1
|
Azizi A, Mansouri N, Tarlan M, Sadeghi M. Analysis of Interleukin-6 Gene Variants ( rs1800795, rs1800796, rs1554606, rs1800797, rs2069840, rs12700386, and rs2069861) as Prognostic Markers in Breast Cancer: A Systematic Review, Meta-Analysis, and Network Analysis. J Interferon Cytokine Res 2024; 44:3-15. [PMID: 38029374 DOI: 10.1089/jir.2023.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Interleukin-6 (IL-6) has obviously tumor-promoting and tumor-inhibitory effects and can induce an epithelial-mesenchymal transition phenotype in human breast cancer (BC) cells and implicate its potential to promote BC metastasis. Herein, we aimed to evaluate the association of IL-6 variants (rs1800795, rs1800796, rs1554606, rs1800797, rs2069840, rs12700386, and rs2069861) with the susceptibility to BC. The databases of PubMed/Medline, Web of Science, Scopus, and Cochrane Library were searched until December 19, 2022, without any restrictions. The quality assessment of each study was performed based on the Newcastle-Ottawa Scale tool. The Review Manager 5.3 software presented the effect sizes including odds ratio (OR) along with a 95% confidence interval (CI). Both publication bias and sensitivity analyses were carried out by the Comprehensive Meta-Analysis version 2.0 software. A total of 2,508 records were identified among databases and at last, 27 articles were entered into the meta-analysis. Seven polymorphisms of IL-6 were entered into the analyses. Just rs1800797 polymorphism in the dominant model (OR = 1.51; 95% CI = 1.15-2.00; P = 0.003) and rs2069840 polymorphism in heterozygous (OR = 0.89; 95% CI = 0.81-0.97; P = 0.008) and dominant (OR = 0.91; 95% CI = 0.84-0.99; P = 0.02) models had a significant association with the BC risk. In conclusion, among 7 polymorphisms and despite a few included cases, the present meta-analysis recommended that the AA+GA genotype of rs1800797 polymorphism had a significantly elevated risk and the GC and the CC+GC genotypes of rs2069840 polymorphism had a protective role in the BC patients.
Collapse
Affiliation(s)
- Ali Azizi
- Social Development and Health Promotion Research Center, Department of Family and Community Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nasrin Mansouri
- Department of Obstetrics and Gynecology, Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mitra Tarlan
- Department of Physiology, Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Sadeghi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
2
|
Canet M, Harbron R, Thierry-Chef I, Cardis E. Cancer Effects of Low to Moderate Doses of Ionizing Radiation in Young People with Cancer-Predisposing Conditions: A Systematic Review. Cancer Epidemiol Biomarkers Prev 2022; 31:1871-1889. [PMID: 35861626 PMCID: PMC9530642 DOI: 10.1158/1055-9965.epi-22-0393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/10/2022] [Accepted: 07/18/2022] [Indexed: 01/07/2023] Open
Abstract
Moderate to high doses of ionizing radiation (IR) are known to increase the risk of cancer, particularly following childhood exposure. Concerns remain regarding risks from lower doses and the role of cancer-predisposing factors (CPF; genetic disorders, immunodeficiency, mutations/variants in DNA damage detection or repair genes) on radiation-induced cancer (RIC) risk. We conducted a systematic review of evidence that CPFs modify RIC risk in young people. Searches were performed in PubMed, Scopus, Web of Science, and EMBASE for epidemiologic studies of cancer risk in humans (<25 years) with a CPF, exposed to low-moderate IR. Risk of bias was considered. Fifteen articles focusing on leukemia, lymphoma, breast, brain, and thyroid cancers were included. We found inadequate evidence that CPFs modify the risk of radiation-induced leukemia, lymphoma, brain/central nervous system, and thyroid cancers and limited evidence that BRCA mutations modify radiation-induced breast cancer risk. Heterogeneity was observed across studies regarding exposure measures, and the numbers of subjects with CPFs other than BRCA mutations were very small. Further studies with more appropriate study designs are needed to elucidate the impact of CPFs on RIC. They should focus either on populations of carriers of specific gene mutations or on common susceptible variants using polygenic risk scores.
Collapse
Affiliation(s)
- Maelle Canet
- Barcelona Institute of Global Health (ISGlobal), Barcelona, Spain
- University Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiologia y Salud Pública, Madrid, Spain
| | - Richard Harbron
- Barcelona Institute of Global Health (ISGlobal), Barcelona, Spain
- University Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiologia y Salud Pública, Madrid, Spain
| | - Isabelle Thierry-Chef
- Barcelona Institute of Global Health (ISGlobal), Barcelona, Spain
- University Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiologia y Salud Pública, Madrid, Spain
| | - Elisabeth Cardis
- Barcelona Institute of Global Health (ISGlobal), Barcelona, Spain
- University Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiologia y Salud Pública, Madrid, Spain
| |
Collapse
|
3
|
Breast cancer incidence in a national cohort of female workers exposed to special health hazards in Taiwan: a retrospective case-cohort study of ~ 300,000 occupational records spanning 20 years. Int Arch Occup Environ Health 2022; 95:1979-1993. [PMID: 35771278 DOI: 10.1007/s00420-022-01897-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/31/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Breast cancer is the most common cancer among women worldwide. In Taiwan, workers exposed to any of 31 hazardous chemicals or carcinogens in the work environment are designated as especially exposed workers (EEWs) by Taiwan's Ministry of Labor. We assessed the risk of breast cancer in this nationwide female EEW cohort. METHODS We conducted a nationwide retrospective study of 4,774,295 workers combining data collected from Taiwan's Ministry of Labor's EEW database between 1997 and 2018 and Taiwan's Cancer Registry between 1997 and 2016. Standardized incidence ratios (SIRs) for women exposed to different hazards and breast cancer incidence rate ratios (IRRs) were calculated by Poisson regression, adjusting for age and duration of exposure. RESULTS 3248 female workers with breast cancer and 331,967 without breast cancer were included. The SIRs and adjusted IRRs were 1.27 (95% CI 1.18-1.35) and 1.31 (95% CI 1.21-1.42) for lead, 1.74 (95% CI 1.23-2.24) and 1.52 (95% CI 1.13-2.04) for 1,1,2,2-tetrachloroethane, 1.47 (95% CI 1.12-1.82) and 1.42 (95% CI 1.12-1.81) for trichloroethylene/tetrachloroethylene), 1.40 (95% CI 1.23-1.57) and 1.38 (95% CI 1.22-1.57) for benzene, and 2.07 (95% CI 1.06-3.09) and 1.80 (95% CI 1.10-2.94) for asbestos. The results remained similar when factoring in a 2- or 5-year latency period. CONCLUSION This study found possible correlations between occupational exposure to lead, chlorinated solvents (such as 1,1,2,2-tetrachloroethane, trichloroethylene, and tetrachloroethylene), benzene, and asbestos with breast cancer risk among female EEW, suggesting a need for regular screening for breast cancer for employees exposed to these special workplace hazards.
Collapse
|
4
|
Nahar Z, Jafrin S, Aziz MA, Islam MS. Link of IL-1β rs16944 polymorphism with breast, cervical and ovarian cancer: A systematic review and meta-analysis. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Jafrin S, Aziz MA, Islam MS. Role of IL-1β rs1143634 (+3954C>T) polymorphism in cancer risk: an updated meta-analysis and trial sequential analysis. J Int Med Res 2021; 49:3000605211060144. [PMID: 34861128 PMCID: PMC8647244 DOI: 10.1177/03000605211060144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Oxidative stress caused by the pro-inflammatory cytokine interleukin (IL)-1β has been widely investigated for cancer risk. In this study, we focused on the role of IL-1β rs1143634 polymorphism to reveal its impact on cancer development. METHODS Related studies with fixed inclusion criteria were selected from electronic databases to May 2021. This meta-analysis was performed with odds ratios and 95% confidence intervals. Heterogeneity, publication bias and sensitivity analyses were also conducted. Trial sequential analysis (TSA) and in-silico gene expression analysis were performed. RESULTS Forty-four case-control studies involving 18,645 patients with cancer and 22,882 controls were included. We observed a significant association of this single nucleotide polymorphism with overall cancer risk in the codominant model 3 (1.13-fold), recessive model (1.14-fold) and allelic model (1.08-fold). Subgroup analysis revealed that rs1143634 elevated the risk of gastric cancer, breast cancer and multiple myeloma. In addition, Asian and mixed populations and hospital-based controls had a significantly higher risk of cancer development. TSA confirmed our findings. CONCLUSION Our meta-analysis revealed that the presence of IL-1β rs1143634 polymorphism increases the risk of cancer development. Among polymorphism carriers, the Asian population has a higher risk than other ethnic populations.This meta-analysis was registered retrospectively at INPLASY (https://inplasy.com/, INPLASY2021100044).
