1
|
Feng X, Zhang Y, Vaselkiv JB, Li R, Nguyen PL, Penney KL, Giovannucci EL, Mucci LA, Stopsack KH. Modifiable risk factors for subsequent lethal prostate cancer among men with an initially negative prostate biopsy. Br J Cancer 2023; 129:1988-2002. [PMID: 37898724 PMCID: PMC10703766 DOI: 10.1038/s41416-023-02472-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND Previously suggested modifiable risk factors for prostate cancer could have resulted from detection bias because diagnosis requires a biopsy. We investigated modifiable risk factors for a subsequent cancer diagnosis among men with an initially negative prostate biopsy. METHODS In total, 10,396 participants of the Health Professionals Follow-up Study with an initial negative prostate biopsy after 1994 were followed for incident prostate cancer until 2017. Potential risk factors were based on previous studies in the general population. Outcomes included localised, advanced, and lethal prostate cancer. RESULTS With 1851 prostate cancer cases (168 lethal) diagnosed over 23 years of follow-up, the 20-year risk of any prostate cancer diagnosis was 18.5% (95% CI: 17.7-19.3). Higher BMI and lower alcohol intake tended to be associated with lower rates of localised disease. Coffee, lycopene intake and statin use tended to be associated with lower rates of lethal prostate cancer. Results for other risk factors were less precise but compatible with and of similar direction as for men in the overall cohort. CONCLUSIONS Risk factors for future prostate cancer among men with a negative biopsy were generally consistent with those for the general population, supporting their validity given reduced detection bias, and could be actionable, if confirmed.
Collapse
Affiliation(s)
- Xiaoshuang Feng
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Genomic Epidemiology Branch, International Agency for Research on Cancer, Lyon, France
| | - Yiwen Zhang
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - J Bailey Vaselkiv
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Ruifeng Li
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Paul L Nguyen
- Department of Radiation Oncology, Brigham and Women's Hospital/Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Kathryn L Penney
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Konrad H Stopsack
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Kayalı Y, Balbay MD, İlktaç A, Ersöz C, Toprak H, Tarım K, Eden AB, Akçay M, Doğan B. PSA change after antibiotic treatment should not affect decisionmaking on performing a prostate biopsy. Turk J Med Sci 2023; 53:183-192. [PMID: 36945961 PMCID: PMC10388076 DOI: 10.55730/1300-0144.5571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/23/2022] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND To investigate the effect of antibiotic treatment on PSA when deciding on prostate biopsy. METHODS A total of 206 patients with an elevated PSA level (2.5-30) were included. Mp-MRI could be done on 129 patients. Patients were given ciprofloxacin (500 mg, b.i.d. p.o.) for 4 weeks and PSA measurements were repeated. Systematic prostate biopsy was performed regardless of PSA changes on all patients. Additionally, cognitive biopsies were performed from PI-RADs III, IV, and V lesions. RESULTS : Prostate cancer was detected in 36.4% of patients. 53.3% had Gleason score of 3+3, 46.7% had Gleason score ≥ 3+4. PSA values decreased in 56.3% and in 43.7% and remained the same or increased but cancer detection rates were not different: 34.5% vs. 38.9%, respectively (p = 0.514). PSA change in whole group was significant (6.38 ng/mL vs. 5.95 ng/mL, respectively (p = 0.01). No significant PSA decrease was observed in cancer patients (7.1 ng/mL vs. 7.05 ng/mL, p = 0.09), whereas PSA decrease was significant in patients with benign pathology (6.1 ng/mL vs. 5.5 ng/mL, p = 0.01). In patients with PI-RADs IV-V lesions, adenocarcinoma was present in 33.9% and 30.4% with or without PSA decrease, respectively (p = 0.209). Clinically significant cancer was higher in patients with after antibiotherapy PSA values >4 ng/mL regardless of PI-RADs grouping (p = 0.08). Addition of any PSA value to PI-RADs grouping did not have any significant effect on the detection of cancer. DISCUSSION PSA change after antibiotic treatment has no effect in detecting cancer and should not delay performing a biopsy.
