1
|
Gertz RJ, Wagner A, Sokolowski M, Lennartz S, Gietzen C, Grunz JP, Goertz L, Kaya K, ten Freyhaus H, Persigehl T, Bunck AC, Doerner J, Naehle CP, Maintz D, Weiss K, Katemann C, Pennig L. Compressed SENSE accelerated 3D single-breath-hold late gadolinium enhancement cardiovascular magnetic resonance with isotropic resolution: clinical evaluation. Front Cardiovasc Med 2023; 10:1305649. [PMID: 38099228 PMCID: PMC10720442 DOI: 10.3389/fcvm.2023.1305649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Aim The purpose of this study was to investigate the clinical application of Compressed SENSE accelerated single-breath-hold LGE with 3D isotropic resolution compared to conventional LGE imaging acquired in multiple breath-holds. Material & Methods This was a retrospective, single-center study including 105 examinations of 101 patients (48.2 ± 16.8 years, 47 females). All patients underwent conventional breath-hold and 3D single-breath-hold (0.96 × 0.96 × 1.1 mm3 reconstructed voxel size, Compressed SENSE factor 6.5) LGE sequences at 1.5 T in clinical routine for the evaluation of ischemic or non-ischemic cardiomyopathies. Two radiologists independently evaluated the left ventricle (LV) for the presence of hyperenhancing lesions in each sequence, including localization and transmural extent, while assessing their scar edge sharpness (SES). Confidence of LGE assessment, image quality (IQ), and artifacts were also rated. The impact of LV ejection fraction (LVEF), heart rate, body mass index (BMI), and gender as possible confounders on IQ, artifacts, and confidence of LGE assessment was evaluated employing ordinal logistic regression analysis. Results Using 3D single-breath-hold LGE readers detected more hyperenhancing lesions compared to conventional breath-hold LGE (n = 246 vs. n = 216 of 1,785 analyzed segments, 13.8% vs. 12.1%; p < 0.0001), pronounced at subendocardial, midmyocardial, and subepicardial localizations and for 1%-50% of transmural extent. SES was rated superior in 3D single-breath-hold LGE (4.1 ± 0.8 vs. 3.3 ± 0.8; p < 0.001). 3D single-breath-hold LGE yielded more artifacts (3.8 ± 1.0 vs. 4.0 ± 3.8; p = 0.002) whereas IQ (4.1 ± 1.0 vs. 4.2 ± 0.9; p = 0.122) and confidence of LGE assessment (4.3 ± 0.9 vs. 4.3 ± 0.8; p = 0.374) were comparable between both techniques. Female gender negatively influenced artifacts in 3D single-breath-hold LGE (p = 0.0028) while increased heart rate led to decreased IQ in conventional breath-hold LGE (p = 0.0029). Conclusions In clinical routine, Compressed SENSE accelerated 3D single-breath-hold LGE yields image quality and confidence of LGE assessment comparable to conventional breath-hold LGE while providing improved delineation of smaller LGE lesions with superior scar edge sharpness. Given the fast acquisition of 3D single-breath-hold LGE, the technique holds potential to drastically reduce the examination time of CMR.
Collapse
Affiliation(s)
- Roman Johannes Gertz
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anton Wagner
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute for Diagnostic and Interventional Radiology, Krankenhaus der Augustinerinnen, Cologne, Germany
| | - Marcel Sokolowski
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Simon Lennartz
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Carsten Gietzen
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Lukas Goertz
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kenan Kaya
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Henrik ten Freyhaus
- Department III of Internal Medicine, Heart Center, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thorsten Persigehl
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Alexander Christian Bunck
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jonas Doerner
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Kontraste Radiologie-Praxis Köln West, Cologne, Germany
| | - Claas Philip Naehle
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Radiologische Allianz Hamburg, Hamburg, Germany
| | - David Maintz
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | | | - Lenhard Pennig
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
2
|
Ohta Y, Nishii T, Nagai Y, Ichiba Y, Tateishi E, Kotoku A, Horinouchi H, Fukuyama M, Morita Y, Fukuda T. Image Quality of Submillimeter High-Spatial-Resolution 2D Late Gadolinium-enhanced Images in Cardiac MRI: A Feasibility Study. Radiol Cardiothorac Imaging 2022; 4:e220111. [PMID: 36601449 PMCID: PMC9806730 DOI: 10.1148/ryct.220111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/11/2022] [Accepted: 10/27/2022] [Indexed: 12/13/2022]
Abstract
Purpose To evaluate the image quality of high-spatial-resolution two-dimensional (2D) late gadolinium enhancement (LGE) cardiac MRI compared with conventional normal-resolution LGE MRI. Materials and Methods This prospective study included participants suspected of having cardiomyopathy who underwent cardiac MRI between March 2021 and December 2021. Normal-resolution and high-resolution 2D LGE sequences (inversion recovery [IR] and phase-sensitive inversion recovery [PSIR]) were performed at 3 T. Resolution was compared between normal-resolution and high-resolution images obtained in a quality assurance phantom. In vivo image quality and resolution were evaluated qualitatively using a five-point scoring system. Receiver operating characteristic curve analysis was used for LGE detection performance. Border sharpness was assessed with profile curve measurement. The contrast-to-noise ratio (CNR) between hyperenhancement and remote myocardium and LGE detection performance were calculated using normal-resolution IR images as the reference. Results In total, 120 participants were evaluated (mean age, 56 years ± 17 [SD]; 72 men). Features smaller than 1 mm were detectable only on high-resolution images of the phantom. In vivo, the image resolution score with high-resolution LGE was 4.14-4.24, which was higher than the normal-resolution LGE reference score of 2.99 (P < .05). Border sharpness was higher in high-resolution images (P < .001). Receiver operating characteristic curve analysis revealed no evidence of a difference in LGE detection between normal-resolution and high-resolution images. There was also no evidence of a change in CNR of LGE in IR and PSIR magnitude compared with reference images. Conclusion Comparison of image quality in 2D high-resolution and normal-resolution LGE cardiac MRI demonstrated the highest resolution for high-resolution IR and high-resolution PSIR magnitude sequences.Keywords: Cartilage Imaging, MRI, Cardiac, Heart, Imaging Sequences, Comparative Studies Supplemental material is available for this article. © RSNA, 2022.