Collapse
Affiliation(s)
- Sarah Jafrin
- Department of Pharmacy, 378872Noakhali Science and Technology University, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh.,Laboratory of Pharmacogenomics and Molecular Biology, Department of Pharmacy, 378872Noakhali Science and Technology University, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md Abdul Aziz
- Department of Pharmacy, 378872Noakhali Science and Technology University, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh.,Laboratory of Pharmacogenomics and Molecular Biology, Department of Pharmacy, 378872Noakhali Science and Technology University, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Mohammad Safiqul Islam
- Department of Pharmacy, 378872Noakhali Science and Technology University, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh.,Laboratory of Pharmacogenomics and Molecular Biology, Department of Pharmacy, 378872Noakhali Science and Technology University, Noakhali Science and Technology University, Noakhali, Bangladesh
| |
Collapse
|
6
|
Mongiovi JM, Hong CC, Zirpoli GR, Khoury T, Omilian AR, Qin B, Bandera EV, Yao S, Ambrosone CB, Gong Z. Genetic Variants in COX2 and ALOX Genes and Breast Cancer Risk in White and Black Women. Front Oncol 2021; 11:679998. [PMID: 34249719 PMCID: PMC8263909 DOI: 10.3389/fonc.2021.679998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/07/2021] [Indexed: 01/05/2023] Open
Abstract
COX and ALOX genes are involved in inflammatory processes and that may be related to breast cancer risk differentially between White and Black women. We evaluated distributions of genetic variants involved in COX2 and ALOX-related pathways and examined their associations with breast cancer risk among 1,275 White and 1,299 Black cases and controls who participated in the Women's Circle of Health Study. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using multivariable-adjusted logistic regression models. Our results showed differential associations of certain genetic variants with breast cancer according to menopausal and ER status in either White or Black women. In White women, an increased risk of breast cancer was observed for COX2-rs689470 (OR: 2.02, P = 0.01) in the dominant model, and was strongest among postmenopausal women (OR: 2.72, P = 0.02) and for estrogen receptor positive (ER+) breast cancers (OR: 2.60, P = 0.001). A reduced risk was observed for ALOX5-rs7099874 (OR: 0.75, P = 0.01) in the dominant model, and was stronger among postmenopausal women (OR: 0.68, P = 0.03) and for ER+ cancer (OR: 0.66, P = 0.001). Four SNPs (rs3840880, rs1126667, rs434473, rs1042357) in the ALOX12 gene were found in high LD (r2 >0.98) in White women and were similarly associated with reduced risk of breast cancer, with a stronger association among postmenopausal women and for ER- cancer. Among Black women, increased risk was observed for ALOX5-rs1369214 (OR: 1.44, P = 0.003) in the recessive model and was stronger among premenopausal women (OR: 1.57, P = 0.03) and for ER+ cancer (OR: 1.53, P = 0.003). Our study suggests that genetic variants of COX2 and ALOX genes are associated with breast cancer, and that these associations and genotype distributions differ in subgroups defined by menopausal and ER status between White and Black women. Findings may provide insights into the etiology of breast cancer and areas for further research into reasons for breast cancer differences between races.
Collapse
Affiliation(s)
- Jennifer M. Mongiovi
- Department of Cancer Prevention & Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY, United States
| | - Chi-Chen Hong
- Department of Cancer Prevention & Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Gary R. Zirpoli
- Slone Epidemiology Center, Boston University, Boston, NY, United States
| | - Thaer Khoury
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Angela R. Omilian
- Department of Cancer Prevention & Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Bo Qin
- Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Elisa V. Bandera
- Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Song Yao
- Department of Cancer Prevention & Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Christine B. Ambrosone
- Department of Cancer Prevention & Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Zhihong Gong
- Department of Cancer Prevention & Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
7
|
Brito-Marcelino A, Duarte-Tavares RJ, Marcelino KB, Silva-Neto JA. Breast cancer and occupational exposures: an integrative review of the literature. Rev Bras Med Trab 2021; 18:488-496. [PMID: 33688331 PMCID: PMC7934163 DOI: 10.47626/1679-4435-2020-595] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 06/29/2020] [Indexed: 11/20/2022] Open
Abstract
Occupational factors can lead to breast cancer, though the relationship between these variables is not well established. The objective of this study was to search the relevant literature for information on the association between breast cancer and exposure to occupational risk factors. For that purpose, electronic databases were searched using the following keywords: breast cancer and occupational exposures. A total of 40 articles published in the 10-year period from 2009 to 2019 were included in this review. Workers exposed to metals such as cadmium, chemical products, radiation and night work were more susceptible to breast cancer. The findings showed significant evidence to support an association between breast cancer and some chemical products, ionizing radiation and night work. However, most studies have difficulty establishing a causal relationship between these variables, pointing to the need for further investigation of these issues.
Collapse
|
8
|
Zhu Z, Liu JB, Liu X, Qian L. Association of interleukin 10 rs1800896 polymorphism with susceptibility to breast cancer: a meta-analysis. J Int Med Res 2021; 48:300060520904863. [PMID: 32349574 PMCID: PMC7218478 DOI: 10.1177/0300060520904863] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective To evaluate the correlation between interleukin 10 (IL-10) −1082A/G polymorphism (rs1800896) and breast cancers by performing a meta-analysis. Methods The Embase and Medline databases were searched through 1 September 2018 to identify qualified articles. Odds ratios (OR) and corresponding 95% confidence intervals (CIs) were applied to evaluate associations. Results In total, 14 case-control studies, including 5320 cases and 5727 controls, were analyzed. We detected significant associations between the IL10 −1082 G/G genotype and risk of breast cancer (AA + AG vs. GG: OR = 0.88, 95% CI = 0.80–0.97). Subgroup analyses confirmed a significant association in Caucasian populations (OR = 0.89, 95% CI = 0.80–0.99), in population-based case-control studies (OR = 0.87, 95% CI = 0.78–0.96), and in studies with ≥500 subjects (OR = 0.88, 95% CI = 0.79–0.99) under the recessive model (AA + AG vs. GG). No associations were found in Asian populations. Conclusions The IL10 −1082A/G polymorphism is associated with an increased risk of breast cancer. The association between IL10 −1082 G/G genotype and increased risk of breast cancer is more significant in Caucasians, in population-based studies, and in larger studies.
Collapse
Affiliation(s)
- ZiYin Zhu
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ji-Bin Liu
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Xi Liu
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - LinXue Qian
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Nia AM, Khanipov K, Barnette BL, Ullrich RL, Golovko G, Emmett MR. Comparative RNA-Seq transcriptome analyses reveal dynamic time-dependent effects of 56Fe, 16O, and 28Si irradiation on the induction of murine hepatocellular carcinoma. BMC Genomics 2020; 21:453. [PMID: 32611366 PMCID: PMC7329445 DOI: 10.1186/s12864-020-06869-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/24/2020] [Indexed: 01/04/2023] Open
Abstract
Background One of the health risks posed to astronauts during deep space flights is exposure to high charge, high-energy (HZE) ions (Z > 13), which can lead to the induction of hepatocellular carcinoma (HCC). However, little is known on the molecular mechanisms of HZE irradiation-induced HCC. Results We performed comparative RNA-Seq transcriptomic analyses to assess the carcinogenic effects of 600 MeV/n 56Fe (0.2 Gy), 1 GeV/n 16O (0.2 Gy), and 350 MeV/n 28Si (0.2 Gy) ions in a mouse model for irradiation-induced HCC. C3H/HeNCrl mice were subjected to total body irradiation to simulate space environment HZE-irradiation, and liver tissues were extracted at five different time points post-irradiation to investigate the time-dependent carcinogenic response at the transcriptomic level. Our data demonstrated a clear difference in the biological effects of these HZE ions, particularly immunological, such as Acute Phase Response Signaling, B Cell Receptor Signaling, IL-8 Signaling, and ROS Production in Macrophages. Also seen in this study were novel unannotated transcripts that were significantly affected by HZE. To investigate the biological functions of these novel transcripts, we used a machine learning technique known as self-organizing maps (SOMs) to characterize the transcriptome expression profiles of 60 samples (45 HZE-irradiated, 15 non-irradiated control) from liver tissues. A handful of localized modules in the maps emerged as groups of co-regulated and co-expressed transcripts. The functional context of these modules was discovered using overrepresentation analysis. We found that these spots typically contained enriched populations of transcripts related to specific immunological molecular processes (e.g., Acute Phase Response Signaling, B Cell Receptor Signaling, IL-3 Signaling), and RNA Transcription/Expression. Conclusions A large number of transcripts were found differentially expressed post-HZE irradiation. These results provide valuable information for uncovering the differences in molecular mechanisms underlying HZE specific induced HCC carcinogenesis. Additionally, a handful of novel differentially expressed unannotated transcripts were discovered for each HZE ion. Taken together, these findings may provide a better understanding of biological mechanisms underlying risks for HCC after HZE irradiation and may also have important implications for the discovery of potential countermeasures against and identification of biomarkers for HZE-induced HCC.
