timely identification, ongoing evaluation of therapeutic interventions, and accurate prediction of outcomes play crucial roles in determining the overall survival rates of women with BC. Nevertheless, the absence of precise biomarkers remains a significant determinant impacting the overall well-being and both the physical and emotional health of BC patients. Long noncoding RNA (lncRNA) exerts regulatory control over several genes and signaling pathways, hence assuming crucial roles in the development of neoplastic growth. Recently, research has indicated that the atypical expression of circulating lncRNAs in various biological bodily fluids has a noteworthy impact on the early detection, pathological categorization, staging, monitoring of therapy outcomes, and evaluation of prognosis in cases of BC. This article aims to assess the potential clinical utility of circulating lncRNAs in the context of BC focusing on specific primary signaling pathways; Wnt/β-catenin, Notch, TGF-β, and hedgehog (Hh), in addition to some therapeutic interventions.
Collapse
Affiliation(s)
- Tohada M Al-Noshokaty
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Rehab Abdelhamid
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Tasnim Reda
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Ayat Alaaeldien
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Nourhan Abdellatif
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Abdallah Mansour
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - David Gendi
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Shereen Saeid Elshaer
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, 11823, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo, 11829, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| | - Mohamed Hossam Sobhy
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt
| |
Collapse
|
3
|
Fei H, Shi X, Sun D, Yang H, Wang D, Li K, Si X, Hu W. Integrated analysis identified the role of three family members of ARHGAP in pancreatic adenocarcinoma. Sci Rep 2024; 14:11790. [PMID: 38783033 PMCID: PMC11116390 DOI: 10.1038/s41598-024-62577-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
The Rho GTPase activating protein family (ARHGAPs) is expressed in pancreatic adenocarcinoma (PAAD) but its function is unclear. The aim of this study was to explore the role and potential clinical value of ARHGAPs in PAAD. Using TCGA and GEO databases to analyze expression of ARHGAPs in PAAD and normal tissues. Survival curve was drawn by Kaplan-Meier. ARHGAPs were integrated analyzed by GEPIA2, TIMER, UCLCAN, cBioPortal and R language. Protein level and prognostic value were evaluated via IHC staining or survival analysis. We totally identify 18 differentially expressed (DE) ARHGAPs in PAAD. Among the 18 DE genes, 8 were positively correlated with tumor grade; abnorrmal expression of 5 was positively correlated with copy number variation; expression of 4 was positively correlated with promoter hypomethylation. Multivariate Cox regression identified ARHGAP5, ARHGAP11A, and ARHGAP12 as independent prognostic factors of PAAD. The function of ARHGAPs was mainly related to GTPase activity and signaling, axon guidance, proteoglycans in cancer and focal adhesion. Expression of 7 ARHGAPs was strongly correlated with immune infiltration. Immunohistochemistry showed increased protein levels of ARHGAP5, ARHGAP11A, and ARHGAP12 in PAAD tissues. Survival analysis confirmed a negative correlation between ARHGAP5, ARHGAP11A, and ARHGAP12 expression and patient prognosis. Multivariate Cox regression proved ARHGAP5, ARHGAP11A, and ARHGAP12 could serve as independent prognostic indicators for PAAD. Finally, this study verified ARHGAP5, ARHGAP11A, and ARHGAP12 as independent prognostic factors in PAAD, suggesting their significance for the diagnosis and treatment of PAAD.