Collapse
|
3
|
Fenski M, Grandy TH, Viezzer D, Kertusha S, Schmidt M, Forman C, Schulz-Menger J. Isotropic 3D compressed sensing (CS) based sequence is comparable to 2D-LGE in left ventricular scar quantification in different disease entities. Int J Cardiovasc Imaging 2022; 38:1837-1850. [PMID: 35243574 PMCID: PMC10509092 DOI: 10.1007/s10554-022-02571-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/14/2022] [Indexed: 11/27/2022]
Abstract
The goal of this study was to evaluate a three-dimensional compressed sensing (3D-CS) LGE prototype sequence for the detection and quantification of myocardial fibrosis in patients with chronic myocardial infarction (CMI) and myocarditis (MYC) compared with a 2D-LGE standard. Patients with left-ventricular LGE due to CMI (n = 33) or MYC (n = 20) were prospectively recruited. 2D-LGE and 3D-CS images were acquired in random order at 1.5 Tesla. 3D-CS short axis (SAX) images were reconstructed corresponding to 2D SAX images. LGE was quantitatively assessed on patient and segment level using semi-automated threshold methods. Image quality (4-point scoring system), Contrast-ratio (CR) and acquisition times were compared. There was no significant difference between 2D and 3D sequences regarding global LGE (%) (CMI [2D-LGE: 11.4 ± 7.5; 3D-LGE: 11.5 ± 8.5; p = 0.99]; MYC [2D-LGE: 27.0 ± 15.7; 3D-LGE: 26.2 ± 13.1; p = 0.70]) and segmental LGE-extent (p = 0.63). 3D-CS identified papillary infarction in 5 cases which was not present in 2D images. 2D-LGE acquisition time was shorter (2D: median: 06:59 min [IQR: 05:51-08:18]; 3D: 14:48 min [12:45-16:57]). 3D-CS obtained better quality scores (2D: 2.06 ± 0.56 vs. 3D: 2.29 ± 0.61). CR did not differ (p = 0.63) between basal and apical regions in 3D-CS images but decreased significantly in 2D apical images (CR basal: 2D: 0.77 ± 0.11, 3D: 0.59 ± 0.10; CR apical: 2D: 0.64 ± 0.17, 3D: 0.53 ± 0.11). 3D-LGE shows high congruency with standard LGE and allows better identification of small lesions. However, the current 3D-CS LGE sequence did not provide PSIR reconstruction and acquisition time was longer.
Collapse
Affiliation(s)
- Maximilian Fenski
- Working Group Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, Charité Medical Faculty, Max-Delbrück Center for Molecular Medicine, Helios Klinikum Berlin Buch, Department of Cardiology and Nephrology, Charité - Universitätsmedizin Berlin, Kardiologie - ECRC, Lindenberger Weg 80, 13125, Berlin, Germany
| | - Thomas Hiroshi Grandy
- Working Group Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, Charité Medical Faculty, Max-Delbrück Center for Molecular Medicine, Helios Klinikum Berlin Buch, Department of Cardiology and Nephrology, Charité - Universitätsmedizin Berlin, Kardiologie - ECRC, Lindenberger Weg 80, 13125, Berlin, Germany
| | - Darian Viezzer
- Working Group Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, Charité Medical Faculty, Max-Delbrück Center for Molecular Medicine, Helios Klinikum Berlin Buch, Department of Cardiology and Nephrology, Charité - Universitätsmedizin Berlin, Kardiologie - ECRC, Lindenberger Weg 80, 13125, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Stela Kertusha
- Working Group Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, Charité Medical Faculty, Max-Delbrück Center for Molecular Medicine, Helios Klinikum Berlin Buch, Department of Cardiology and Nephrology, Charité - Universitätsmedizin Berlin, Kardiologie - ECRC, Lindenberger Weg 80, 13125, Berlin, Germany
| | | | | | - Jeanette Schulz-Menger
- Working Group Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, Charité Medical Faculty, Max-Delbrück Center for Molecular Medicine, Helios Klinikum Berlin Buch, Department of Cardiology and Nephrology, Charité - Universitätsmedizin Berlin, Kardiologie - ECRC, Lindenberger Weg 80, 13125, Berlin, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
| |
Collapse
|
4
|
Holtackers RJ, Emrich T, Botnar RM, Kooi ME, Wildberger JE, Kreitner KF. Late Gadolinium Enhancement Cardiac Magnetic Resonance Imaging: From Basic Concepts to Emerging Methods. ROFO-FORTSCHR RONTG 2022; 194:491-504. [PMID: 35196714 DOI: 10.1055/a-1718-4355] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Late gadolinium enhancement (LGE) is a widely used cardiac magnetic resonance imaging (MRI) technique to diagnose a broad range of ischemic and non-ischemic cardiomyopathies. Since its development and validation against histology already more than two decades ago, the clinical utility of LGE and its span of applications have increased considerably. METHODS In this review we will present the basic concepts of LGE imaging and its diagnostic and prognostic value, elaborate on recent developments and emerging methods, and finally discuss future prospects. RESULTS Continuous developments in 3 D imaging methods, motion correction techniques, water/fat-separated imaging, dark-blood methods, and scar quantification improved the performance and further expanded the clinical utility of LGE imaging. CONCLUSION LGE imaging is the current noninvasive reference standard for the assessment of myocardial viability. Improvements in spatial resolution, scar-to-blood contrast, and water/fat-separated imaging further strengthened its position. KEY POINTS · LGE MRI is the reference standard for the noninvasive assessment of myocardial viability. · LGE MRI is used to diagnose a broad range of non-ischemic cardiomyopathies in everyday clinical practice.. · Improvements in spatial resolution and scar-to-blood contrast further strengthened its position. · Continuous developments improve its performance and further expand its clinical utility. CITATION FORMAT · Holtackers RJ, Emrich T, Botnar RM et al. Late Gadolinium Enhancement Cardiac Magnetic Resonance Imaging: From Basic Concepts to Emerging Methods. Fortschr Röntgenstr 2022; DOI: 10.1055/a-1718-4355.