Collapse
Affiliation(s)
- Yunus Kayalı
- Department of Urology, Sakarya Yenikent State Hospital, Sakarya, Turkey
| | | | - Abdullah İlktaç
- Department of Urology, Faculty of Medicine, Bezmialem Vakıf University, İstanbul, Turkey
| | - Cevper Ersöz
- Department of Urology, Faculty of Medicine, Bezmialem Vakıf University, İstanbul, Turkey
| | - Hüseyin Toprak
- Department of Radiology, Faculty of Medicine, Bezmialem Vakıf University, İstanbul, Turkey
| | - Kayhan Tarım
- Department of Urology, Faculty of Medicine, Koç University, İstanbul, Turkey
| | - Arzu Baygül Eden
- Department of Biostatistics, Faculty of Medicine, Koç University, İstanbul, Turkey
| | - Muzaffer Akçay
- Department of Urology, Faculty of Medicine, Bezmialem Vakıf University, İstanbul, Turkey
| | - Bayram Doğan
- Department of Urology, Faculty of Medicine, Bezmialem Vakıf University, İstanbul, Turkey
| |
Collapse
|
3
|
Gu D, Tang M, Wang Y, Cui H, Zhang M, Bai Y, Zeng Z, Tan Y, Wang X, Zhang B. The Causal Relationships Between Extrinsic Exposures and Risk of Prostate Cancer: A Phenome-Wide Mendelian Randomization Study. Front Oncol 2022; 12:829248. [PMID: 35237523 PMCID: PMC8882837 DOI: 10.3389/fonc.2022.829248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/19/2022] [Indexed: 11/25/2022] Open
Abstract
Background Prostate cancer is the second most common cancer in males worldwide, and multitudes of factors have been reported to be associated with prostate cancer risk. Objectives We aim to conduct the phenome-wide exposed-omics analysis of the risk factors for prostate cancer and verify the causal associations between them. Methods We comprehensively searched published systematic reviews and meta-analyses of cohort studies and conducted another systematic review and meta-analysis of the Mendelian randomization studies investigating the associations between extrinsic exposures and prostate cancer, thus to find all of the potential risk factors for prostate cancer. Then, we launched a phenome-wide two-sample Mendelian randomization analysis to validate the potentially causal relationships using the PRACTICAL consortium and UK Biobank. Results We found a total of 55 extrinsic exposures for prostate cancer risk. The causal effect of 30 potential extrinsic exposures on prostate cancer were assessed, and the results showed docosahexaenoic acid (DHA) [odds ratio (OR)=0.806, 95% confidence interval (CI): 0.661-0.984, p=0.034], insulin-like growth factor binding protein 3 (IGFBP-3) (OR=1.0002, 95%CI: 1.00004-1.0004, p=0.016), systemic lupus erythematosus (SLE) (OR=0.9993, 95%CI: 0.9986-0.99997, p=0.039), and body mass index (BMI) (OR=0.995, 95%CI: 0.990-0.9999, p=0.046) were associated with prostate cancer risk. However, no association was found between the other 26 factors and prostate cancer risk. Conclusions Our study discovered the phenome-wide exposed-omics risk factors profile of prostate cancer, and verified that the IGFBP-3, DHA, BMI, and SLE were causally related to prostate cancer risk. The results may provide new insight into the study of the pathogenesis of prostate cancer.
Collapse
Affiliation(s)
- Dongqing Gu
- Department of Epidemiology and Biostatistics, First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Mingshuang Tang
- Department of Epidemiology and Biostatistics, First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Yutong Wang
- Department of Epidemiology and Biostatistics, First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Huijie Cui
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Min Zhang
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Ye Bai
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Ziqian Zeng
- Department of Epidemiology and Biostatistics, First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Yunhua Tan
- Department of Epidemiology and Biostatistics, First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Xin Wang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ben Zhang
- Department of Epidemiology and Biostatistics, First Affiliated Hospital, Army Medical University, Chongqing, China
- *Correspondence: Ben Zhang,
| |
Collapse
|
4
|
Outcomes of prostate cancer screening among men using antidiabetic medication. Sci Rep 2021; 11:7363. [PMID: 33795720 PMCID: PMC8016840 DOI: 10.1038/s41598-021-86534-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 03/07/2021] [Indexed: 11/09/2022] Open
Abstract
Diabetic men have decreased risk for prostate cancer (PCa) overall and lower PSA compared to non-diabetics. This may affect the outcomes of PSA-based screening. We investigated the effect of PSA-based screening at 4-year intervals on PCa incidence and mortality separately among users and non-users of antidiabetic medication with the hypothesis that screening would detect less low-grade cancer and more high-grade cancer in diabetic men. A cohort of 80,458 men from the Finnish Randomized Study of Screening for Prostate Cancer (FinRSPC) were linked to national prescription database to obtain information on antidiabetic medication purchases. PCa risk and mortality were compared between the FinRSPC screening arm (SA) and the control arm (CA) separately among users and non-users of antidiabetic medication. Among antidiabetic medication users median PSA was lower than in non-users (0.93 and 1.09 ng/ml, respectively, P for difference = 0.001). Screening increased overall PCa incidence compared to CA after the first screen both among medication users and non-users (HR 1.31, 95% CI 1.08–1.60 and HR 1.55, 95% CI 1.44–1.66, respectively). On the second and third screen the difference between SA and CA attenuated only among medication users. Detection of Gleason 6 tumors was lower among medication users, whereas no difference was observed in detection of Gleason 8–10 cancers. Concordantly, screening affected PCa mortality similarly regardless of antidiabetic medication use (HR 0.38, 95% CI 0.14–1.07 and HR 0.19, 95% CI 0.11–0.33 among users and non-users after three screens, respectively. P for difference = 0.18). Median PSA is lower in men using antidiabetic drugs than among non-users. Systematic PSA screening detects less low-risk tumors among medication users, whereas detection of high-risk tumors and mortality effects are similar regardless of medication use. This suggests that antidiabetic medication users may form a suitable target group for PCa screening, with less screening-related overdiagnosis of indolent tumors.