Collapse
Affiliation(s)
- Haoran Fei
- Department of Hepatobiliary Surgery, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, 222000, Jiangsu, China
- Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Xiao Shi
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China
| | - Dan Sun
- Department of Hepatobiliary Surgery, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, 222000, Jiangsu, China
- Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Haishen Yang
- Department of Hepatobiliary Surgery, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, 222000, Jiangsu, China
| | - Dali Wang
- Department of Hepatobiliary Surgery, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, 222000, Jiangsu, China
| | - Kai Li
- Department of Hepatobiliary Surgery, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, 222000, Jiangsu, China
| | - Xinxin Si
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China.
| | - Wei Hu
- Department of Hepatobiliary Surgery, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, 222000, Jiangsu, China.
| |
Collapse
|
4
|
Hussen BM, Hidayat HJ, Abdullah SR, Mohamadtahr S, Rasul MF, Samsami M, Taheri M. Role of long non-coding RNAs and TGF-β signaling in the regulation of breast cancer pathogenesis and therapeutic targets. Cytokine 2023; 170:156351. [PMID: 37657235 DOI: 10.1016/j.cyto.2023.156351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
The cytokine known as transforming growth factor (TGF) is essential for cell development, differentiation, and apoptosis in BC. TGF-β dysregulation can either promote or inhibit tumor development, and it is a key signaling pathway in BC spread. A recently identified family of ncRNAs known as lncRNAs has received a great deal of effort and is an important regulator of many cellular processes, including transcription of genes, chromatin remodeling, progression of the cell cycle, and posttranscriptional processing. Furthermore, both TGF-β signaling and lncRNAs serve as important early-stage biomarkers for BC diagnosis and prognosis and also play a significant role in BC drug resistance. According to recent studies, lncRNAs can regulate TGF-β by modulating its cofactors in BC. However, the particular functions of lncRNAs and the TGF-β pathway in controlling BC progression are not well understood yet. This review explores the lncRNAs' functional properties in BC as tumor suppressors or oncogenes in the regulation of genes, with a focus on dysregulated TGF-β signaling. Further, we emphasize the functional roles of lncRNAs and TGF-β pathway in the progression of BC to discover new treatment strategies and better comprehend the fundamental cellular pathways.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq; Department of Biomedical Sciences, Cihan University-Erbil, Erbil, Kurdistan Region 44001, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Snur Rasool Abdullah
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Sayran Mohamadtahr
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Mohammad Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Thapa R, Afzal O, Gupta G, Bhat AA, Almalki WH, Alzarea SI, Kazmi I, Altamimi ASA, Subramaniyan V, Thangavelu L, Singh SK, Dua K. Unveiling the connection: Long-chain non-coding RNAs and critical signaling pathways in breast cancer. Pathol Res Pract 2023; 249:154736. [PMID: 37579591 DOI: 10.1016/j.prp.2023.154736] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023]
Abstract
Breast cancer is a complex and diverse condition that disrupts multiple signaling pathways essential for cell proliferation, survival, and differentiation. Recently, the significant involvement of long-chain non-coding RNAs (lncRNAs) in controlling key signaling pathways associated with breast cancer development has been discovered. This review aims to explore the interaction between lncRNAs and various pathways, including the AKT/PI3K/mTOR, Wnt/β-catenin, Notch, DNA damage response, TGF-β, Hedgehog, and NF-κB signaling pathways, to gain a comprehensive understanding of their roles in breast cancer. The AKT/PI3K/mTOR pathway regulates cell growth, survival, and metabolic function. Recent data suggests that specific lncRNAs can influence the functioning of this pathway, acting as either oncogenes or tumor suppressors. Dysregulation of this pathway is commonly observed in breast cancer cases. Moreover, breast cancer development has been associated with other pathways such as Wnt/β-catenin, Notch, TGF-β, Hedgehog, and NF-κB. Emerging studies have identified lncRNAs that modulate breast cancer's growth, progression, and metastasis by interacting with these pathways. To advance the development of innovative diagnostic tools and targeted treatment options, it is crucial to comprehend the intricate relationship between lncRNAs and vital signaling pathways in breast cancer. By fully harnessing the therapeutic potential of lncRNAs, there is a possibility of developing more effective and personalized therapy choices for breast cancer patients. Further investigation is necessary to comprehensively understand the role of lncRNAs within breast cancer signaling pathways and fully exploit their therapeutic potential.