Collapse
Affiliation(s)
- Robert J Holtackers
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands.,Department of Radiology & Nuclear Medicine, Maastricht University Medical Centre, the Netherlands.,School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom
| | - Tilman Emrich
- Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, Mainz, Germany.,Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - René M Botnar
- School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom.,Pontificia Universidad Católica de Chile, Escuela de Ingeniería, Santiago, Chile
| | - M Eline Kooi
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands.,Department of Radiology & Nuclear Medicine, Maastricht University Medical Centre, the Netherlands
| | - Joachim E Wildberger
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands.,Department of Radiology & Nuclear Medicine, Maastricht University Medical Centre, the Netherlands
| | - K-F Kreitner
- Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Germany
| |
Collapse
|
5
|
Zeilinger MG, Kunze KP, Munoz C, Neji R, Schmidt M, Croisille P, Heiss R, Wuest W, Uder M, Botnar RM, Treutlein C, Prieto C. Non-rigid motion-corrected free-breathing 3D myocardial Dixon LGE imaging in a clinical setting. Eur Radiol 2022; 32:4340-4351. [PMID: 35184220 PMCID: PMC9213263 DOI: 10.1007/s00330-022-08560-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/23/2021] [Accepted: 01/03/2022] [Indexed: 01/01/2023]
Abstract
Objectives To investigate the efficacy of an in-line non-rigid motion-compensated reconstruction (NRC) in an image-navigated high-resolution three-dimensional late gadolinium enhancement (LGE) sequence with Dixon water–fat separation, in a clinical setting. Methods Forty-seven consecutive patients were enrolled prospectively and examined with 1.5 T MRI. NRC reconstructions were compared to translational motion-compensated reconstructions (TC) of the same datasets in overall and different sub-category image quality scores, diagnostic confidence, contrast ratios, LGE pattern, and semiautomatic LGE quantification. Results NRC outperformed TC in all image quality scores (p < 0.001 to 0.016; e.g., overall image quality 5/5 points vs. 4/5). Overall image quality was downgraded in only 23% of NRC datasets vs. 53% of TC datasets due to residual respiratory motion. In both reconstructions, LGE was rated as ischemic in 11 patients and non-ischemic in 10 patients, while it was absent in 26 patients. NRC delivered significantly higher LGE-to-myocardium and blood-to-myocardium contrast ratios (median 6.33 vs. 5.96, p < 0.001 and 4.88 vs. 4.66, p < 0.001, respectively). Automatically detected LGE mass was significantly lower in the NRC reconstruction (p < 0.001). Diagnostic confidence was identical in all cases, with high confidence in 89% and probable in 11% datasets for both reconstructions. No case was rated as inconclusive. Conclusions The in-line implementation of a non-rigid motion-compensated reconstruction framework improved image quality in image-navigated free-breathing, isotropic high-resolution 3D LGE imaging with undersampled spiral-like Cartesian sampling and Dixon water–fat separation compared to translational motion correction of the same datasets. The sharper depictions of LGE may lead to more accurate measures of LGE mass. Key Points • 3D LGE imaging provides high-resolution detection of myocardial scarring. • Non-rigid motion correction provides better image quality in cardiac MRI. • Non-rigid motion correction may lead to more accurate measures of LGE mass.
Collapse
Affiliation(s)
| | - Karl-Philipp Kunze
- MR Research Collaborations, Siemens Healthcare GmbH, Frimley, UK
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Camila Munoz
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Radhouene Neji
- MR Research Collaborations, Siemens Healthcare GmbH, Frimley, UK
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Michaela Schmidt
- Cardiovascular MR Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Pierre Croisille
- University of Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Etienne, France
| | - Rafael Heiss
- Institute of Diagnostic Radiology, University Hospital of Erlangen, Erlangen, Germany
| | - Wolfgang Wuest
- Institute of Radiology, Martha Maria Hospital, Nuremberg, Germany
| | - Michael Uder
- Institute of Diagnostic Radiology, University Hospital of Erlangen, Erlangen, Germany
| | - René Michael Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christoph Treutlein
- Institute of Diagnostic Radiology, University Hospital of Erlangen, Erlangen, Germany
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
6
|
Bustin A, Sridi S, Gravinay P, Legghe B, Gosse P, Ouattara A, Rozé H, Coste P, Gerbaud E, Desclaux A, Boyer A, Prevel R, Gruson D, Bonnet F, Issa N, Montaudon M, Laurent F, Stuber M, Camou F, Cochet H. High-resolution Free-breathing late gadolinium enhancement Cardiovascular magnetic resonance to diagnose myocardial injuries following COVID-19 infection. Eur J Radiol 2021; 144:109960. [PMID: 34600236 PMCID: PMC8450147 DOI: 10.1016/j.ejrad.2021.109960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/30/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE High-resolution free-breathing late gadolinium enhancement (HR-LGE) was shown valuable for the diagnosis of acute coronary syndromes with non-obstructed coronary arteries. The method may be useful to detect COVID-related myocardial injuries but is hampered by prolonged acquisition times. We aimed to introduce an accelerated HR-LGE technique for the diagnosis of COVID-related myocardial injuries. METHOD An undersampled navigator-gated HR-LGE (acquired resolution of 1.25 mm3) sequence combined with advanced patch-based low-rank reconstruction was developed and validated in a phantom and in 23 patients with structural heart disease (test cohort; 15 men; 55 ± 16 years). Twenty patients with laboratory-confirmed COVID-19 infection associated with troponin rise (COVID cohort; 15 men; 46 ± 24 years) prospectively underwent cardiovascular magnetic resonance (CMR) with the proposed sequence in our center. Image sharpness, quality, signal intensity differences and diagnostic value of free-breathing HR-LGE were compared against conventional breath-held low-resolution LGE (LR-LGE, voxel size 1.8x1.4x6mm). RESULTS Structures sharpness in the phantom showed no differences with the fully sampled image up to an undersampling factor of x3.8 (P > 0.5). In patients (N = 43), this acceleration allowed for acquisition times of 7min21s ± 1min12s at 1.25 mm3 resolution. Compared with LR-LGE, HR-LGE showed higher image quality (P = 0.03) and comparable signal intensity differences (P > 0.5). In patients with structural heart disease, all LGE-positive segments on LR-LGE were also detected on HR-LGE (80/391) with 21 additional enhanced segments visible only on HR-LGE (101/391, P < 0.001). In 4 patients with COVID-19 history, HR-LGE was definitely positive while LR-LGE was either definitely negative (1 microinfarction and 1 myocarditis) or inconclusive (2 myocarditis). CONCLUSIONS Undersampled free-breathing isotropic HR-LGE can detect additional areas of late enhancement as compared to conventional breath-held LR-LGE. In patients with history of COVID-19 infection associated with troponin rise, the method allows for detailed characterization of myocardial injuries in acceptable scan times and without the need for repeated breath holds.