Collapse
|
5
|
Grammatikopoulou MG, Gkiouras K, Papageorgiou SΤ, Myrogiannis I, Mykoniatis I, Papamitsou T, Bogdanos DP, Goulis DG. Dietary Factors and Supplements Influencing Prostate Specific-Antigen (PSA) Concentrations in Men with Prostate Cancer and Increased Cancer Risk: An Evidence Analysis Review Based on Randomized Controlled Trials. Nutrients 2020; 12:nu12102985. [PMID: 33003518 PMCID: PMC7600271 DOI: 10.3390/nu12102985] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/19/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
The quest for dietary patterns and supplements efficient in down-regulating prostate-specific antigen (PSA) concentrations among men with prostate cancer (PCa) or increased PCa risk has been long. Several antioxidants, including lycopene, selenium, curcumin, coenzyme Q10, phytoestrogens (including isoflavones and flavonoids), green tea catechins, cernitin, vitamins (C, E, D) and multivitamins, medicinal mushrooms (Ganoderma lucidum), fruit extracts (saw palmetto, cranberries, pomegranate), walnuts and fatty acids, as well as combined supplementations of all, have been examined in randomized controlled trials (RCTs) in humans, on the primary, secondary, and tertiary PCa prevention level. Despite the plethora of trials and the variety of examined interventions, the evidence supporting the efficacy of most dietary factors appears inadequate to recommend their use.
Collapse
Affiliation(s)
- Maria G. Grammatikopoulou
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, GR-41334 Larissa, Greece; (M.G.G.); (D.P.B.)
| | - Konstantinos Gkiouras
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, GR-41334 Larissa, Greece; (M.G.G.); (D.P.B.)
- Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, GR-54124 Thessaloniki, Greece; (S.Τ.P.); (I.M.)
- Correspondence: (K.G.); (D.G.G.)
| | - Stefanos Τ. Papageorgiou
- Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, GR-54124 Thessaloniki, Greece; (S.Τ.P.); (I.M.)
| | - Ioannis Myrogiannis
- Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, GR-54124 Thessaloniki, Greece; (S.Τ.P.); (I.M.)
| | - Ioannis Mykoniatis
- Institute for the Study of Urological Diseases (ISUD), 33 Nikis Avenue, GR-54622 Thessaloniki, Greece;
- 1st Department of Urology and Center for Sexual and Reproductive Health, G. Gennimatas—Aghios Demetrius General Hospital, 41 Ethnikis Amynis Street, Aristotle University of Thessaloniki, GR-54635 Thessaloniki, Greece
| | - Theodora Papamitsou
- Laboratory of Histology and Embryology, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
| | - Dimitrios P. Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, GR-41334 Larissa, Greece; (M.G.G.); (D.P.B.)
- Division of Transplantation, Immunology and Mucosal Biology, MRC Centre for Transplantation, King’s College London Medical School, London SE5 9RS, UK
| | - Dimitrios G. Goulis
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-56429 Thessaloniki, Greece
- Correspondence: (K.G.); (D.G.G.)
| |
Collapse
|
6
|
Hamdy FC, Donovan JL, Lane JA, Mason M, Metcalfe C, Holding P, Wade J, Noble S, Garfield K, Young G, Davis M, Peters TJ, Turner EL, Martin RM, Oxley J, Robinson M, Staffurth J, Walsh E, Blazeby J, Bryant R, Bollina P, Catto J, Doble A, Doherty A, Gillatt D, Gnanapragasam V, Hughes O, Kockelbergh R, Kynaston H, Paul A, Paez E, Powell P, Prescott S, Rosario D, Rowe E, Neal D. Active monitoring, radical prostatectomy and radical radiotherapy in PSA-detected clinically localised prostate cancer: the ProtecT three-arm RCT. Health Technol Assess 2020; 24:1-176. [PMID: 32773013 PMCID: PMC7443739 DOI: 10.3310/hta24370] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Prostate cancer is the most common cancer among men in the UK. Prostate-specific antigen testing followed by biopsy leads to overdetection, overtreatment as well as undertreatment of the disease. Evidence of treatment effectiveness has lacked because of the paucity of randomised controlled trials comparing conventional treatments. OBJECTIVES To evaluate the effectiveness of conventional treatments for localised prostate cancer (active monitoring, radical prostatectomy and radical radiotherapy) in men aged 50-69 years. DESIGN A prospective, multicentre prostate-specific antigen testing programme followed by a randomised trial of treatment, with a comprehensive cohort follow-up. SETTING Prostate-specific antigen