Collapse
Affiliation(s)
- Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Vetriselvan Subramaniyan
- Department of Pharmacology, Jeffrey Cheah School of Medicine and Health Sciences, MONASH University, Malaysia
| | - Lakshmi Thangavelu
- Center for Global Health Research , Saveetha Medical College , Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo-NSW 2007, Australia
| |
Collapse
|
6
|
Kimura T, Tartaglia GG. Editorial: Mechanisms of action of natural antisense transcripts on the post-transcriptional regulation of sense protein coding gene expression during development and in cancer. Front Mol Biosci 2023; 10:1268124. [PMID: 37711390 PMCID: PMC10499381 DOI: 10.3389/fmolb.2023.1268124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 09/16/2023] Open
Affiliation(s)
- Tominori Kimura
- Laboratory of Microbiology and Cell Biology, Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | | |
Collapse
|
7
|
Wang Q, Xiong F, Wu G, Wang D, Liu W, Chen J, Qi Y, Wang B, Chen Y. SMAD Proteins in TGF-β Signalling Pathway in Cancer: Regulatory Mechanisms and Clinical Applications. Diagnostics (Basel) 2023; 13:2769. [PMID: 37685308 PMCID: PMC10487229 DOI: 10.3390/diagnostics13172769] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Suppressor of mother against decapentaplegic (SMAD) family proteins are central to one of the most versatile cytokine signalling pathways in metazoan biology, the transforming growth factor-β (TGF-β) pathway. The TGF-β pathway is widely known for its dual role in cancer progression as both an inhibitor of tumour cell growth and an inducer of tumour metastasis. This is mainly mediated through SMAD proteins and their cofactors or regulators. SMAD proteins act as transcription factors, regulating the transcription of a wide range of genes, and their rich post-translational modifications are influenced by a variety of regulators and cofactors. The complex role, mechanisms, and important functions of SMAD proteins in tumours are the hot topics in current oncology research. In this paper, we summarize the recent progress on the effects and mechanisms of SMAD proteins on tumour development, diagnosis, treatment and prognosis, and provide clues for subsequent research on SMAD proteins in tumours.
Collapse
Affiliation(s)
- Qi Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Fei Xiong
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Guanhua Wu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Da Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Wenzheng Liu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Junsheng Chen
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Yongqiang Qi
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China;
| | - Bing Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Yongjun Chen
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| |
Collapse
|
8
|
Maharati A, Moghbeli M. Long non-coding RNAs as the critical regulators of PI3K/AKT, TGF-β, and MAPK signaling pathways during breast tumor progression. J Transl Med 2023; 21:556. [PMID: 37596669 PMCID: PMC10439650 DOI: 10.1186/s12967-023-04434-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023] Open
Abstract
Breast cancer (BC) as one of the most common causes of human deaths among women, is always considered one of the global health challenges. Despite various advances in diagnostic and therapeutic methods, a significant percentage of BC patients have a poor prognosis due to the lack of therapeutic response. Therefore, investigating the molecular mechanisms involved in BC progression can improve the therapeutic and diagnostic strategies in these patients. Cytokine and growth factor-dependent signaling pathways play a key role during BC progression. In addition to cytokines and growth factors, long non-coding RNAs (lncRNAs) have also important roles in regulation of such signaling pathways. Therefore, in the present review we discussed the role of lncRNAs in regulation of PI3K/AKT, MAPK, and TGF-β signaling pathways in breast tumor cells. It has been shown that lncRNAs mainly have an oncogenic role through the promotion of these signaling pathways in BC. This review can be an effective step in introducing the lncRNAs inhibition as a probable therapeutic strategy to reduce tumor growth by suppression of PI3K/AKT, MAPK, and TGF-β signaling pathways in BC patients. In addition, considering the oncogenic role and increased levels of lncRNAs expressions in majority of the breast tumors, lncRNAs can be also considered as the reliable diagnostic markers in BC patients.