Collapse
Affiliation(s)
- Aurélien Bustin
- Department of Cardiovascular Imaging, Groupe Hospitalier Sud, CHU Bordeaux, Pessac, France; IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux - INSERM U1045, Avenue du Haut Lévêque, Pessac, France; Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| | - Soumaya Sridi
- Department of Cardiovascular Imaging, Groupe Hospitalier Sud, CHU Bordeaux, Pessac, France
| | - Pierre Gravinay
- Cardiac Intensive Care Unit, Hôpital St André, CHU Bordeaux, Bordeaux, France
| | - Benoit Legghe
- Department of Cardiovascular Imaging, Groupe Hospitalier Sud, CHU Bordeaux, Pessac, France
| | - Philippe Gosse
- Cardiac Intensive Care Unit, Hôpital St André, CHU Bordeaux, Bordeaux, France
| | - Alexandre Ouattara
- Department of Anaesthesia and Critical Care, Groupe Hospitalier Sud, CHU Bordeaux, Pessac, France
| | - Hadrien Rozé
- Department of Anaesthesia and Critical Care, Groupe Hospitalier Sud, CHU Bordeaux, Pessac, France
| | - Pierre Coste
- Cardiac Intensive Care Unit, Groupe Hospitalier Sud, CHU de Bordeaux, Pessac, France
| | - Edouard Gerbaud
- Cardiac Intensive Care Unit, Groupe Hospitalier Sud, CHU de Bordeaux, Pessac, France
| | - Arnaud Desclaux
- Infectious disease Unit, Hôpital Pellegrin, CHU Bordeaux, Bordeaux, France
| | - Alexandre Boyer
- Medical Intensive Care Unit, Hôpital Pellegrin, CHU Bordeaux, Bordeaux, France
| | - Renaud Prevel
- Medical Intensive Care Unit, Hôpital Pellegrin, CHU Bordeaux, Bordeaux, France
| | - Didier Gruson
- Medical Intensive Care Unit, Hôpital Pellegrin, CHU Bordeaux, Bordeaux, France
| | - Fabrice Bonnet
- Infectious Disease Unit, Hôpital St André, CHU Bordeaux, Bordeaux, France
| | - Nahema Issa
- Intensive Care Unit, Hôpital St André, CHU Bordeaux, Bordeaux, France
| | - Michel Montaudon
- Department of Cardiovascular Imaging, Groupe Hospitalier Sud, CHU Bordeaux, Pessac, France
| | - François Laurent
- Department of Cardiovascular Imaging, Groupe Hospitalier Sud, CHU Bordeaux, Pessac, France
| | - Matthias Stuber
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux - INSERM U1045, Avenue du Haut Lévêque, Pessac, France; Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| | - Fabrice Camou
- Intensive Care Unit, Hôpital St André, CHU Bordeaux, Bordeaux, France
| | - Hubert Cochet
- Department of Cardiovascular Imaging, Groupe Hospitalier Sud, CHU Bordeaux, Pessac, France; IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux - INSERM U1045, Avenue du Haut Lévêque, Pessac, France
| |
Collapse
|
7
|
Toupin S, Pezel T, Bustin A, Cochet H. Whole-Heart High-Resolution Late Gadolinium Enhancement: Techniques and Clinical Applications. J Magn Reson Imaging 2021; 55:967-987. [PMID: 34155715 PMCID: PMC9292698 DOI: 10.1002/jmri.27732] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/15/2022] Open
Abstract
In cardiovascular magnetic resonance, late gadolinium enhancement (LGE) has become the cornerstone of myocardial tissue characterization. It is widely used in clinical routine to diagnose and characterize the myocardial tissue in a wide range of ischemic and nonischemic cardiomyopathies. The recent growing interest in imaging left atrial fibrosis has led to the development of novel whole‐heart high‐resolution late gadolinium enhancement (HR‐LGE) techniques. Indeed, conventional LGE is acquired in multiple breath‐holds with limited spatial resolution: ~1.4–1.8 mm in plane and 6–8 mm slice thickness, according to the Society for Cardiovascular Magnetic Resonance standardized guidelines. Such large voxel size prevents its use in thin structures such as the atrial or right ventricular walls. Whole‐heart 3D HR‐LGE images are acquired in free breathing to increase the spatial resolution (up to 1.3 × 1.3 × 1.3 mm3) and offer a better detection and depiction of focal atrial fibrosis. The downside of this increased resolution is the extended scan time of around 10 min, which hampers the spread of HR‐LGE in clinical practice. Initially introduced for atrial fibrosis imaging, HR‐LGE interest has evolved to be a tool to detect small scars in the ventricles and guide ablation procedures. Indeed, the detection of scars, nonvisible with conventional LGE, can be crucial in the diagnosis of myocardial infarction with nonobstructed coronary arteries, in the detection of the arrhythmogenic substrate triggering ventricular arrhythmia, and improve the confidence of clinicians in the challenging diagnoses such as the arrhythmogenic right ventricular cardiomyopathy. HR‐LGE also offers a precise visualization of left ventricular scar morphology that is particularly useful in planning ablation procedures and guiding them through the fusion of HR‐LGE images with electroanatomical mapping systems. In this narrative review, we attempt to summarize the technical particularities of whole‐heart HR‐LGE acquisition and provide an overview of its clinical applications with a particular focus on the ventricles.
Collapse
Affiliation(s)
- Solenn Toupin
- Siemens Healthcare France, Saint-Denis, France.,IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France.,Université de Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Théo Pezel
- Division of Cardiology, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Cardiology, Lariboisiere Hospital, APHP, University of Paris, Paris, France
| | - Aurélien Bustin
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France.,Université de Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Hubert Cochet
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France.,Université de Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,Bordeaux University Hospital (CHU), Pessac, France
| |
Collapse
|
8
|
Nussbaumer C, Bouchardy J, Blanche C, Piccini D, Pavon AG, Monney P, Stuber M, Schwitter J, Rutz T. 2D cine vs. 3D self-navigated free-breathing high-resolution whole heart cardiovascular magnetic resonance for aortic root measurements in congenital heart disease. J Cardiovasc Magn Reson 2021; 23:65. [PMID: 34039356 PMCID: PMC8157643 DOI: 10.1186/s12968-021-00744-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/17/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Cardiovascular magnetic resonance (CMR) is considered the method of choice for evaluation of aortic root dilatation in congenital heart disease. Usually, a cross-sectional 2D cine stack is acquired perpendicular to the vessel's axis. However, this method requires a considerable patient collaboration and precise planning of image planes. The present study compares a recently introduced 3D self-navigated free-breathing high-resolution whole heart CMR sequence (3D self nav) allowing a multiplanar retrospective reconstruction of the aortic root as an alternative to the 2D cine technique for determination of aortic root diameters. METHODS A total of 6 cusp-commissure (CuCo) and cusp-cusp (CuCu) enddiastolic diameters were measured by two observers on 2D cine and 3D self nav cross-sectional planes of the aortic root acquired on a 1.5 T CMR scanner. Asymmetry of the aortic root was evaluated by the ratio of the minimal to the maximum 3D self nav CuCu diameter. CuCu diameters were compared to standard transthoracic echocardiographic (TTE) aortic root diameters. RESULTS Sixty-five exams in 58 patients (32 ± 15 years) were included. Typically, 2D cine and 3D self nav spatial resolution was 1.1-1.52 × 4.5-7 mm and 0.9-1.153 mm, respectively. 3D self nav yielded larger maximum diameters than 2D cine: CuCo 37.2 ± 6.4 vs. 36.2 ± 7.0 mm (p = 0.006), CuCu 39.7 ± 6.3 vs. 38.5 ± 6.5 mm (p < 0.001). CuCu diameters were significantly larger (2.3-3.9 mm, p < 0.001) than CuCo and TTE diameters on both 2D cine and 3D self nav. Intra- and interobserver variabilities were excellent for both techniques with bias of -0.5 to 1.0 mm. Intra-observer variability of the more experienced observer was better for 3D self nav (F-test p < 0.05). Aortic root asymmetry was more pronounced in patients with bicuspid aortic valve (BAV: 0.73 (interquartile (IQ) 0.69; 0.78) vs. 0.93 (IQ 0.9; 0.96), p < 0.001), which was associated to a larger difference of maximum CuCu to TTE diameters: 5.5 ± 3.3 vs. 3.3 ± 3.8 mm, p = 0.033. CONCLUSION Both, the 3D self nav and 2D cine CMR techniques allow reliable determination of aortic root diameters. However, we propose to privilege the 3D self nav technique and measurement of CuCu diameters to avoid underestimation of the maximum diameter, particularly in patients with asymmetric aortic roots and/or BAV.