Collapse
Affiliation(s)
- Anna M Nia
- Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77550, USA
| | - Kamil Khanipov
- Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77550, USA
| | - Brooke L Barnette
- Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77550, USA
| | - Robert L Ullrich
- The Radiation Effects Research Foundation (RERF), Hiroshima, Japan
| | - George Golovko
- Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77550, USA
| | - Mark R Emmett
- Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77550, USA. .,Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77550, USA.
| |
Collapse
|
10
|
Helm JS, Rudel RA. Adverse outcome pathways for ionizing radiation and breast cancer involve direct and indirect DNA damage, oxidative stress, inflammation, genomic instability, and interaction with hormonal regulation of the breast. Arch Toxicol 2020. [PMID: 32399610 DOI: 10.1007/s00204-020-02752-z)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Knowledge about established breast carcinogens can support improved and modernized toxicological testing methods by identifying key mechanistic events. Ionizing radiation (IR) increases the risk of breast cancer, especially for women and for exposure at younger ages, and evidence overall supports a linear dose-response relationship. We used the Adverse Outcome Pathway (AOP) framework to outline and evaluate the evidence linking ionizing radiation with breast cancer from molecular initiating events to the adverse outcome through intermediate key events, creating a qualitative AOP. We identified key events based on review articles, searched PubMed for recent literature on key events and IR, and identified additional papers using references. We manually curated publications and evaluated data quality. Ionizing radiation directly and indirectly causes DNA damage and increases production of reactive oxygen and nitrogen species (RONS). RONS lead to DNA damage and epigenetic changes leading to mutations and genomic instability (GI). Proliferation amplifies the effects of DNA damage and mutations leading to the AO of breast cancer. Separately, RONS and DNA damage also increase inflammation. Inflammation contributes to direct and indirect effects (effects in cells not directly reached by IR) via positive feedback to RONS and DNA damage, and separately increases proliferation and breast cancer through pro-carcinogenic effects on cells and tissue. For example, gene expression changes alter inflammatory mediators, resulting in improved survival and growth of cancer cells and a more hospitable tissue environment. All of these events overlap at multiple points with events characteristic of "background" induction of breast carcinogenesis, including hormone-responsive proliferation, oxidative activity, and DNA damage. These overlaps make the breast particularly susceptible to ionizing radiation and reinforce that these biological activities are important characteristics of carcinogens. Agents that increase these biological processes should be considered potential breast carcinogens, and predictive methods are needed to identify chemicals that increase these processes. Techniques are available to measure RONS, DNA damage and mutation, cell proliferation, and some inflammatory proteins or processes. Improved assays are needed to measure GI and chronic inflammation, as well as the interaction with hormonally driven development and proliferation. Several methods measure diverse epigenetic changes, but it is not clear which changes are relevant to breast cancer. In addition, most toxicological assays are not conducted in mammary tissue, and so it is a priority to evaluate if results from other tissues are generalizable to breast, or to conduct assays in breast tissue. Developing and applying these assays to identify exposures of concern will facilitate efforts to reduce subsequent breast cancer risk.
Collapse
Affiliation(s)
- Jessica S Helm
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA
| | - Ruthann A Rudel
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA.
| |
Collapse
|
11
|
Helm JS, Rudel RA. Adverse outcome pathways for ionizing radiation and breast cancer involve direct and indirect DNA damage, oxidative stress, inflammation, genomic instability, and interaction with hormonal regulation of the breast. Arch Toxicol 2020; 94:1511-1549. [PMID: 32399610 PMCID: PMC7261741 DOI: 10.1007/s00204-020-02752-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022]
Abstract
Knowledge about established breast carcinogens can support improved and modernized toxicological testing methods by identifying key mechanistic events. Ionizing radiation (IR) increases the risk of breast cancer, especially for women and for exposure at younger ages, and evidence overall supports a linear dose-response relationship. We used the Adverse Outcome Pathway (AOP) framework to outline and evaluate the evidence linking ionizing radiation with breast cancer from molecular initiating events to the adverse outcome through intermediate key events, creating a qualitative AOP. We identified key events based on review articles, searched PubMed for recent literature on key events and IR, and identified additional papers using references. We manually curated publications and evaluated data quality. Ionizing radiation directly and indirectly causes DNA damage and increases production of reactive oxygen and nitrogen species (RONS). RONS lead to DNA damage and epigenetic changes leading to mutations and genomic instability (GI). Proliferation amplifies the effects of DNA damage and mutations leading to the AO of breast cancer. Separately, RONS and DNA damage also increase inflammation. Inflammation contributes to direct and indirect effects (effects in cells not directly reached by IR) via positive feedback to RONS and DNA damage, and separately increases proliferation and breast cancer through pro-carcinogenic effects on cells and tissue. For example, gene expression changes alter inflammatory mediators, resulting in improved survival and growth of cancer cells and a more hospitable tissue environment. All of these events overlap at multiple points with events characteristic of "background" induction of breast carcinogenesis, including hormone-responsive proliferation, oxidative activity, and DNA damage. These overlaps make the breast particularly susceptible to ionizing radiation and reinforce that these biological activities are important characteristics of carcinogens. Agents that increase these biological processes should be considered potential breast carcinogens, and predictive methods are needed to identify chemicals that increase these processes. Techniques are available to measure RONS, DNA damage and mutation, cell proliferation, and some inflammatory proteins or processes. Improved assays are needed to measure GI and chronic inflammation, as well as the interaction with hormonally driven development and proliferation. Several methods measure diverse epigenetic changes, but it is not clear which changes are relevant to breast cancer. In addition, most toxicological assays are not conducted in mammary tissue, and so it is a priority to evaluate if results from other tissues are generalizable to breast, or to conduct assays in breast tissue. Developing and applying these assays to identify exposures of concern will facilitate efforts to reduce subsequent breast cancer risk.
Collapse
Affiliation(s)
- Jessica S Helm
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA
| | - Ruthann A Rudel
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA.
| |
Collapse
|
12
|
Azzam EI. What does radiation biology tell us about potential health effects at low dose and low dose rates? JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2019; 39:S28-S39. [PMID: 31216522 DOI: 10.1088/1361-6498/ab2b09] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The health risks to humans exposed to low dose and low dose rate ionising radiation remain ambiguous and are the subject of debate. The need to establish risk assessment standards based on the mechanisms underlying low dose/low fluence radiation exposures has been recognised by scholarly and regulatory bodies as critical for reducing the uncertainty in predicting adverse health risks of human exposure to low doses of radiation. Here, a brief review of laboratory-based evidence of molecular and biochemical changes induced by low doses and low dose rates of radiation is presented. In particular, two phenomena, namely bystander effects and adaptive responses that may impact low-level radiation health risks, are discussed together with the need for further studies. The expansion of this knowledge by considering the important variables that affect the radiation response (e.g. genetic susceptibility, time after exposure), and using the latest advances in experimental models and bioinformatics tools, may guide epidemiological studies towards reducing the uncertainty in predicting the potential health hazards of exposure to low-dose radiation.