testing in primary care and treatment in nine urology departments in the UK. PARTICIPANTS Between 2001 and 2009, 228,966 men aged 50-69 years received an invitation to attend an appointment for information about the Prostate testing for cancer and Treatment (ProtecT) study and a prostate-specific antigen test; 82,429 men were tested, 2664 were diagnosed with localised prostate cancer, 1643 agreed to randomisation to active monitoring (n = 545), radical prostatectomy (n = 553) or radical radiotherapy (n = 545) and 997 chose a treatment. INTERVENTIONS The interventions were active monitoring, radical prostatectomy and radical radiotherapy. TRIAL PRIMARY OUTCOME MEASURE Definite or probable disease-specific mortality at the 10-year median follow-up in randomised participants. SECONDARY OUTCOME MEASURES Overall mortality, metastases, disease progression, treatment complications, resource utilisation and patient-reported outcomes. RESULTS There were no statistically significant differences between the groups for 17 prostate cancer-specific (p = 0.48) and 169 all-cause (p = 0.87) deaths. Eight men died of prostate cancer in the active monitoring group (1.5 per 1000 person-years, 95% confidence interval 0.7 to 3.0); five died of prostate cancer in the radical prostatectomy group (0.9 per 1000 person-years, 95% confidence interval 0.4 to 2.2 per 1000 person years) and four died of prostate cancer in the radical radiotherapy group (0.7 per 1000 person-years, 95% confidence interval 0.3 to 2.0 per 1000 person years). More men developed metastases in the active monitoring group than in the radical prostatectomy and radical radiotherapy groups: active monitoring, n = 33 (6.3 per 1000 person-years, 95% confidence interval 4.5 to 8.8); radical prostatectomy, n = 13 (2.4 per 1000 person-years, 95% confidence interval 1.4 to 4.2 per 1000 person years); and radical radiotherapy, n = 16 (3.0 per 1000 person-years, 95% confidence interval 1.9 to 4.9 per 1000 person-years; p = 0.004). There were higher rates of disease progression in the active monitoring group than in the radical prostatectomy and radical radiotherapy groups: active monitoring (n = 112; 22.9 per 1000 person-years, 95% confidence interval 19.0 to 27.5 per 1000 person years); radical prostatectomy (n = 46; 8.9 per 1000 person-years, 95% confidence interval 6.7 to 11.9 per 1000 person-years); and radical radiotherapy (n = 46; 9.0 per 1000 person-years, 95% confidence interval 6.7 to 12.0 per 1000 person years; p < 0.001). Radical prostatectomy had the greatest impact on sexual function/urinary continence and remained worse than radical radiotherapy and active monitoring. Radical radiotherapy's impact on sexual function was greatest at 6 months, but recovered somewhat in the majority of participants. Sexual and urinary function gradually declined in the active monitoring group. Bowel function was worse with radical radiotherapy at 6 months, but it recovered with the exception of bloody stools. Urinary voiding and nocturia worsened in the radical radiotherapy group at 6 months but recovered. Condition-specific quality-of-life effects mirrored functional changes. No differences in anxiety/depression or generic or cancer-related quality of life were found. At the National Institute for Health and Care Excellence threshold of £20,000 per quality-adjusted life-year, the probabilities that each arm was the most cost-effective option were 58% (radical radiotherapy), 32% (active monitoring) and 10% (radical prostatectomy). LIMITATIONS A single prostate-specific antigen test and transrectal ultrasound biopsies were used. There were very few non-white men in the trial. The majority of men had low- and intermediate-risk disease. Longer follow-up is needed. CONCLUSIONS At a median follow-up point of 10 years, prostate cancer-specific mortality was low, irrespective of the assigned treatment. Radical prostatectomy and radical radiotherapy reduced disease progression and metastases, but with side effects. Further work is needed to follow up participants at a median of 15 years. TRIAL REGISTRATION Current Controlled Trials ISRCTN20141297. FUNDING This project was funded by the National Institute for Health Research Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 24, No. 37. See the National Institute for Health Research Journals Library website for further project information.