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Pei M, Xu N, Li J, Liu X, Zhang L, Xiao W, Yu Z, Yang P, Peng Y, Zhang J, Hong L, Wu X, Tang W, Lin Z, Zhi F, Li G, Li A, Liu S, Chen Y, Xiang L, Lin J, Wang J. The LINC00501-HSP90B1-STAT3 positive feedback loop promotes malignant behavior in gastric cancer cells. Cell Signal 2023; 108:110711. [PMID: 37156452 DOI: 10.1016/j.cellsig.2023.110711] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/12/2023] [Accepted: 05/06/2023] [Indexed: 05/10/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been implicated in gastric cancer (GC) carcinogenesis and progression. However, the role of LINC00501 in GC growth and metastasis remains unclear. In this study, we found that LINC00501 was frequently upregulated in GC cells and tissues and was closely related to adverse GC clinicopathological features. Aberrant overexpression of LINC00501 promoted GC cell proliferation, invasion, and metastasis both in vitro and in vivo. Mechanistically, LINC00501 stabilized client protein STAT3 from deubiquitylation by directly interacting with cancer chaperone protein HSP90B1. Furthermore, the LINC00501-STAT3 axis modulated GC cell proliferation and metastasis. In turn, STAT3 bound directly to the LINC00501 promoter and positively activated LINC00501 expression, thus forming a positive feedback loop, thereby accelerating tumor growth, invasiveness, and metastasis. In addition, LINC00501 expression was positively correlated with STAT3 and p-STAT3 protein expression levels in gastric clinical samples. Our results reveal that LINC00501 acts as an oncogenic lncRNA and that the LINC00501-HSP90B1-STAT3 positive feedback loop contributes to GC development and progression, suggesting that LINC00501 may be a novel potential biomarker and treatment target for GC.
Collapse
Affiliation(s)
- Miaomiao Pei
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Nanzhu Xu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiaying Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xuehua Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Gastroenterology, Shunde Hospital, Southern Medical University, Foshan 528300, China
| | - Luyu Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wushuang Xiao
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhen Yu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ping Yang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ying Peng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jieming Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Linjie Hong
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaosheng Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Weimei Tang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhizhao Lin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Fachao Zhi
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Gastroenterology, Longgang District People's Hospital, Shenzhen 518172, China
| | - Ye Chen
- Clinical Microecology Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, China.
| | - Li Xiang
- Department of Gastroenterology, Longgang District People's Hospital, Shenzhen 518172, China.
| | - Jianjiao Lin
- Department of Gastroenterology, Longgang District People's Hospital, Shenzhen 518172, China.
| | - Jide Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Gastroenterology, Longgang District People's Hospital, Shenzhen 518172, China.
| |
Collapse
|
10
|
Hu Z, Liu Y, Liu M, Zhang Y, Wang C. Roles of TGF‑β signalling pathway‑related lncRNAs in cancer (Review). Oncol Lett 2023; 25:107. [PMID: 36817052 PMCID: PMC9932718 DOI: 10.3892/ol.2023.13693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/13/2023] [Indexed: 02/04/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are a class of RNAs that are >200 nucleotides in length that do not have the ability to be translated into protein but are associated with numerous diseases, including cancer. The involvement of lncRNAs in the signalling of certain signalling pathways can promote tumour progression; these pathways include the transforming growth factor (TGF)-β signalling pathway, which is related to tumour development. The expression of lncRNAs in various tumour tissues is specific, and their interaction with the TGF-β signalling pathway indicates that they may serve as new tumour markers and therapeutic targets. The present review summarized the role of TGF-β pathway-associated lncRNAs in regulating tumorigenesis in different types of cancer and their effects on the TGF-β signalling pathway.