Collapse
Affiliation(s)
- Edouard I Azzam
- Departments of Radiology, RUTGERS New Jersey Medical School, Newark, NJ 07103, United States of America
| |
Collapse
|
13
|
Opstal-van Winden AWJ, de Haan HG, Hauptmann M, Schmidt MK, Broeks A, Russell NS, Janus CPM, Krol ADG, van der Baan FH, De Bruin ML, van Eggermond AM, Dennis J, Anton-Culver H, Haiman CA, Sawyer EJ, Cox A, Devilee P, Hooning MJ, Peto J, Couch FJ, Pharoah P, Orr N, Easton DF, Aleman BMP, Strong LC, Bhatia S, Cooke R, Robison LL, Swerdlow AJ, van Leeuwen FE. Genetic susceptibility to radiation-induced breast cancer after Hodgkin lymphoma. Blood 2019; 133:1130-1139. [PMID: 30573632 PMCID: PMC6405334 DOI: 10.1182/blood-2018-07-862607] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/12/2018] [Indexed: 12/11/2022] Open
Abstract
Female Hodgkin lymphoma (HL) patients treated with chest radiotherapy (RT) have a very high risk of breast cancer. The contribution of genetic factors to this risk is unclear. We therefore examined 211 155 germline single-nucleotide polymorphisms (SNPs) for gene-radiation interaction on breast cancer risk in a case-only analysis including 327 breast cancer patients after chest RT for HL and 4671 first primary breast cancer patients. Nine SNPs showed statistically significant interaction with RT on breast cancer risk (false discovery rate, <20%), of which 1 SNP in the PVT1 oncogene attained the Bonferroni threshold for statistical significance. A polygenic risk score (PRS) composed of these SNPs (RT-interaction-PRS) and a previously published breast cancer PRS (BC-PRS) derived in the general population were evaluated in a case-control analysis comprising the 327 chest-irradiated HL patients with breast cancer and 491 chest-irradiated HL patients without breast cancer. Patients in the highest tertile of the RT-interaction-PRS had a 1.6-fold higher breast cancer risk than those in the lowest tertile. Remarkably, we observed a fourfold increased RT-induced breast cancer risk in the highest compared with the lowest decile of the BC-PRS. On a continuous scale, breast cancer risk increased 1.4-fold per standard deviation of the BC-PRS, similar to the effect size found in the general population. This study demonstrates that genetic factors influence breast cancer risk after chest RT for HL. Given the high absolute breast cancer risk in radiation-exposed women, these results can have important implications for the management of current HL survivors and future patients.
Collapse
Affiliation(s)
| | | | | | - Marjanka K Schmidt
- Department of Epidemiology and Biostatistics
- Division of Molecular Pathology
| | - Annegien Broeks
- Division of Molecular Pathology, Core Facility Molecular Pathology and Biobanking, and
| | - Nicola S Russell
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Cécile P M Janus
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Augustinus D G Krol
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Marie L De Bruin
- Department of Epidemiology and Biostatistics
- Copenhagen Centre for Regulatory Science (CORS), University of Copenhagen, Copenhagen, Denmark
| | | | - Joe Dennis
- Center for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Hoda Anton-Culver
- Department of Epidemiology, University of California Irvine, Irvine, CA
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Elinor J Sawyer
- Innovation Hub, Guy's Cancer Centre, King's College London, London, United Kingdom
| | - Angela Cox
- Sheffield Cancer Research, Department of Oncology, University of Sheffield, Sheffield, United Kingdom
| | - Peter Devilee
- Department of Pathology and
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Maartje J Hooning
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Paul Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, and
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Nick Orr
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Douglas F Easton
- Center for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Centre for Cancer Genetic Epidemiology, Department of Oncology, and
| | - Berthe M P Aleman
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Smita Bhatia
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL
| | - Rosie Cooke
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Leslie L Robison
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN; and
| | - Anthony J Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
- Division of Breast Cancer Research, The Institute of Cancer Research, London, United Kingdom
| | | |
Collapse
|
14
|
Karabulutoglu M, Finnon R, Imaoka T, Friedl AA, Badie C. Influence of diet and metabolism on hematopoietic stem cells and leukemia development following ionizing radiation exposure. Int J Radiat Biol 2018; 95:452-479. [PMID: 29932783 DOI: 10.1080/09553002.2018.1490042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE The review aims to discuss the prominence of dietary and metabolic regulators in maintaining hematopoietic stem cell (HSC) function, long-term self-renewal, and differentiation. RESULTS Most adult stem cells are preserved in a quiescent, nonmotile state in vivo which acts as a "protective state" for stem cells to reduce endogenous stress provoked by DNA replication and cellular respiration as well as exogenous environmental stress. The dynamic balance between quiescence, self-renewal and differentiation is critical for supporting a functional blood system throughout life of an organism. Stress-conditions, for example ionizing radiation exposure can trigger the blood forming HSCs to proliferate and migrate through extramedullary tissues to expand the number of HSCs and increase hematopoiesis. In addition, a wealth of investigation validated that deregulation of this balance plays a critical pathogenic role in various different hematopoietic diseases including the leukemia development. CONCLUSION The review summarizes the current knowledge on how alterations in dietary and metabolic factors could alter the risk of leukemia development following ionizing radiation exposure by inhibiting or even reversing the leukemic progression. Understanding the influence of diet, metabolism, and epigenetics on radiation-induced leukemogenesis may lead to the development of practical interventions to reduce the risk in exposed populations.
Collapse
Affiliation(s)
- Melis Karabulutoglu
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK.,b CRUK & MRC Oxford Institute for Radiation Oncology, Department of Oncology , University of Oxford , Oxford , UK
| | - Rosemary Finnon
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK
| | - Tatsuhiko Imaoka
- c Department of Radiation Effects Research, National Institute of Radiological Sciences , National Institutes for Quantum and Radiological Science and Technology , Chiba , Japan
| | - Anna A Friedl
- d Department of Radiation Oncology , University Hospital, LMU Munich , Munich , Germany
| | - Christophe Badie
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK
| |
Collapse
|
15
|
Genetic polymorphisms of IL-6 promoter in cancer susceptibility and prognosis: a meta-analysis. Oncotarget 2018; 9:12351-12364. [PMID: 29552316 PMCID: PMC5844752 DOI: 10.18632/oncotarget.24033] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 11/17/2017] [Indexed: 12/20/2022] Open
Abstract
IL-6 is critical for tumorigenesis. However, previous studies on the association of IL-6 promoter polymorphisms with predisposition to different cancer types are somewhat contradictory. Therefore, we performed this meta-analysis regarding the relationship between IL-6 promoter single nucleotide polymorphisms and cancer susceptibility and prognosis. Up to April 2017, 97 original publications were identified covering three IL-6 promoter SNPs. Our results showed statistically significant association between IL-6 promoter and cancer risk and prognosis. Subgroup analysis indicated that rs1800795 was significantly associated with increased risk of cervical cancer, colorectal cancer, breast cancer, prostate cancer, lung cancer, glioma, non-Hodgkin’s lymphoma and Hodgkin’s lymphoma but not gastric cancer and multiple myeloma. Furthermore, rs1800796 was significantly associated with increased risk of lung cancer, prostate cancer and colorectal cancer but not gastric cancer. Additionally, rs1800797 was significantly association with breast cancer, non-Hodgkin’s lymphoma, B-cell lymphoma and diffuse large B-cell lymphoma but not gastric cancer. Simultaneously, rs1800795 and rs1800796 were associated with a significantly higher risk of cancer in Asia and Caucasian, rs1800797 was associated with a significantly risk of cancer in Caucasian but not in Asia. Furthermore, IL-6 promoter polymorphisms were significantly associated with the prognosis of cancer. Considering these promising results, IL-6 promoter including rs1800795, rs1800796 and rs1800797 may be a tumor marker for cancer therapy.