Collapse
Affiliation(s)
- Freddie C Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | | | - J Athene Lane
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Malcolm Mason
- School of Medicine, University of Cardiff, Cardiff, UK
| | - Chris Metcalfe
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Peter Holding
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Julia Wade
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Sian Noble
- Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Grace Young
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Michael Davis
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Tim J Peters
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Emma L Turner
- Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Jon Oxley
- Department of Cellular Pathology, North Bristol NHS Trust, Bristol, UK
| | - Mary Robinson
- Department of Cellular Pathology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - John Staffurth
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Eleanor Walsh
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Jane Blazeby
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Richard Bryant
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Prasad Bollina
- Department of Urology and Surgery, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - James Catto
- Academic Urology Unit, University of Sheffield, Sheffield, UK
| | - Andrew Doble
- Department of Urology, Addenbrooke's Hospital, Cambridge, UK
| | - Alan Doherty
- Department of Urology, Queen Elizabeth Hospital, Birmingham, UK
| | - David Gillatt
- Department of Urology, Southmead Hospital and Bristol Urological Institute, Bristol, UK
| | | | - Owen Hughes
- Department of Urology, Cardiff and Vale University Health Board, Cardiff, UK
| | - Roger Kockelbergh
- Department of Urology, University Hospitals of Leicester, Leicester, UK
| | - Howard Kynaston
- Department of Urology, Cardiff and Vale University Health Board, Cardiff, UK
| | - Alan Paul
- Department of Urology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Edgar Paez
- Department of Urology, Freeman Hospital, Newcastle upon Tyne, UK
| | - Philip Powell
- Department of Urology, Freeman Hospital, Newcastle upon Tyne, UK
| | - Stephen Prescott
- Department of Urology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Derek Rosario
- Academic Urology Unit, University of Sheffield, Sheffield, UK
| | - Edward Rowe
- Department of Urology, Southmead Hospital and Bristol Urological Institute, Bristol, UK
| | - David Neal
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Academic Urology Group, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
Bernal-Soriano MC, Lumbreras B, Hernández-Aguado I, Pastor-Valero M, López-Garrigos M, Parker LA. Untangling the association between prostate-specific antigen and diabetes: a systematic review and meta-analysis. Clin Chem Lab Med 2020; 59:11-26. [PMID: 32681769 DOI: 10.1515/cclm-2020-0145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/23/2020] [Indexed: 12/13/2022]
Abstract
Objectives Several studies have shown an inverse association between diabetes mellitus and prostate cancer (PCa). Some researchers suggest that this relationship is due to reduced PCa detection in diabetics due to lower prostate-specific antigen (PSA) levels compared to non-diabetics. Our objective is to analyze the impact of diabetes on PSA in asymptomatic men without known prostate pathology and without prior prostate intervention. Methods We searched Medline (via PubMed), Embase and Scopus. We included studies that reported the relationship between serum PSA levels and diabetes or diabetes treatment in asymptomatic adult men without known prostate pathology, and without prior prostate intervention. Pooled mean differences were compared between diabetics and non-diabetics. Results Of 2,392 screened abstracts, thirteen studies met the inclusion criteria and 8 (62%) reported appropriate measures that could be included in a meta-analysis. Eleven (85%) examined the influence of diabetes on PSA levels and 8 (62%) evaluated the influence of diabetes treatments on PSA levels. Overall diabetics had a significantly lower PSA level compared to non-diabetics (mean difference: -0.07 ng/mL; 95% CI -0.10, -0.04). Conclusions Diabetes and related factors (such as disease duration, severity and treatment) were significantly associated with lower PSA levels among asymptomatic men, yet differences were small and are unlikely to influence PCa detection in a screening setting.
Collapse
Affiliation(s)
- Mari Carmen Bernal-Soriano
- Department of Public Health, University Miguel Hernández, Crta. Nacional, N-332, s/n, Sant Joan, Alicante, Spain.,CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Blanca Lumbreras
- Department of Public Health, University Miguel Hernández, Crta. Nacional, N-332, s/n, Sant Joan, Alicante, Spain.,CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Ildefonso Hernández-Aguado
- Department of Public Health, University Miguel Hernández, Crta. Nacional, N-332, s/n, Sant Joan, Alicante, Spain.,CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - María Pastor-Valero
- Department of Public Health, University Miguel Hernández, Crta. Nacional, N-332, s/n, Sant Joan, Alicante, Spain.,CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Maite López-Garrigos
- Clinical Laboratory Department, University Hospital of San Juan de Alicante, Alicante, Spain
| | - Lucy A Parker
- Department of Public Health, University Miguel Hernández, Crta. Nacional, N-332, s/n, Sant Joan, Alicante, Spain.,CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
8
|