Collapse
Affiliation(s)
- Zhizhong Hu
- Cancer Research Institute, Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yitong Liu
- Cancer Research Institute, Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Meiqi Liu
- Cancer Research Institute, Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yang Zhang
- Cancer Research Institute, Medical School, University of South China, Hengyang, Hunan 421001, P.R. China,Correspondence to: Dr Yang Zhang or Dr Chengkun Wang, Cancer Research Institute, Medical School, University of South China, 28 Chang Sheng Xi Avenue, Hengyang, Hunan 421001, P.R. China, E-mail:
| | - Chengkun Wang
- Cancer Research Institute, Medical School, University of South China, Hengyang, Hunan 421001, P.R. China,Correspondence to: Dr Yang Zhang or Dr Chengkun Wang, Cancer Research Institute, Medical School, University of South China, 28 Chang Sheng Xi Avenue, Hengyang, Hunan 421001, P.R. China, E-mail:
| |
Collapse
|
11
|
Ding K, Zheng Z, Han Y, Huang X. Prognostic values of the immune microenvironment-related non-coding RNA IGF2BP2-AS1 in bladder cancer. Cell Cycle 2022; 21:2533-2549. [PMID: 35894701 PMCID: PMC9677966 DOI: 10.1080/15384101.2022.2103898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bladder cancer can range from noninvasive to invasive tumors. When non-muscle invasive bladder cancer (NMIBC) recurs, patients could endure long-term invasive malignancies with a high disease-specific death rate. Immune escape frequently results in tumor development, metastases, unfavorable prognosis, and failure of immunotherapy. Based on the median immune score, this study used ESTIMATE scores to evaluate 411 bladder cancer cases from TCGA-BLCA. Two hundred two ncRNAs were differentially expressed in two groups, where 29 candidates appeared to be associated with the overall survival of bladder cancer patients. LASSO algorithm was performed to establish the risk score model of 13-ncRNA. Risk scores were computed for cases in the training set, validation set, and TCGA-BLCA set; Poor prognosis in cases with higher risk scores was based on the training set, validating set, and TCGA-BLCA set. Among the 13 ncRNAs, IGF2BP2-AS1, MAGF-AS1, ARHGAP5-AS1, and LINC00942 were significantly correlated with the overall survival of bladder cancer patients. Pearson's correlation analysis based on TCGA-BLCA identified 2093, 3107, 386, and 936 mRNAs co-expressed with IGF2BP2-AS1, MAGF-AS1, ARHGAP5-AS1, and LINC00942, respectively. Conclusively, the 13 ncRNA signature exhibited a feasible predictive prognostic value for bladder cancer patients. IGF2BP2-AS1 expression was higher in bladder cancer tissues and significantly correlated to immune-related factors, suggesting that IGF2BP2-AS1 represents a promising immune-related target for treating bladder cancer patients.
Collapse
Affiliation(s)
- Ke Ding
- Department of Urology, Xiangya Hospital, Central South University, Changsha, PR China
| | - Zhihuan Zheng
- Department of Urology, Xiangya Hospital, Central South University, Changsha, PR China
| | - Yu Han
- Department of Urology, Xiangya Hospital, Central South University, Changsha, PR China
| | - Xiangyun Huang
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha, PR China,CONTACT Xiangyun Huang Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha, Hunan412008, PR China
| |
Collapse
|
12
|
Liu J, Zhang N, Zeng J, Wang T, Shen Y, Ma C, Yang M. N 6 -methyladenosine-modified lncRNA ARHGAP5-AS1 stabilises CSDE1 and coordinates oncogenic RNA regulons in hepatocellular carcinoma. Clin Transl Med 2022; 12:e1107. [PMID: 36354136 PMCID: PMC9647857 DOI: 10.1002/ctm2.1107] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) ranks fourth among the malignancies leading to cancer-related deaths all around the world. It is increasingly evident that long non-coding RNAs (lncRNAs) are a key mode of hepatocarcinogenesis. As the most prevalent mRNA modification form, N6 -methyladenosine (m6 A) regulates gene expression by impacting multiple aspects of mRNA metabolism. However, there are still no reports on genome-wide screening and functional annotation of m6 A-methylated lncRNAs in HCC. METHODS The m6 A