Collapse
|
16
|
Jia Y, Xie X, Shi X, Li S. Associations of common IL-4 gene polymorphisms with cancer risk: A meta-analysis. Mol Med Rep 2017; 16:1927-1945. [PMID: 28656227 PMCID: PMC5561993 DOI: 10.3892/mmr.2017.6822] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 04/07/2017] [Indexed: 02/05/2023] Open
Abstract
Cancer incidence is dramatically increasing worldwide, therefore improved prediction and therapeutic methods are needed. Single nucleotide polymorphisms in cytokine genes may contribute to carcinogenesis. Interleukin (IL)-4 gene polymorphisms have been intensively studied with regard to their associations with cancer. However, the results of these previous studies remain inconclusive. The present study, therefore, aimed to conduct a meta-analysis of previously published studies in order to clarify the association of IL-4 with cancer risk. Eligible published articles were searched in Medline, PubMed, Embase and China National Knowledge Infrastructure databases up to March 2016. Odds ratios and 95% confidence intervals were used to identify potential associations between IL-4 genetic polymorphisms and the risk of cancer. A meta-analysis was then performed on 10,873 patients and 14,328 controls for IL-4 rs2243250 polymorphism, 3,970 patients and 5,686 controls for IL-4 rs2070874 polymorphism, and 1,896 patients and 2,526 controls for IL-4 rs79071878 polymorphism. A significant association with cancer risk was observed for rs2243250 and rs79071878 polymorphisms. In the subgroup analysis by cancer type, rs2243250 polymorphism was demonstrated to be associated with an increased risk of gastric cancer and breast cancer, rs2070874 polymorphism was correlated with leukemia and oral carcinoma, and rs79071878 polymorphism was relevant to bladder carcinoma risk. In the subgroup analysis by ethnicity, IL-4 rs2243250 polymorphism was demonstrated to be associated with cancer risk in both Caucasian and Asian populations, rs2070874 was associated with cancer risk in Asian populations, while rs79071878 polymorphism was associated with cancer risk in Caucasian populations. In conclusion, the present results suggested that the IL-4 rs2243250 and rs79071878 polymorphisms were associated with cancer susceptibility. Further subgroup analyses revealed that the effects of IL-4 gene polymorphisms on cancer risk may vary by cancer type and by ethnicity.
Collapse
Affiliation(s)
- Yingxian Jia
- Division of Reproductive Medical Center, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaochuan Xie
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaohan Shi
- Division of Reproductive Medical Center, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shangwei Li
- Division of Reproductive Medical Center, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
17
|
Yan J, Liu Y, Zhao Q, Li J, Mao A, Li H, Di C, Zhang H. 56Fe irradiation-induced cognitive deficits through oxidative stress in mice. Toxicol Res (Camb) 2016; 5:1672-1679. [PMID: 30090466 DOI: 10.1039/c6tx00282j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/12/2016] [Indexed: 12/23/2022] Open
Abstract
The rapid growth of manned space flight results in more concerns about health risks and an urgent need for health assessment for space travel. The cosmic environment is complicated and full of radiation. Because of their strong biological effects, heavy ions such as 56Fe ions are considered to be an important component of these lethal galactic rays. Due to the importance of brain function to astronauts, we explored the long-term effects and potential mechanisms of 56Fe ion radiation on mice brains containing the hippocampus. In our study, radiation doses were carried out with 0.5 Gy, 1 Gy or 2 Gy. One month after whole-body 56Fe ion exposure, the Morris water maze test was performed to assess the ability of spatial learning and memory. A histological study was used for pathology analysis of the hippocampus. Alteration of oxidative stress was reflected by MDA and GSH and oxidative DNA damage marked by 8-OHdG was detected by biochemical and immunofluorescence methods. In our results, irradiated groups exhibited significant changes in behavioral performance and also showed loose and edematous arrangement in the pathological characteristics. Furthermore, whole brain levels of MDA, GSH and 8-OHdG increased in the irradiated groups. In addition, increased expression of 8-OHdG can also be detected by immunofluorescence in the hippocampus. Our findings revealed a linkage between radiation-induced oxidative stress and behavioral deficits. This may suggest an underlying mechanism of brain tissue protection and risk assessment in manned space flight.
Collapse
Affiliation(s)
- Jiawei Yan
- Institute of Modern Physics , Chinese Academy of Sciences , Lanzhou 730000 , PR China . ; ; Tel: +86(931)496-9344.,Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences , Lanzhou 730000 , PR China.,Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province , Lanzhou 730000 , PR China.,University of Chinese Academy of Sciences , Beijing 100039 , PR China
| | - Yang Liu
- Institute of Modern Physics , Chinese Academy of Sciences , Lanzhou 730000 , PR China . ; ; Tel: +86(931)496-9344.,Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences , Lanzhou 730000 , PR China.,Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province , Lanzhou 730000 , PR China
| | - Qiuyue Zhao
- Institute of Modern Physics , Chinese Academy of Sciences , Lanzhou 730000 , PR China . ; ; Tel: +86(931)496-9344.,Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences , Lanzhou 730000 , PR China.,Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province , Lanzhou 730000 , PR China.,University of Chinese Academy of Sciences , Beijing 100039 , PR China
| | - Jie Li
- School of Stomatology , Lanzhou University , Lanzhou 730000 , PR China
| | - Aihong Mao
- Institute of Modern Physics , Chinese Academy of Sciences , Lanzhou 730000 , PR China . ; ; Tel: +86(931)496-9344.,Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences , Lanzhou 730000 , PR China.,Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province , Lanzhou 730000 , PR China.,University of Chinese Academy of Sciences , Beijing 100039 , PR China.,Institute of Gansu Medical Science Research , Lanzhou 730050 , PR China
| | - Hongyan Li
- Institute of Modern Physics , Chinese Academy of Sciences , Lanzhou 730000 , PR China . ; ; Tel: +86(931)496-9344.,Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences , Lanzhou 730000 , PR China.,Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province , Lanzhou 730000 , PR China
| | - Cuixia Di
- Institute of Modern Physics , Chinese Academy of Sciences , Lanzhou 730000 , PR China . ; ; Tel: +86(931)496-9344.,Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences , Lanzhou 730000 , PR China.,Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province , Lanzhou 730000 , PR China
| | - Hong Zhang
- Institute of Modern Physics , Chinese Academy of Sciences , Lanzhou 730000 , PR China . ; ; Tel: +86(931)496-9344.,Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences , Lanzhou 730000 , PR China.,Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province , Lanzhou 730000 , PR China
| |
Collapse
|
18
|
Kim JH, Lee MR, Hong YC. Modification of the association of bisphenol A with abnormal liver function by polymorphisms of oxidative stress-related genes. ENVIRONMENTAL RESEARCH 2016; 147:324-30. [PMID: 26922413 DOI: 10.1016/j.envres.2016.02.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/26/2016] [Accepted: 02/18/2016] [Indexed: 05/22/2023]
Abstract
Some studies suggested oxidative stress as a possible mechanism for the relation between exposure to bisphenol A (BPA) and liver damage. Therefore, we evaluated modification of genetic polymorphisms of cyclooxygenase 2 (COX2 or PTGS2), epoxide hydrolase 1 (EPHX1), catalase (CAT), and superoxide dismutase 2 (SOD2 or MnSOD), which are oxidative stress-related genes, on the relation between exposure to BPA and liver function in the elderly. We assessed the association of visit-to-visit variations in BPA exposure with abnormal liver function by each genotype or haplotype after controlling for age, sex, BMI, alcohol consumption, exercise, urinary cotinine levels, and low density lipoprotein cholesterol using a GLIMMIX model. A significant association of BPA with abnormal liver function was observed only in participants with COX2 GG genotype at rs5277 (odds ratio (OR)=3.04 and p=0.0231), CAT genotype at rs769218 (OR=4.16 and p=0.0356), CAT CT genotype at rs769217 (OR=4.19 and p=0.0348), SOD2 TT genotype at rs4880 (OR=2.59 and p=0.0438), or SOD2 GG genotype at rs2758331 (OR=2.57 and p=0.0457). Moreover, we also found higher OR values in participants with a pair of G-G haplotypes for COX2 (OR=2.81 and p=0.0384), G-C-A haplotype for EPHX1 (OR=4.63 and p=0.0654), A-T haplotype for CAT (OR=4.48 and p=0.0245), or T-G-A haplotype for SOD2 (OR=2.91 and p=0.0491) compared with those with the other pair of haplotypes for each gene. Furthermore, the risk score composed of 4 risky pair of haplotypes showed interactive effect with BPA on abnormal liver function (p=0.0057). Our study results suggest that genetic polymorphisms of COX2, EPHX1, CAT, and SOD2 modify the association of BPA with liver function.