Mormile R. Obesity at Diagnosis and Prostate Cancer Prognosis: A Challenge to Turn the Fate for the Better? Nutr Cancer 2020; 73:1079-1080. [PMID: 32614263 DOI: 10.1080/01635581.2020.1789680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Raffaella Mormile
- Division of Pediatrics and Neonatology, Moscati Hospital, Aversa, Italy
| |
Collapse
|
9
|
Richardson TG, Sanderson E, Elsworth B, Tilling K, Davey Smith G. Use of genetic variation to separate the effects of early and later life adiposity on disease risk: mendelian randomisation study. BMJ 2020; 369:m1203. [PMID: 32376654 PMCID: PMC7201936 DOI: 10.1136/bmj.m1203] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To evaluate whether body size in early life has an independent effect on risk of disease in later life or whether its influence is mediated by body size in adulthood. DESIGN Two sample univariable and multivariable mendelian randomisation. SETTING The UK Biobank prospective cohort study and four large scale genome-wide association studies (GWAS) consortiums. PARTICIPANTS 453 169 participants enrolled in UK Biobank and a combined total of more than 700 000 people from different GWAS consortiums. EXPOSURES Measured body mass index during adulthood (mean age 56.5) and self-reported perceived body size at age 10. MAIN OUTCOME MEASURES Coronary artery disease, type 2 diabetes, breast cancer, and prostate cancer. RESULTS Having a larger genetically predicted body size in early life was associated with an increased odds of coronary artery disease (odds ratio 1.49 for each change in body size category unless stated otherwise, 95% confidence interval 1.33 to 1.68) and type 2 diabetes (2.32, 1.76 to 3.05) based on univariable mendelian randomisation analyses. However, little evidence was found of a direct effect (ie, not through adult body size) based on multivariable mendelian randomisation estimates (coronary artery disease: 1.02, 0.86 to 1.22; type 2 diabetes:1.16, 0.74 to 1.82). In the multivariable mendelian randomisation analysis of breast cancer risk, strong evidence was found of a protective direct effect for larger body size in early life (0.59, 0.50 to 0.71), with less evidence of a direct effect of adult body size on this outcome (1.08, 0.93 to 1.27). Including age at menarche as an additional exposure provided weak evidence of a total causal effect (univariable mendelian randomisation odds ratio 0.98, 95% confidence interval 0.91 to 1.06) but strong evidence of a direct causal effect, independent of early life and adult body size (multivariable mendelian randomisation odds ratio 0.90, 0.85 to 0.95). No strong evidence was found of a causal effect of either early or later life measures on prostate cancer (early life body size odds ratio 1.06, 95% confidence interval 0.81 to 1.40; adult body size 0.87, 0.70 to 1.08). CONCLUSIONS The findings suggest that the positive association between body size in childhood and risk of coronary artery disease and type 2 diabetes in adulthood can be attributed to individuals remaining large into later life. However, having a smaller body size during childhood might increase the risk of breast cancer regardless of body size in adulthood, with timing of puberty also putatively playing a role.
Collapse
Affiliation(s)
- Tom G Richardson
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Eleanor Sanderson
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Benjamin Elsworth
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Kate Tilling
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - George Davey Smith
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| |
Collapse
|
10
|
Harrison S, Tilling K, Turner EL, Martin RM, Lennon R, Lane JA, Donovan JL, Hamdy FC, Neal DE, Bosch JLHR, Jones HE. Systematic review and meta-analysis of the associations between body mass index, prostate cancer, advanced prostate cancer, and prostate-specific antigen. Cancer Causes Control 2020; 31:431-449. [PMID: 32162172 PMCID: PMC7105428 DOI: 10.1007/s10552-020-01291-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 02/27/2020] [Indexed: 01/15/2023]
Abstract
PURPOSE The relationship between body mass index (BMI) and prostate cancer remains unclear. However, there is an inverse association between BMI and prostate-specific antigen (PSA), used for prostate cancer screening. We conducted this review to estimate the associations between BMI and (1) prostate cancer, (2) advanced prostate cancer, and (3) PSA. METHODS We searched PubMed and Embase for studies until 02 October 2017 and obtained individual participant data from four studies. In total, 78 studies were identified for the association between BMI and prostate cancer, 21 for BMI and advanced prostate cancer, and 35 for BMI and PSA. We performed random-effects meta-analysis of linear associations of log-PSA and prostate cancer with BMI and, to examine potential non-linearity, of associations between categories of BMI and each outcome. RESULTS In the meta-analyses with continuous BMI, a 5 kg/m2 increase in BMI was associated with a percentage change in PSA of - 5.88% (95% CI - 6.87 to - 4.87). Using BMI categories, compared to normal weight men the PSA levels of overweight men were 3.43% lower (95% CI - 5.57 to - 1.23), and obese men were 12.9% lower (95% CI - 15.2 to - 10.7). Prostate cancer and advanced prostate cancer analyses showed little or no evidence associations. CONCLUSION There is little or no evidence of an association between BMI and risk of prostate cancer or advanced prostate cancer, and strong evidence of an inverse and non-linear association between BMI and PSA. The association between BMI and prostate cancer is likely biased if missed diagnoses are not considered.
Collapse
Affiliation(s)
- Sean Harrison
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, England.