Collapse
Affiliation(s)
- Clément Nussbaumer
- Service of Cardiology, Centre de Resonance Magnétique Cardiaque, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Judith Bouchardy
- Service of Cardiology, Adult Congenital Heart Disease Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Coralie Blanche
- Service of Cardiology, Centre de Resonance Magnétique Cardiaque, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Davide Piccini
- Department of Radiology, University Hospital and University of Lausanne, Lausanne, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Anna-Giulia Pavon
- Service of Cardiology, Centre de Resonance Magnétique Cardiaque, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Pierre Monney
- Service of Cardiology, Centre de Resonance Magnétique Cardiaque, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Matthias Stuber
- Department of Radiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jürg Schwitter
- Service of Cardiology, Centre de Resonance Magnétique Cardiaque, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Tobias Rutz
- Service of Cardiology, Centre de Resonance Magnétique Cardiaque, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
- Service of Cardiology, Adult Congenital Heart Disease Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
9
|
Correia T, Ginami G, Rashid I, Nordio G, Hajhosseiny R, Ismail TF, Neji R, Botnar RM, Prieto C. Accelerated high-resolution free-breathing 3D whole-heart T 2-prepared black-blood and bright-blood cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2020; 22:88. [PMID: 33317570 PMCID: PMC7737390 DOI: 10.1186/s12968-020-00691-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/18/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The free-breathing 3D whole-heart T2-prepared Bright-blood and black-blOOd phase SensiTive inversion recovery (BOOST) cardiovascular magnetic resonance (CMR) sequence was recently proposed for simultaneous bright-blood coronary CMR angiography and black-blood late gadolinium enhancement (LGE) imaging. This sequence enables simultaneous visualization of cardiac anatomy, coronary arteries and fibrosis. However, high-resolution (< 1.4 × 1.4 × 1.4 mm3) fully-sampled BOOST requires long acquisition times of ~ 20 min. METHODS In this work, we propose to extend a highly efficient respiratory-resolved motion-corrected reconstruction framework (XD-ORCCA) to T2-prepared BOOST to enable high-resolution 3D whole-heart coronary CMR angiography and black-blood LGE in a clinically feasible scan time. Twelve healthy subjects were imaged without contrast injection (pre-contrast BOOST) and 10 patients with suspected cardiovascular disease were imaged after contrast injection (post-contrast BOOST). A quantitative analysis software was used to compare accelerated pre-contrast BOOST against the fully-sampled counterpart (vessel sharpness and length of the left and right coronary arteries). Moreover, three cardiologists performed diagnostic image quality scoring for clinical 2D LGE and both bright- and black-blood 3D BOOST imaging using a 4-point scale (1-4, non-diagnostic-fully diagnostic). A two one-sided test of equivalence (TOST) was performed to compare the pre-contrast BOOST images. Nonparametric TOST was performed to compare post-contrast BOOST image quality scores. RESULTS The proposed method produces images from 3.8 × accelerated non-contrast-enhanced BOOST acquisitions with comparable vessel length and sharpness to those obtained from fully- sampled scans in healthy subjects. Moreover, in terms of visual grading, the 3D BOOST LGE datasets (median 4) and the clinical 2D counterpart (median 3.5) were found to be statistically equivalent (p < 0.05). In addition, bright-blood BOOST images allowed for visualization of the proximal and middle left anterior descending and right coronary sections with high diagnostic quality (mean score > 3.5). CONCLUSIONS The proposed framework provides high-resolution 3D whole-heart BOOST images from a single free-breathing acquisition in ~ 7 min.