modification and biologic functions of ARHGAP5-AS1 in HCC were investigated through a series of biochemical assays. Clinical implications of ARHGAP5-AS1 were examined in tissues from HCC patients. RESULTS After systematically analysing the m6 A-seq data of HCC cells, we identified 22 candidate lncRNAs with evidently dysregulated m6 A levels. Among these lncRNAs, we found that ARHGAP5-AS1 is the lncRNA with the highest levels of m6 A modification and significantly increased expression in HCC specimens. METTL14 acts as the m6 A writer of ARHGAP5-AS1 and IGF2BP2 stabilises the lncRNA as its m6 A reader. ARHGAP5-AS1 remarkably promotes malignant behaviours of HCC cells ex vivo and in vivo. We identified oncoprotein CSDE1 working as the interacting protein of the lncRNA and TRIM28 as the E3 ligase of CSDE1 in HCC. Interestingly, ARHGAP5-AS1 could attenuate interactions between CSDE1 and TRIM28, which prevents the degradation of CSDE1 via the ubiquitin-proteasome pathway. Elevated levels of CSDE1 coordinate oncogenic RNA regulons, promote translation of VIM and RAC1 and activate the ERK pathway, which contributes to HCC prognosis. CONCLUSIONS Our study reveals a new paradigm in m6 A-modified lncRNAs controlling CSDE1-mediated oncogenic RNA regulons and highlights lncRNAs as potential targets for future therapeutics against HCC.
Collapse
Affiliation(s)
- Jiandong Liu
- Shandong Provincial Key Laboratory of Radiation OncologyCancer Research CenterShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandong ProvinceChina
| | - Nasha Zhang
- Department of Radiation OncologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandong ProvinceChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Jiajia Zeng
- Shandong Provincial Key Laboratory of Radiation OncologyCancer Research CenterShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandong ProvinceChina
| | - Teng Wang
- Shandong University Cancer CenterJinanShandong ProvinceChina
| | - Yue Shen
- Shandong University Cancer CenterJinanShandong ProvinceChina
| | - Chi Ma
- Shandong University Cancer CenterJinanShandong ProvinceChina
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation OncologyCancer Research CenterShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandong ProvinceChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and TreatmentCollaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingJiangsu ProvinceChina
| |
Collapse
|
13
|
Shaath H, Vishnubalaji R, Elango R, Kardousha A, Islam Z, Qureshi R, Alam T, Kolatkar PR, Alajez NM. Long non-coding RNA and RNA-binding protein interactions in cancer: Experimental and machine learning approaches. Semin Cancer Biol 2022; 86:325-345. [PMID: 35643221 DOI: 10.1016/j.semcancer.2022.05.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023]
Abstract
Understanding the complex and specific roles played by non-coding RNAs (ncRNAs), which comprise the bulk of the genome, is important for understanding virtually every hallmark of cancer. This large group of molecules plays pivotal roles in key regulatory mechanisms in various cellular processes. Regulatory mechanisms, mediated by long non-coding RNA (lncRNA) and RNA-binding protein (RBP) interactions, are well documented in several types of cancer. Their effects are enabled through networks affecting lncRNA and RBP stability, RNA metabolism including N6-methyladenosine (m6A) and alternative splicing, subcellular localization, and numerous other mechanisms involved in cancer. In this review, we discuss the reciprocal interplay between lncRNAs and RBPs and their involvement in epigenetic regulation via histone modifications, as well as their key role in resistance to cancer therapy. Other aspects of RBPs including their structural domains, provide a deeper knowledge on how lncRNAs and RBPs interact and exert their biological functions. In addition, current state-of-the-art knowledge, facilitated by machine and deep learning approaches, unravels such interactions in better details to further enhance our understanding of the field, and the potential to harness RNA-based therapeutics as an alternative treatment modality for cancer are discussed.