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, England.
| | - Kate Tilling
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, England
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, England
| | - Emma L Turner
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, England
| | - Richard M Martin
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, England
- National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, England
| | - Rosie Lennon
- Department of Environment and Geography, University of York, York, England
| | - J Athene Lane
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, England
- National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, England
| | - Jenny L Donovan
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, England
- National Institute for Health Research Collaboration for Leadership in Applied Health Research and Care West, University Hospitals Bristol NHS Trust, Bristol, England
| | - Freddie C Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, England
| | - David E Neal
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, England
- Department of Oncology, Addenbrooke's Hospital, University of Cambridge, Cambridge, England
| | - J L H Ruud Bosch
- Department of Urology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Hayley E Jones
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, England
| |
Collapse
|
11
|
Zhao Y, Zhang Y, Wang X, Lin D, Chen Z. Relationship between body mass index and concentrations of prostate specific antigen: a cross-sectional study. Scandinavian Journal of Clinical and Laboratory Investigation 2019; 80:162-167. [PMID: 31855065 DOI: 10.1080/00365513.2019.1703217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The possible relationship between body mass index (BMI) and prostate-specific antigen (PSA) concentrations is controversial. The objective of this study was to assess the relationship between BMI and PSA concentrations in Chinese men. A total of 81,122 men who had undergone annual medical examinations at the First Affiliated Hospital of Army Medical University between 1 January 2011 and 31 December 2018 were included. Univariate and multivariate linear regression models were used to assess the relationship between BMI and PSA concentrations. The nonlinear relationship was analyzed using a generalized additive model with a spline smoothing function. Subsequently, a stratified linear regression model was used for subgroup analysis. The mean age and BMI of the participants were 45.91 ± 12.21 years and 24.79 ± 3.11 kg/m2, respectively. After adjustment for age, waist circumference-hip circumference ratio, systolic blood pressure, diastolic blood pressure, fasting blood glucose, total cholesterol, triglyceride, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, alanine aminotransferase and aspartate aminotransferase, BMI was negatively related to PSA level (p < .001). A nonlinear relationship was detected, and different relationships between BMI and PSA concentrations were observed on each side of the inflection point (BMI = 23.11 kg/m2). Our study revealed an inverse, nonlinear relationship between BMI and PSA concentrations. Thus, this relationship may be a concern when establishing reference intervals or decision limits for PSA concentrations.
Collapse
Affiliation(s)
- Ying Zhao
- Health Management Centre, The First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yuting Zhang
- Health Management Centre, The First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xin Wang
- Epidemiology Centre, The First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Dandan Lin
- Health Management Centre, The First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Zongtao Chen
- Health Management Centre, The First Affiliated Hospital of Army Medical University, Chongqing, China
| |
Collapse
|
12
|
Aref AT, Vincent AD, O'Callaghan ME, Martin SA, Sutherland PD, Hoy AJ, Butler LM, Wittert GA. The inverse relationship between prostate specific antigen (PSA) and obesity. Endocr Relat Cancer 2018; 25:933-941. [PMID: 29941675 DOI: 10.1530/erc-17-0438] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 06/25/2018] [Indexed: 12/17/2022]
Abstract
Obese men have lower serum prostate-specific antigen (PSA) than comparably aged lean men, but the underlying mechanism remains unclear. The aim of this study was to determine the effect of obesity on PSA and the potential contributing mechanisms. A cohort of 1195 men aged 35 years and over at recruitment, with demographic, anthropometric (BMI, waist circumference (WC)) and serum hormone (serum testosterone, estradiol (E2)) PSA and hematology assessments obtained over two waves was assessed. Men with a history of prostate cancer or missing PSA were excluded, leaving 970 men for the final analysis. Mixed-effects regressions and mediation analyses adjusting for hormonal and volumetric factors explore the potential mechanisms relating obesity to PSA. After adjusting for age, PSA levels were lower in men with greater WC (P = 0.001). In a multivariable model including WC, age, E2/testosterone and PlasV as predictors, no statistically significant associations were observed between with PSA and either WC (P = 0.36) or PlasV (P = 0.49), while strong associations were observed with both E2/testosterone (P < 0.001) and age (P < 0.001). In the mediation analyses with PlasV as the mediator, the average causal mediation effect (ACME) explained roughly 20% of the total effect of WC on PSA (P = 0.31), while when E2/testosterone is a mediator, the ACME explained roughly 50% of the effect (P < 0.001). Our findings indicate that lower PSA levels in obese men, as compared to normal weight men, can be explained both by hormonal changes (elevated E2/testosterone ratio) and hemodilution. Hormonal factors therefore represent a substantial but underappreciated mediating pathway.