Collapse
Affiliation(s)
- Teresa Correia
- School of Biomedical Engineering and Imaging Sciences, King’s College London, Lambeth Wing, St Thomas’ Hospital, London, UK
| | - Giulia Ginami
- School of Biomedical Engineering and Imaging Sciences, King’s College London, Lambeth Wing, St Thomas’ Hospital, London, UK
| | - Imran Rashid
- School of Biomedical Engineering and Imaging Sciences, King’s College London, Lambeth Wing, St Thomas’ Hospital, London, UK
| | - Giovanna Nordio
- School of Biomedical Engineering and Imaging Sciences, King’s College London, Lambeth Wing, St Thomas’ Hospital, London, UK
| | - Reza Hajhosseiny
- School of Biomedical Engineering and Imaging Sciences, King’s College London, Lambeth Wing, St Thomas’ Hospital, London, UK
| | - Tevfik F. Ismail
- School of Biomedical Engineering and Imaging Sciences, King’s College London, Lambeth Wing, St Thomas’ Hospital, London, UK
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King’s College London, Lambeth Wing, St Thomas’ Hospital, London, UK
- MR Research Collaborations, Siemens Healthcare Limited, Frimley, UK
| | - René M. Botnar
- School of Biomedical Engineering and Imaging Sciences, King’s College London, Lambeth Wing, St Thomas’ Hospital, London, UK
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King’s College London, Lambeth Wing, St Thomas’ Hospital, London, UK
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
10
|
Zeilinger MG, Wiesmüller M, Forman C, Schmidt M, Munoz C, Piccini D, Kunze KP, Neji R, Botnar RM, Prieto C, Uder M, May M, Wuest W. 3D Dixon water-fat LGE imaging with image navigator and compressed sensing in cardiac MRI. Eur Radiol 2020; 31:3951-3961. [PMID: 33263160 PMCID: PMC8128857 DOI: 10.1007/s00330-020-07517-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/11/2020] [Accepted: 11/13/2020] [Indexed: 12/25/2022]
Abstract
Objectives To evaluate an image-navigated isotropic high-resolution 3D late gadolinium enhancement (LGE) prototype sequence with compressed sensing and Dixon water-fat separation in a clinical routine setting. Material and methods Forty consecutive patients scheduled for cardiac MRI were enrolled prospectively and examined with 1.5 T MRI. Overall subjective image quality, LGE pattern and extent, diagnostic confidence for detection of LGE, and scan time were evaluated and compared to standard 2D LGE imaging. Robustness of Dixon fat suppression was evaluated for 3D Dixon LGE imaging. For statistical analysis, the non-parametric Wilcoxon rank sum test was performed. Results LGE was rated as ischemic in 9 patients and non-ischemic in 11 patients while it was absent in 20 patients. Image quality and diagnostic confidence were comparable between both techniques (p = 0.67 and p = 0.66, respectively). LGE extent with respect to segmental or transmural myocardial enhancement was identical between 2D and 3D (water-only and in-phase). LGE size was comparable (3D 8.4 ± 7.2 g, 2D 8.7 ± 7.3 g, p = 0.19). Good or excellent fat suppression was achieved in 93% of the 3D LGE datasets. In 6 patients with pericarditis, the 3D sequence with Dixon fat suppression allowed for a better detection of pericardial LGE. Scan duration was significantly longer for 3D imaging (2D median 9:32 min vs. 3D median 10:46 min, p = 0.001). Conclusion The 3D LGE sequence provides comparable LGE detection compared to 2D imaging and seems to be superior in evaluating the extent of pericardial involvement in patients suspected with pericarditis due to the robust Dixon fat suppression. Key Points • Three-dimensional LGE imaging provides high-resolution detection of myocardial scarring. • Robust Dixon water-fat separation aids in the assessment of pericardial disease. • The 2D image navigator technique enables 100% respiratory scan efficacy and permits predictable scan times.
Collapse
Affiliation(s)
| | - Marco Wiesmüller
- Institute of Diagnostic Radiology, University Hospital of Erlangen, Erlangen, Germany
| | - Christoph Forman
- Cardiovascular MR Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Michaela Schmidt
- Cardiovascular MR Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Camila Munoz
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Davide Piccini
- Advanced Clinical Imaging Technology, Siemens Healthcare IM BM PI, Lausanne, Switzerland
| | - Karl-Philipp Kunze
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,MR Research Collaborations, Siemens Healthcare GmbH, Frimley, UK
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,MR Research Collaborations, Siemens Healthcare GmbH, Frimley, UK
| | - René Michael Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Michael Uder
- Institute of Diagnostic Radiology, University Hospital of Erlangen, Erlangen, Germany
| | - Matthias May
- Institute of Diagnostic Radiology, University Hospital of Erlangen, Erlangen, Germany
| | - Wolfgang Wuest
- Institute of Diagnostic Radiology, University Hospital of Erlangen, Erlangen, Germany
| |
Collapse
|
11
|
Comparison of free breathing 3D mDIXON with single breath-hold 3D inversion recovery sequences for the assessment of Late Gadolinium Enhancement. Eur J Radiol 2020; 134:109427. [PMID: 33307461 DOI: 10.1016/j.ejrad.2020.109427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/30/2020] [Accepted: 11/14/2020] [Indexed: 01/24/2023]
Abstract
PURPOSE To evaluate the technical and diagnostic performance of three dimensional (3D) mDIXON versus 3D inversion recovery (3D VIAB) and 3D spectral presaturation with inversion recovery (3D SPIR) late gadolinium enhancement (LGE) sequences. METHODS A total of 78 patients (50 males and 28 females, age 49 ± 18 years) with 1.5 T CMR examination including three different 3D LGE sequences (3D mDIXON, 3D VIAB, and 3D SPIR) were evaluated for technical and diagnostic performance by two readers. Qualitative scores and quantitative signal and contrast-to-noise ratios were compared among sequences. Qualitative comparisons were made using Friedman and Wilcoxon signed rank tests. Quantitative comparisons were made using one way ANOVA. Reader agreements were tested using Cohen's Kappa. Any p-value <0.05 was significant. RESULTS 19 out of 78 patients (24 %) were excluded due to poor (grade 4) image quality and 29 patients were excluded due to absence of LGE. For the remaining 30 patients, free breathing 3D mDIXON showed higher confidence in diagnosis of subepicardial LGE (p-value < 0.05). 3D mDIXON outperformed 3D SPIR in both visualization of LGE (p = 0.02) and quality of fat suppression (p = 0.001). Nevertheless, 3D mDIXON showed lower image quality compared to the other two sequences. CONCLUSION Free breathing 3D mDIXON is a diagnostic problem-solving tool, especially when making a diagnosis of subepicardial enhancement and/or fat suppression is needed, owing to its high spatial resolution and robust fat suppression. Choice of 3D LGE sequence should be based on patient's breath-hold ability, diagnostic needs, and institutional availability considering the strengths and limitations of each sequence.
Collapse
|
12
|
Henningsson M, Carlhäll CJ. Inflow artifact reduction using an adaptive flip-angle navigator restore pulse for late gadolinium enhancement of the left atrium. Magn Reson Med 2020; 84:3308-3315. [PMID: 32459007 DOI: 10.1002/mrm.28334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 11/06/2022]
Abstract
PURPOSE Late gadolinium enhancement (LGE) of the left atrium is susceptible to artifacts arising from the right pulmonary veins, caused by inflowing blood tagged by the navigator restore pulse. The purpose of this study was to evaluate a new method to reduce the inflow artifact using an adaptive flip-angle restore pulse. METHODS A low-restore angle reduces the inflow artifact but may lead to a poor navigator SNR. The proposed approach aims to determine the patient-specific restore angle, which optimizes the trade-off between inflow artifacts and navigator SNR. Three-dimensional LGE with adaptive navigator restore (3D LGEA ) was implemented by incrementing the flip angle of the restore pulse from a starting value of 0°, based on the navigator normalized cross-correlation. Magnetic resonance imaging experiments were performed on a 1.5T scanner. The value of 3D LGEA was compared with 3D LGE with a constant 180° restore pulse (3D LGE180 ) in 22 patients with heart diseases. The values of 3D LGEA and 3D LGE180 were compared in terms of pulmonary vein blood signal relative to reference blood in the descending aorta (PVrel ) and visual scoring to determine level of motion artifacts using a 4-point scale (1 = severe artifacts; 4 = no artifacts). RESULTS The value of PVrel was significantly lower for 3D LGEA than for 3D LGE180 (1.16 ± 0.23 vs. 1.59 ± 0.29, P < .001). Furthermore, visual scoring of the motion artifacts yielded no difference (P = .78). CONCLUSION Adaptively adjusting the navigator restore flip angle based on the navigator normalized cross-correlation reduces the 3D LGE inflow artifact without affecting image quality or the scan time.