Collapse
Affiliation(s)
- Hibah Shaath
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Radhakrishnan Vishnubalaji
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Ramesh Elango
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Ahmed Kardousha
- College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Zeyaul Islam
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, PO Box 34110, Doha, Qatar
| | - Rizwan Qureshi
- College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Qatar Foundation, PO Box 34110, Doha, Qatar
| | - Tanvir Alam
- College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Qatar Foundation, PO Box 34110, Doha, Qatar
| | - Prasanna R Kolatkar
- College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar; Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, PO Box 34110, Doha, Qatar
| | - Nehad M Alajez
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar; College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar.
| |
Collapse
|
14
|
Khorkova O, Stahl J, Joji A, Volmar CH, Zeier Z, Wahlestedt C. Natural antisense transcripts as drug targets. Front Mol Biosci 2022; 9:978375. [PMID: 36250017 PMCID: PMC9563854 DOI: 10.3389/fmolb.2022.978375] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
The recent discovery of vast non-coding RNA-based regulatory networks that can be easily modulated by nucleic acid-based drugs has opened numerous new therapeutic possibilities. Long non-coding RNA, and natural antisense transcripts (NATs) in particular, play a significant role in networks that involve a wide variety of disease-relevant biological mechanisms such as transcription, splicing, translation, mRNA degradation and others. Currently, significant efforts are dedicated to harnessing these newly emerging NAT-mediated biological mechanisms for therapeutic purposes. This review will highlight the recent clinical and pre-clinical developments in this field and survey the advances in nucleic acid-based drug technologies that make these developments possible.
Collapse
Affiliation(s)
- Olga Khorkova
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States
| | - Jack Stahl
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States
| | - Aswathy Joji
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States
- Department of Chemistry, University of Miami, Miami, FL, United States
| | - Claude-Henry Volmar
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States
| | - Zane Zeier
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States
| | - Claes Wahlestedt
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States
- Department of Chemistry, University of Miami, Miami, FL, United States
- *Correspondence: Claes Wahlestedt,
| |
Collapse
|
15
|
Zhu Y, Yu T, Huang J, Ma X, Shen T, Li A, Yue R. Development and validation of prognostic m6A-related lncRNA and mRNA model in thyroid cancer. Am J Cancer Res 2022; 12:3259-3279. [PMID: 35968348 PMCID: PMC9360246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023] Open
Abstract
Although N6-methyladenosine (m6A) regulators and lncRNAs influence the carcinogenesis of thyroid cancer (THCA), the association between m6A-related lncRNAs and THCA remains unexplored. Therefore, we have developed and validated a prognostic model based on m6A-related lncRNAs and mRNAs in THCA. Data from the Cancer Genome Atlas were used to analyze the expression and prognostic characteristics of m6A-related lncRNAs and mRNAs in THCA. Univariate Cox regression analysis was used to screen out independent prognostic factors, while Lasso Cox regression was performed to construct m6A-related lncRNA and mRNA models. The correlation between the prognostic models and gene mutation, immune cell infiltration, tumor microenvironment score, tumor mutational burden, and microsatellite instability were assessed. The prognostic models showed excellent accuracy in predicting the prognosis of patients with THCA. Our study established an m6A-related nomogram capable of predicting the prognosis of patients with THCA. In addition, the hub lncRNAs and mRNAs provide insight into improving the prognosis of THCA. These findings can improve our understanding of m6A modifications in THCA and the prognosis and treatment strategies of THCA.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese MedicineChengdu 610075, Sichuan, P. R. China
| | - Tian Yu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeNo. 1 Shuaifuyuan, Wangfujin, Dongcheng District, Beijing 100730, P. R. China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100005, P. R. China
| | - Ju Huang
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese MedicineChengdu 610075, Sichuan, P. R. China
| | - Xitao Ma
- Internal Medicine, Hospital of Chengdu University of Traditional Chinese MedicineChengdu 610075, Sichuan, P. R. China
| | - Tao Shen
- Internal Medicine, Hospital of Chengdu University of Traditional Chinese MedicineChengdu 610075, Sichuan, P. R. China
| | - Annuo Li
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese MedicineChengdu 610075, Sichuan, P. R. China
| | - Rensong Yue
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese MedicineChengdu 610075, Sichuan, P. R. China
| |
Collapse
|