Collapse
Affiliation(s)
- Jin Hee Kim
- Department of Environmental Health, Graduate School of Public Health, Seoul National University, Seoul 151-742, Republic of Korea; Department of Bioscience and Bioengineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Mee-Ri Lee
- (c)Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Yun-Chul Hong
- (c)Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; (d)Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul 110-799, Republic of Korea.
| |
Collapse
|
19
|
Agúndez JA, Jiménez-Jimenez FJ, Alonso-Navarro H, García-Martín E. The potential of LINGO-1 as a therapeutic target for essential tremor. Expert Opin Ther Targets 2015; 19:1139-48. [PMID: 25862159 DOI: 10.1517/14728222.2015.1028360] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION LINGO-1 is a negative regulator of neuronal survival, oligodendrocyte differentiation and axonal outgrowth and regeneration, because it interacts with diverse growth factor receptors blocking or inhibiting their action. Consistent findings obtained in vitro and in animal models suggest that anti-LINGO-1 therapy may be useful in neurodegenerative disorders such as multiple sclerosis (MS), Parkinson's disease or essential tremor (ET). Moreover, genetic and pathological evidence provide a robust link between LINGO-1 and ET. AREAS COVERED In this review, we present an overview of current knowledge on findings linking LINGO-1 and ET, with a special focus on genetic linkage, we include an overview of LINGO1 gene variations according to the 1000 genomes catalog, and we identify potential gene areas where common changes occur because, as well as the risk developing ET, LINGO1 genetic changes may influence the response to anti-LINGO-1 therapy. EXPERT OPINION The goal of anti-LINGO-1 therapy in neurodegenerative diseases is to ease the brakes of neuronal growth and recovery. An anti-LINGO-1 antibody is under clinical trials for MS patients. Before planning trials with ET patients, refinement on the genetic link between LINGO1 and ET, and a detailed genetic and phenotypic assessment of ET patients to be enrolled, should be carried out.
Collapse
Affiliation(s)
- José Ag Agúndez
- University of Extremadura, Department of Pharmacology , Avda. de la Universidad s/n, E-10071, Cáceres , Spain +34927257000 Ext 86897 ; +34924289676 ;
| | | | | | | |
Collapse
|
20
|
Agúndez JAG, Blanca M, Cornejo-García JA, García-Martín E. Pharmacogenomics of cyclooxygenases. Pharmacogenomics 2015; 16:501-22. [DOI: 10.2217/pgs.15.6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cyclooxygenases (COX-1 and COX-2) are key enzymes in several physiopathological processes. Many adverse drugs reactions to NSAIDs are attributable to COX-inhibition. The genes coding for these enzymes (PTGS1 and PTGS2) are highly variable, and variations in these genes may underlie the risk of developing, or the clinical evolution of, several diseases and adverse drug reactions. We analyze major variations in the PTGS1 and PTGS2 genes, allele frequencies, functional consequences and population genetics. The most salient clinical associations of PTGS gene variations are related to colorectal cancer and stroke. In many studies, the SNPs interact with NSAIDs use, dietary or environmental factors. We provide an up-to-date catalog of PTGS clinical associations based on case–control studies and genome-wide association studies, and future research suggestions.
Collapse
Affiliation(s)
- José AG Agúndez
- Department of Pharmacology, University of Extremadura, Cáceres, Spain
- Red de Investigación de Reacciones Adversas a Alergenos y Fármacos, Spain
| | - Miguel Blanca
- Red de Investigación de Reacciones Adversas a Alergenos y Fármacos, Spain
- Allergy Service, Carlos Haya Hospital, Málaga, Spain
| | - José A Cornejo-García
- Red de Investigación de Reacciones Adversas a Alergenos y Fármacos, Spain
- Allergy Service, Carlos Haya Hospital, Málaga, Spain
| | - Elena García-Martín
- Red de Investigación de Reacciones Adversas a Alergenos y Fármacos, Spain
- Department of Biochemistry & Molecular Biology, University of Extremadura, Cáceres, Spain
| |
Collapse
|
21
|
Hung MC, Hwang JJ. Cancer risk from medical radiation procedures for coronary artery disease: a nationwide population-based cohort study. Asian Pac J Cancer Prev 2015; 14:2783-7. [PMID: 23803032 DOI: 10.7314/apjcp.2013.14.5.2783] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
To assess the risk of cancer incidence after medical radiation exposure for coronary artery disease (CAD), a retrospective cohort study was conducted based on Taiwan's National Health Insurance Research Database (NHIRD). Patients with CAD were identified according to the International Classification of Diseases code, 9th Revision, Clinical Modification (ICD-9-CM), and their records of medical radiation procedures were collected from 1997 to 2010. A total of 18,697 subjects with radiation exposure from cardiac imaging or therapeutic procedures for CAD were enrolled, and 19,109 subjects receiving cardiac diagnostic procedures without radiation were adopted as the control group. The distributions of age and gender were similar between the two populations. Cancer risks were evaluated by age-adjusted incidence rate ratio (aIRR) and association with cumulative exposure were further evaluated with relative risks by Poisson regression analysis. A total of 954 and 885 subjects with various types of cancers in both cohorts after following up for over 10 years were found, with incidences of 409.8 and 388.0 per 100,000 person-years, respectively. The risk of breast cancer (aIRR=1.85, 95% confidence interval: 1.14-3.00) was significantly elevated in the exposed female subjects, but no significant cancer risk was found in the exposed males. In addition, cancer risks of the breast and lung were increased with the exposure level. The study suggests that radiation exposure from cardiac imaging or therapeutic procedures for CAD may be associated with the increased risk of breast and lung cancers in CAD patients.
Collapse
Affiliation(s)
- Mao-Chin Hung
- Department of Medical Imaging and Radiological Sciences, Tzu Chi College of Technology, Hualien, Taiwan.
| | | |
Collapse
|
22
|
Lack of association between COX-2 8473T>C polymorphism and breast cancer risk: a meta-analysis. Contemp Oncol (Pozn) 2014; 18:177-81. [PMID: 25520577 PMCID: PMC4269000 DOI: 10.5114/wo.2014.41394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/15/2013] [Accepted: 08/05/2013] [Indexed: 12/21/2022] Open
Abstract
Aim of the study Results of recent published studies on the association between the COX-2 8473T>C polymorphism and the risk of breast cancer have often been conflicting. To make a more precise estimation of the potential relationship, a meta-analysis was performed. Material and methods A total of seven case-control studies with 7,033 cases and 9,350 controls were included in the current meta-analysis through searching the databases of PubMed, Embase, and Cochrane Library (up to March 1st, 2013). The odds ratio (OR) and 95% confidence interval (95% CI) were calculated to assess the strength of the association. The meta-analysis was conducted in a fixed/random effect model. Results We found no significant associations for all genetic models after all studies were pooled into the meta-analysis (for C vs. T: OR = 0.974, 95% CI: 0.906–1.047, p = 0.471; for CC vs. TT: OR = 0.957, 95% CI: 0.803–1.140, p = 0.62; for TC vs. TT: OR = 0.964, 95% CI: 0.881–1.055, p = 0.421; for CC + TC vs. TT: OR = 0.963, 95% CI: 0.880–1.053, p = 0.406; for CC vs. TT + TC: OR = 0.978, 95% CI: 0.831–1.15, p = 0.788). We also observed no obvious associations in the subgroup analyses by ethnicity (Caucasian) and source of controls (population based, PB) for all genetic models. Conclusions Current evidence suggests that the COX-2 8473T>C polymorphism is not associated with breast cancer risk.
Collapse
|
23
|
Sapkota Y. Germline DNA variations in breast cancer predisposition and prognosis: a systematic review of the literature. Cytogenet Genome Res 2014; 144:77-91. [PMID: 25401968 DOI: 10.1159/000369045] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2014] [Indexed: 11/19/2022] Open
Abstract
Breast cancer is the most common cancer and the second leading cause of death in women worldwide. The disease is caused by a combination of genetic, environmental, lifestyle, and reproductive risk factors. Linkage and family-based studies have identified many pathological germline mutations, which account for around 20% of the genetic risk of familial breast cancer. In recent years, single nucleotide polymorphism-based genetic association studies, especially genome-wide association studies (GWASs), have been very successful in uncovering low-penetrance common variants associated with breast cancer risk. These common variants alone may explain up to an additional 30% of the familial risk of breast cancer. With the advent of available genetic resources and growing collaborations among researchers across the globe, the much needed large sample size to capture variants with small effect sizes and low population frequencies is being addressed, and hence many more common variants are expected to be discovered in the coming days. Here, major GWASs conducted for breast cancer predisposition and prognosis until 2013 are summarized. Few studies investigating other forms of genetic variations contributing to breast cancer predisposition and disease outcomes are also discussed. Finally, the potential utility of the GWAS-identified variants in disease risk models and some future perspectives are presented.