Collapse
Affiliation(s)
- Markus Henningsson
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Carl-Johan Carlhäll
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Department of Clinical Physiology, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
13
|
Piccini D, Demesmaeker R, Heerfordt J, Yerly J, Di Sopra L, Masci PG, Schwitter J, Van De Ville D, Richiardi J, Kober T, Stuber M. Deep Learning to Automate Reference-Free Image Quality Assessment of Whole-Heart MR Images. Radiol Artif Intell 2020; 2:e190123. [PMID: 33937825 DOI: 10.1148/ryai.2020190123] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 03/03/2020] [Accepted: 03/11/2020] [Indexed: 11/11/2022]
Abstract
Purpose To develop and characterize an algorithm that mimics human expert visual assessment to quantitatively determine the quality of three-dimensional (3D) whole-heart MR images. Materials and Methods In this study, 3D whole-heart cardiac MRI scans from 424 participants (average age, 57 years ± 18 [standard deviation]; 66.5% men) were used to generate an image quality assessment algorithm. A deep convolutional neural network for image quality assessment (IQ-DCNN) was designed, trained, optimized, and cross-validated on a clinical database of 324 (training set) scans. On a separate test set (100 scans), two hypotheses were tested: (a) that the algorithm can assess image quality in concordance with human expert assessment as assessed by human-machine correlation and intra- and interobserver agreement and (b) that the IQ-DCNN algorithm may be used to monitor a compressed sensing reconstruction process where image quality progressively improves. Weighted κ values, agreement and disagreement counts, and Krippendorff α reliability coefficients were reported. Results Regression performance of the IQ-DCNN was within the range of human intra- and interobserver agreement and in very good agreement with the human expert (R 2 = 0.78, κ = 0.67). The image quality assessment during compressed sensing reconstruction correlated with the cost function at each iteration and was successfully applied to rank the results in very good agreement with the human expert. Conclusion The proposed IQ-DCNN was trained to mimic expert visual image quality assessment of 3D whole-heart MR images. The results from the IQ-DCNN were in good agreement with human expert reading, and the network was capable of automatically comparing different reconstructed volumes.Supplemental material is available for this article.© RSNA, 2020.
Collapse
Affiliation(s)
- Davide Piccini
- Advanced Clinical Imaging Technology, Siemens Healthcare, Lausanne, Switzerland (D.P., R.D., J.H., J.R., T.K.); Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Rue de Bugnon 46, BH 8.80, 1011 Lausanne, Switzerland (D.P., J.H., J.Y., L.D.S., J.R., T.K., M.S.); LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland (D.P., J.R., T.K.); Institute of Electrical Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland (R.D.); Institute of Bioengineering/Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland (R.D., D.V.D.V.); Center for Biomedical Imaging (CIBM), Lausanne, Switzerland (J.Y., M.S.); Division of Cardiology and Cardiac MR Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland (P.G.M., J.S.); and Department of Radiology and Medical Informatics, University Hospital of Geneva (HUG), Geneva, Switzerland (D.V.D.V.)
| | - Robin Demesmaeker
- Advanced Clinical Imaging Technology, Siemens Healthcare, Lausanne, Switzerland (D.P., R.D., J.H., J.R., T.K.); Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Rue de Bugnon 46, BH 8.80, 1011 Lausanne, Switzerland (D.P., J.H., J.Y., L.D.S., J.R., T.K., M.S.); LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland (D.P., J.R., T.K.); Institute of Electrical Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland (R.D.); Institute of Bioengineering/Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland (R.D., D.V.D.V.); Center for Biomedical Imaging (CIBM), Lausanne, Switzerland (J.Y., M.S.); Division of Cardiology and Cardiac MR Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland (P.G.M., J.S.); and Department of Radiology and Medical Informatics, University Hospital of Geneva (HUG), Geneva, Switzerland (D.V.D.V.)
| | - John Heerfordt
- Advanced Clinical Imaging Technology, Siemens Healthcare, Lausanne, Switzerland (D.P., R.D., J.H., J.R., T.K.); Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Rue de Bugnon 46, BH 8.80, 1011 Lausanne, Switzerland (D.P., J.H., J.Y., L.D.S., J.R., T.K., M.S.); LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland (D.P., J.R., T.K.); Institute of Electrical Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland (R.D.); Institute of Bioengineering/Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland (R.D., D.V.D.V.); Center for Biomedical Imaging (CIBM), Lausanne, Switzerland (J.Y., M.S.); Division of Cardiology and Cardiac MR Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland (P.G.M., J.S.); and Department of Radiology and Medical Informatics, University Hospital of Geneva (HUG), Geneva, Switzerland (D.V.D.V.)
| | - Jérôme Yerly
- Advanced Clinical Imaging Technology, Siemens Healthcare, Lausanne, Switzerland (D.P., R.D., J.H., J.R., T.K.); Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Rue de Bugnon 46, BH 8.80, 1011 Lausanne, Switzerland (D.P., J.H., J.Y., L.D.S., J.R., T.K., M.S.); LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland (D.P., J.R., T.K.); Institute of Electrical Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland (R.D.); Institute of Bioengineering/Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland (R.D., D.V.D.V.); Center for Biomedical Imaging (CIBM), Lausanne, Switzerland (J.Y., M.S.); Division of Cardiology and Cardiac MR Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland (P.G.M., J.S.); and Department of Radiology and Medical Informatics, University Hospital of Geneva (HUG), Geneva, Switzerland (D.V.D.V.)
| | - Lorenzo Di Sopra
- Advanced Clinical Imaging Technology, Siemens Healthcare, Lausanne, Switzerland (D.P., R.D., J.H., J.R., T.K.); Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Rue de Bugnon 46, BH 8.80, 1011 Lausanne, Switzerland (D.P., J.H., J.Y., L.D.S., J.R., T.K., M.S.); LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland (D.P., J.R., T.K.); Institute of Electrical Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland (R.D.); Institute of Bioengineering/Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland (R.D., D.V.D.V.); Center for Biomedical Imaging (CIBM), Lausanne, Switzerland (J.Y., M.S.); Division of Cardiology and Cardiac MR Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland (P.G.M., J.S.); and Department of Radiology and Medical Informatics, University Hospital of Geneva (HUG), Geneva, Switzerland (D.V.D.V.)