Collapse
Affiliation(s)
- Adel T Aref
- University of Adelaide Medical School and Freemasons Foundation Centre for Men's HealthAdelaide, South Australia, Australia
- South Australian Health and Medical Research InstituteAdelaide, South Australia, Australia
| | - Andrew D Vincent
- University of Adelaide Medical School and Freemasons Foundation Centre for Men's HealthAdelaide, South Australia, Australia
- South Australian Health and Medical Research InstituteAdelaide, South Australia, Australia
| | - Michael E O'Callaghan
- University of Adelaide Medical School and Freemasons Foundation Centre for Men's HealthAdelaide, South Australia, Australia
- Urology UnitSA Health, Repatriation General Hospital, Adelaide, South Australia, Australia
- South Australian Prostate Cancer Clinical Outcomes Collaborative (SA-PCCOC)Adelaide, South Australia, Australia
- Flinders Centre for Innovation in CancerFlinders University, Adelaide, South Australia, Australia
| | - Sean A Martin
- University of Adelaide Medical School and Freemasons Foundation Centre for Men's HealthAdelaide, South Australia, Australia
- South Australian Health and Medical Research InstituteAdelaide, South Australia, Australia
| | - Peter D Sutherland
- Department of UrologyRoyal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Andrew J Hoy
- Discipline of PhysiologySchool of Medical Sciences and Bosch Institute, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Lisa M Butler
- University of Adelaide Medical School and Freemasons Foundation Centre for Men's HealthAdelaide, South Australia, Australia
- South Australian Health and Medical Research InstituteAdelaide, South Australia, Australia
| | - Gary A Wittert
- University of Adelaide Medical School and Freemasons Foundation Centre for Men's HealthAdelaide, South Australia, Australia
- South Australian Health and Medical Research InstituteAdelaide, South Australia, Australia
| |
Collapse
|
13
|
Gilbert R, Tilling K, Martin RM, Lane JA, Davis M, Hamdy FC, Neal DE, Donovan JL, Metcalfe C. Developing new age-specific prostate-specific antigen thresholds for testing for prostate cancer. Cancer Causes Control 2018; 29:383-388. [PMID: 29453511 PMCID: PMC5834577 DOI: 10.1007/s10552-018-1014-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/09/2018] [Indexed: 02/05/2023]
Abstract
PURPOSE To examine whether age-related reference ranges for "normal" prostate-specific antigen (PSA) change (determined in men without prostate cancer) can be used to identify men at high risk of having prostate cancer. METHODS Subjects were men aged 50-69 years with PSA < 10 ng/mL from the UK-based Prostate Testing for cancer and Treatment (ProtecT) study. Men with prostate cancer were categorized as high or low risk of progression (Low risk: Gleason score ≤ 6 and stage T1-T2a; High risk: Gleason score 7-10 or stage T2C). Men without prostate cancer were those with no histological confirmation of prostate cancer. Previously developed longitudinal reference ranges for normal age-related PSA change were used to calculate an age-specific PSA threshold. We compared the ability of our age-specific PSA threshold to discriminate between high- and no/low-risk prostate cancer with that of two existing thresholds: (i) threshold of PSA = 3 ng/ml for all ages; (ii) National Institute of Clinical Excellence (NICE) guidelines dependent on age-group thresholds (age 50-59: PSA = 3 ng/mL; age 60-70: PSA = 4 ng/mL; age ≥ 70: PSA = 5 ng/mL). RESULTS We included 823 men with high-risk prostate cancer and 80,721 men with no/low-risk prostate cancer. A threshold of PSA = 3 ng/ml for all ages identified more high-risk prostate cancers, recommending biopsy in 9.8% of men, of which 10.3% (n = 823) had high-risk prostate cancer. Using the NICE guidelines as the threshold for biopsy, 6.9% men were recommended for biopsy, of which 11.9% (n = 668) had high-risk prostate cancer. Using the new age-specific threshold for biopsy, 2.3% men were recommended for biopsy, of which 15.2% (n = 290) had high-risk prostate cancer. The age-specific threshold identified fewer high-risk prostate cancers, but fewer men received unnecessary biopsy. CONCLUSION There is no benefit to using reference ranges for "normal" PSA that change with age nor the age-specific thresholds suggested by the NICE guidelines. While the age-varying thresholds are more discriminatory, too many high-risk cancers are missed.
Collapse
Affiliation(s)
- Rebecca Gilbert
- Population Health Sciences, Bristol Medical School, University of Bristol, 39 Whatley Road, Bristol, BS8 2PS UK
| | - Kate Tilling
- Population Health Sciences, Bristol Medical School, University of Bristol, 39 Whatley Road, Bristol, BS8 2PS UK
| | - Richard M. Martin
- Population Health Sciences, Bristol Medical School, University of Bristol, 39 Whatley Road, Bristol, BS8 2PS UK
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN UK
| | - J. Athene Lane
- Population Health Sciences, Bristol Medical School, University of Bristol, 39 Whatley Road, Bristol, BS8 2PS UK
| | - Michael Davis
- Population Health Sciences, Bristol Medical School, University of Bristol, 39 Whatley Road, Bristol, BS8 2PS UK
| | - Freddie C. Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DU UK
| | - David E. Neal
- Department of Oncology, University of Cambridge, Addenbrook’s Hospital, Hills Road, Cambridge, CB2 0QQ UK
| | - Jenny L. Donovan
- Population Health Sciences, Bristol Medical School, University of Bristol, 39 Whatley Road, Bristol, BS8 2PS UK
| | - Chris Metcalfe
- Population Health Sciences, Bristol Medical School, University of Bristol, 39 Whatley Road, Bristol, BS8 2PS UK
| |
Collapse
|