Collapse
Affiliation(s)
- Yadav Sapkota
- The Neurogenetics Laboratory, Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Qld., Australia
| |
Collapse
|
24
|
Li M, Gonon G, Buonanno M, Autsavapromporn N, de Toledo SM, Pain D, Azzam EI. Health risks of space exploration: targeted and nontargeted oxidative injury by high-charge and high-energy particles. Antioxid Redox Signal 2014; 20:1501-23. [PMID: 24111926 PMCID: PMC3936510 DOI: 10.1089/ars.2013.5649] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE During deep space travel, astronauts are often exposed to high atomic number (Z) and high-energy (E) (high charge and high energy [HZE]) particles. On interaction with cells, these particles cause severe oxidative injury and result in unique biological responses. When cell populations are exposed to low fluences of HZE particles, a significant fraction of the cells are not traversed by a primary radiation track, and yet, oxidative stress induced in the targeted cells may spread to nearby bystander cells. The long-term effects are more complex because the oxidative effects persist in progeny of the targeted and affected bystander cells, which promote genomic instability and may increase the risk of age-related cancer and degenerative diseases. RECENT ADVANCES Greater understanding of the spatial and temporal features of reactive oxygen species bursts along the tracks of HZE particles, and the availability of facilities that can simulate exposure to space radiations have supported the characterization of oxidative stress from targeted and nontargeted effects. CRITICAL ISSUES The significance of secondary radiations generated from the interaction of the primary HZE particles with biological material and the mitigating effects of antioxidants on various cellular injuries are central to understanding nontargeted effects and alleviating tissue injury. FUTURE DIRECTIONS Elucidation of the mechanisms underlying the cellular responses to HZE particles, particularly under reduced gravity and situations of exposure to additional radiations, such as protons, should be useful in reducing the uncertainty associated with current models for predicting long-term health risks of space radiation. These studies are also relevant to hadron therapy of cancer.
Collapse
Affiliation(s)
- Min Li
- 1 Department of Radiology, Cancer Center, Rutgers University-New Jersey Medical School , Newark, New Jersey
| | | | | | | | | | | | | |
Collapse
|
25
|
Markkula A, Simonsson M, Rosendahl AH, Gaber A, Ingvar C, Rose C, Jernström H. Impact of COX2 genotype, ER status and body constitution on risk of early events in different treatment groups of breast cancer patients. Int J Cancer 2014; 135:1898-910. [PMID: 24599585 PMCID: PMC4225481 DOI: 10.1002/ijc.28831] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 02/20/2014] [Indexed: 12/15/2022]
Abstract
The COX2 rs5277 (306G>C) polymorphism has been associated with inflammation-associated cancers. In breast cancer, tumor COX-2 expression has been associated with increased estrogen levels in estrogen receptor (ER)-positive and activated Akt-pathway in ER-negative tumors. Our study investigated the impact of COX2 genotypes on early breast cancer events and treatment response in relation to tumor ER status and body constitution. In Sweden, between 2002 and 2008, 634 primary breast cancer patients, aged 25–99 years, were included. Disease-free survival was assessed for 570 rs5277-genotyped patients. Body measurements and questionnaires were obtained preoperatively. Clinical data, patient- and tumor-characteristics were obtained from questionnaires, patients' charts, population registries and pathology reports. Minor allele(C) frequency was 16.1%. Genotype was not linked to COX-2 tumor expression. Median follow-up was 5.1 years. G/G genotype was not associated with early events in patients with ER-positive tumors, adjusted HR 0.77 (0.46–1.29), but conferred an over 4-fold increased risk in patients with ER-negative tumors, adjusted HR 4.41 (1.21–16.02)(pinteraction = 0.015). Chemotherapy-treated G/G-carriers with a breast volume ≥850 ml had an increased risk of early events irrespective of ER status, adjusted HR 8.99 (1.14–70.89). Endocrine-treated C-allele carriers with ER-positive tumors and a breast volume ≥850 ml had increased risk of early events, adjusted HR 2.30 (1.12–4.75). COX2 genotype, body constitution and ER status had a combined effect on the risk of early events and treatment response. The high risk for early events in certain subgroups of patients suggests that COX2 genotype in combination with body measurements may identify patients in need of more personalized treatment.
Collapse
Affiliation(s)
- Andrea Markkula
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
26
|
Travis LB, Ng AK, Allan JM, Pui CH, Kennedy AR, Xu XG, Purdy JA, Applegate K, Yahalom J, Constine LS, Gilbert ES, Boice JD. Second malignant neoplasms and cardiovascular disease following radiotherapy. HEALTH PHYSICS 2014; 106:229-246. [PMID: 24378498 DOI: 10.1097/hp.0000000000000013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Second malignant neoplasms (SMNs) and cardiovascular disease (CVD) are among the most serious and life-threatening late adverse effects experienced by the growing number of cancer survivors worldwide and are due in part to radiotherapy. The National Council on Radiation Protection and Measurements (NCRP) convened an expert scientific committee to critically and comprehensively review associations between radiotherapy and SMNs and CVD, taking into account radiobiology; genomics; treatment (i.e., radiotherapy with or without chemotherapy and other therapies); type of radiation; and quantitative considerations (i.e., dose-response relationships). Major conclusions of the NCRP include: (1) the relevance of older technologies for current risk assessment when organ-specific absorbed dose and the appropriate relative biological effectiveness are taken into account and (2) the identification of critical research needs with regard to newer radiation modalities, dose-response relationships, and genetic susceptibility. Recommendation for research priorities and infrastructural requirements include (1) long-term large-scale follow-up of extant cancer survivors and prospectively treated patients to characterize risks of SMNs and CVD in terms of radiation dose and type; (2) biological sample collection to integrate epidemiological studies with molecular and genetic evaluations; (3) investigation of interactions between radiotherapy and other potential confounding factors, such as age, sex, race, tobacco and alcohol use, dietary intake, energy balance, and other cofactors, as well as genetic susceptibility; (4) focusing on adolescent and young adult cancer survivors, given the sparse research in this population; and (5) construction of comprehensive risk prediction models for SMNs and CVD to permit the development of follow-up guidelines and prevention and intervention strategies.
Collapse
Affiliation(s)
- Lois B Travis
- *Rubin Center for Cancer Survivorship and Department of Radiation Oncology, James P. Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY; †Department of Radiation Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and the Dana-Farber Cancer Institute, Boston, MA; ‡Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK; §Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN; and the University of Tennessee Health Science Center, Memphis, TN; **Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA; ††Nuclear Engineering and Engineering Physics Program, Rensselaer Polytechnic Institute, Troy, NY; ‡‡Department of Radiation Oncology, University of California at Davis, Davis, CA; §§Department of Radiology, Emory University, Atlanta, GA; ***Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY; †††Division ofCancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD; ‡‡‡National Council on Radiation Protection and Measurements, Bethesda, MD, and the Department of Medicine, Vanderbilt University, Nashville, TN
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
The -590C/T polymorphism in the IL-4 gene and the risk of cancer: a meta-analysis. Tumour Biol 2013; 34:2261-8. [PMID: 23576103 DOI: 10.1007/s13277-013-0767-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 03/22/2013] [Indexed: 12/17/2022] Open
Abstract
Interleukin-4 (IL-4) plays an important role in the pathogenesis of cancer. The -590C/T polymorphism in the IL-4 gene has been implicated in susceptibility to cancer, but the results have been inconclusive. The aim of this study was to analyze the association between this polymorphism with the risk of cancer by meta-analysis. PubMed, Embase, CNKI, and Wanfang databases were searched for all publications concerning the association between this polymorphism and cancer risk. Statistical analyses were analyzed by using RevMan 4.2 and STATA10.0 softwares. A total of 8,715 cases and 9,532 controls in 23 case-control studies were included. The results suggested that there was no significant association between IL-4 -590C/T polymorphism and cancer risks (TT + TC vs. CC: OR = 0.97, 95 % CI = 0.90-1.04, P = 0.36). In the subgroup analysis by ethnicity, no significant association was detected in Asians and Caucasians. In the subgroup analysis by cancer types, no significant association was found in gastric cancer and colorectal cancer. The current meta-analysis suggested that the -590C/T polymorphism in the IL-4 gene might not be associated with increased/decreased risk of cancer. The -590C/T polymorphism might be not a risk factor for cancers.
Collapse
|
28
|
Epigenetic deregulation of the COX pathway in cancer. Prog Lipid Res 2012; 51:301-13. [PMID: 22580191 DOI: 10.1016/j.plipres.2012.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/08/2012] [Accepted: 02/08/2012] [Indexed: 01/12/2023]
Abstract
Inflammation is a major cause of cancer and may condition its progression. The deregulation of the cyclooxygenase (COX) pathway is implicated in several pathophysiological processes, including inflammation and cancer. Although, its targeting with nonsteroidal antiinflammatory drugs (NSAIDs) and COX-2 selective inhibitors has been investigated for years with promising results at both preventive and therapeutic levels, undesirable side effects and the limited understanding of the regulation and functionalities of the COX pathway compromise a more extensive application of these drugs. Epigenetics is bringing additional levels of complexity to the understanding of basic biological and pathological processes. The deregulation of signaling and biosynthetic pathways by epigenetic mechanisms may account for new molecular targets in cancer therapeutics. Genes of the COX pathway are seldom mutated in neoplastic cells, but a large proportion of them show aberrant expression in different types of cancer. A growing body of evidence indicates that epigenetic alterations play a critical role in the deregulation of the genes of the COX pathway. This review summarizes the current knowledge on the contribution of epigenetic processes to the deregulation of the COX pathway in cancer, getting insights into how these alterations may be relevant for the clinical management of patients.
Collapse
|
29
|
Travis LB, Ng AK, Allan JM, Pui CH, Kennedy AR, Xu XG, Purdy JA, Applegate K, Yahalom J, Constine LS, Gilbert ES, Boice JD. Second malignant neoplasms and cardiovascular disease following radiotherapy. J Natl Cancer Inst 2012; 104:357-70. [PMID: 22312134 PMCID: PMC3295744 DOI: 10.1093/jnci/djr533] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 11/21/2011] [Accepted: 11/30/2011] [Indexed: 12/29/2022] Open
Abstract
Second malignant neoplasms (SMNs) and cardiovascular disease (CVD) are among the most serious and life-threatening late adverse effects experienced by the growing number of cancer survivors worldwide and are due in part to radiotherapy. The National Council on Radiation Protection and Measurements (NCRP) convened an expert scientific committee to critically and comprehensively review associations between radiotherapy and SMNs and CVD, taking into account radiobiology; genomics; treatment (ie, radiotherapy with or without chemotherapy and other therapies); type of radiation; and quantitative considerations (ie, dose-response relationships). Major conclusions of the NCRP include: 1) the relevance of older technologies for current risk assessment when organ-specific absorbed dose and the appropriate relative biological effectiveness are taken into account and 2) the identification of critical research needs with regard to newer radiation modalities, dose-response relationships, and genetic susceptibility. Recommendation for research priorities and infrastructural requirements include 1) long-term large-scale follow-up of extant cancer survivors and prospectively treated patients to characterize risks of SMNs and CVD in terms of radiation dose and type; 2) biological sample collection to integrate epidemiological studies with molecular and genetic evaluations; 3) investigation of interactions between radiotherapy and other potential confounding factors, such as age, sex, race, tobacco and alcohol use, dietary intake, energy balance, and other cofactors, as well as genetic susceptibility; 4) focusing on adolescent and young adult cancer survivors, given the sparse research in this population; and 5) construction of comprehensive risk prediction models for SMNs and CVD to permit the development of follow-up guidelines and prevention and intervention strategies.
Collapse
MESH Headings
- Adult
- Age of Onset
- Arrhythmias, Cardiac/epidemiology
- Arrhythmias, Cardiac/etiology
- Cardiovascular Diseases/epidemiology
- Cardiovascular Diseases/etiology
- Cardiovascular Diseases/genetics
- Cardiovascular Diseases/prevention & control
- Child
- Confounding Factors, Epidemiologic
- Dose-Response Relationship, Radiation
- Female
- Genetic Predisposition to Disease
- Heart Block/epidemiology
- Heart Block/etiology
- Humans
- Incidence
- Male
- Myocardial Infarction/epidemiology
- Myocardial Infarction/etiology
- Neoplasms/radiotherapy
- Neoplasms, Radiation-Induced/epidemiology
- Neoplasms, Radiation-Induced/etiology
- Neoplasms, Radiation-Induced/genetics
- Neoplasms, Radiation-Induced/prevention & control
- Neoplasms, Second Primary/epidemiology
- Neoplasms, Second Primary/etiology
- Neoplasms, Second Primary/genetics
- Neoplasms, Second Primary/prevention & control
- Polymorphism, Genetic
- Radiotherapy/adverse effects
- Radiotherapy/methods
- Radiotherapy Dosage
- Radiotherapy, Adjuvant/adverse effects
- Radiotherapy, Conformal/adverse effects
- Radiotherapy, Conformal/methods
- Radiotherapy, Intensity-Modulated
- Risk Assessment
- Risk Factors
- SEER Program
- Stroke/epidemiology
- Stroke/etiology
- Survivors/statistics & numerical data
- United States/epidemiology
Collapse
Affiliation(s)
- Lois B Travis
- Rubin Center for Cancer Survivorship and Department of Radiation Oncology, James P. Wilmot Cancer Center, University of Rochester Medical Center, 265 Crittenden Blvd, CU 420318, Rochester, NY 14642, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett 2011; 327:48-60. [PMID: 22182453 DOI: 10.1016/j.canlet.2011.12.012] [Citation(s) in RCA: 981] [Impact Index Per Article: 70.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/07/2011] [Accepted: 12/07/2011] [Indexed: 12/18/2022]
Abstract
Cellular exposure to ionizing radiation leads to oxidizing events that alter atomic structure through direct interactions of radiation with target macromolecules or via products of water radiolysis. Further, the oxidative damage may spread from the targeted to neighboring, non-targeted bystander cells through redox-modulated intercellular communication mechanisms. To cope with the induced stress and the changes in the redox environment, organisms elicit transient responses at the molecular, cellular and tissue levels to counteract toxic effects of radiation. Metabolic pathways are induced during and shortly after the exposure. Depending on radiation dose, dose-rate and quality, these protective mechanisms may or may not be sufficient to cope with the stress. When the harmful effects exceed those of homeostatic biochemical processes, induced biological changes persist and may be propagated to progeny cells. Physiological levels of reactive oxygen and nitrogen species play critical roles in many cellular functions. In irradiated cells, levels of these reactive species may be increased due to perturbations in oxidative metabolism and chronic inflammatory responses, thereby contributing to the long-term effects of exposure to ionizing radiation on genomic stability. Here, in addition to immediate biological effects of water radiolysis on DNA damage, we also discuss the role of mitochondria in the delayed outcomes of ionization radiation. Defects in mitochondrial functions lead to accelerated aging and numerous pathological conditions. Different types of radiation vary in their linear energy transfer (LET) properties, and we discuss their effects on various aspects of mitochondrial physiology. These include short and long-term in vitro and in vivo effects on mitochondrial DNA, mitochondrial protein import and metabolic and antioxidant enzymes.
Collapse
|
31
|
Ziech D, Franco R, Pappa A, Panayiotidis MI. Reactive oxygen species (ROS)--induced genetic and epigenetic alterations in human carcinogenesis. Mutat Res 2011; 711:167-73. [PMID: 21419141 DOI: 10.1016/j.mrfmmm.2011.02.015] [Citation(s) in RCA: 389] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 02/26/2011] [Accepted: 02/28/2011] [Indexed: 12/12/2022]
Abstract
Cancer is a multistage and complex process characterized by molecular alterations that underlie all three phases of its development: (i) initiation, (ii) promotion and (iii) progression. Some of these molecular events include alterations in gene expression that are regulated by both genetic and epigenetic mechanisms. On the other hand, "oxidative stress" implies a cellular state where ROS production exceeds the cell's ability to metabolize them resulting in excessive accumulation of ROS that overwhelms cellular defenses. Such state has been shown to regulate both genetic and epigenetic cascades underlying altered gene expression in human disease including cancer. Throughout this manuscript, we review the current state of knowledge on the role of ROS-induced oxidative stress in altering the genetic and epigenetic involvement during human carcinogenesis.
Collapse
Affiliation(s)
- Dominique Ziech
- Department of Student Success Services, University of Nevada, Reno, NV 89557, USA
| | | | | | | |
Collapse
|