| | - Pier Giorgio Masci
- Advanced Clinical Imaging Technology, Siemens Healthcare, Lausanne, Switzerland (D.P., R.D., J.H., J.R., T.K.); Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Rue de Bugnon 46, BH 8.80, 1011 Lausanne, Switzerland (D.P., J.H., J.Y., L.D.S., J.R., T.K., M.S.); LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland (D.P., J.R., T.K.); Institute of Electrical Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland (R.D.); Institute of Bioengineering/Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland (R.D., D.V.D.V.); Center for Biomedical Imaging (CIBM), Lausanne, Switzerland (J.Y., M.S.); Division of Cardiology and Cardiac MR Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland (P.G.M., J.S.); and Department of Radiology and Medical Informatics, University Hospital of Geneva (HUG), Geneva, Switzerland (D.V.D.V.)
| | - Juerg Schwitter
- Advanced Clinical Imaging Technology, Siemens Healthcare, Lausanne, Switzerland (D.P., R.D., J.H., J.R., T.K.); Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Rue de Bugnon 46, BH 8.80, 1011 Lausanne, Switzerland (D.P., J.H., J.Y., L.D.S., J.R., T.K., M.S.); LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland (D.P., J.R., T.K.); Institute of Electrical Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland (R.D.); Institute of Bioengineering/Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland (R.D., D.V.D.V.); Center for Biomedical Imaging (CIBM), Lausanne, Switzerland (J.Y., M.S.); Division of Cardiology and Cardiac MR Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland (P.G.M., J.S.); and Department of Radiology and Medical Informatics, University Hospital of Geneva (HUG), Geneva, Switzerland (D.V.D.V.)
| | - Dimitri Van De Ville
- Advanced Clinical Imaging Technology, Siemens Healthcare, Lausanne, Switzerland (D.P., R.D., J.H., J.R., T.K.); Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Rue de Bugnon 46, BH 8.80, 1011 Lausanne, Switzerland (D.P., J.H., J.Y., L.D.S., J.R., T.K., M.S.); LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland (D.P., J.R., T.K.); Institute of Electrical Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland (R.D.); Institute of Bioengineering/Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland (R.D., D.V.D.V.); Center for Biomedical Imaging (CIBM), Lausanne, Switzerland (J.Y., M.S.); Division of Cardiology and Cardiac MR Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland (P.G.M., J.S.); and Department of Radiology and Medical Informatics, University Hospital of Geneva (HUG), Geneva, Switzerland (D.V.D.V.)
| | - Jonas Richiardi
- Advanced Clinical Imaging Technology, Siemens Healthcare, Lausanne, Switzerland (D.P., R.D., J.H., J.R., T.K.); Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Rue de Bugnon 46, BH 8.80, 1011 Lausanne, Switzerland (D.P., J.H., J.Y., L.D.S., J.R., T.K., M.S.); LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland (D.P., J.R., T.K.); Institute of Electrical Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland (R.D.); Institute of Bioengineering/Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland (R.D., D.V.D.V.); Center for Biomedical Imaging (CIBM), Lausanne, Switzerland (J.Y., M.S.); Division of Cardiology and Cardiac MR Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland (P.G.M., J.S.); and Department of Radiology and Medical Informatics, University Hospital of Geneva (HUG), Geneva, Switzerland (D.V.D.V.)
| | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthcare, Lausanne, Switzerland (D.P., R.D., J.H., J.R., T.K.); Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Rue de Bugnon 46, BH 8.80, 1011 Lausanne, Switzerland (D.P., J.H., J.Y., L.D.S., J.R., T.K., M.S.); LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland (D.P., J.R., T.K.); Institute of Electrical Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland (R.D.); Institute of Bioengineering/Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland (R.D., D.V.D.V.); Center for Biomedical Imaging (CIBM), Lausanne, Switzerland (J.Y., M.S.); Division of Cardiology and Cardiac MR Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland (P.G.M., J.S.); and Department of Radiology and Medical Informatics, University Hospital of Geneva (HUG), Geneva, Switzerland (D.V.D.V.)
| | - Matthias Stuber
- Advanced Clinical Imaging Technology, Siemens Healthcare, Lausanne, Switzerland (D.P., R.D., J.H., J.R., T.K.); Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Rue de Bugnon 46, BH 8.80, 1011 Lausanne, Switzerland (D.P., J.H., J.Y., L.D.S., J.R., T.K., M.S.); LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland (D.P., J.R., T.K.); Institute of Electrical Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland (R.D.); Institute of Bioengineering/Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland (R.D., D.V.D.V.); Center for Biomedical Imaging (CIBM), Lausanne, Switzerland (J.Y., M.S.); Division of Cardiology and Cardiac MR Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland (P.G.M., J.S.); and Department of Radiology and Medical Informatics, University Hospital of Geneva (HUG), Geneva, Switzerland (D.V.D.V.)
| |
Collapse
|
14
|
Guttman MA, Tao S, Fink S, Tunin R, Schmidt EJ, Herzka DA, Halperin HR, Kolandaivelu A. Acute enhancement of necrotic radio-frequency ablation lesions in left atrium and pulmonary vein ostia in swine model with non-contrast-enhanced T 1 -weighted MRI. Magn Reson Med 2020; 83:1368-1379. [PMID: 31565818 PMCID: PMC6949368 DOI: 10.1002/mrm.28001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE To evaluate non-contrast-enhanced MRI of acute radio-frequency ablation (RFA) lesions in the left atrium (LA) and pulmonary vein (PV) ostia. The goal is to provide a method for discrimination between necrotic (permanent) lesions and reversible injury, which is associated with recurrence after treatment of atrial fibrillation. METHODS Fifteen normal swine underwent RFA around the right-superior PV ostia. Electrical pulmonary vein isolation (PVI) was verified by electro-anatomic mapping (EAM) and pacing. MRI was carried out using a 3D respiratory-gated T1 -weighted long inversion time (TWILITE) sequence without contrast agent. Key settings were: inversion time 700 ms, triggering over 2 cardiac cycles, pixel size 1.1 mm3 . Contrast-enhanced imaging and T2 -weighted imaging were carried out for comparison. Six animals were sacrificed on ablation day for TTC-stained gross pathology, 9 animals were sacrificed after 2-3 mo after repeat EAM and MRI. Image intensity ratio (IIR) was used to measure lesion enhancement, and gross pathology was used to validate image enhancement patterns and compare lesion widths. RESULTS RFA lesions exhibited unambiguous enhancement in acute TWILITE imaging (IIR = 2.34 ± 0.49 at 1.5T), and the enhancement patterns corresponded well with gross pathology. Lesion widths in MRI correlated well with gross pathology (R2 = 0.84), with slight underestimation by 0.9 ± 0.5 mm. Lesion enhancement subsided chronically. CONCLUSION TWILITE imaging allowed acute detection of permanent RFA lesions in swine LA and PV ostia, without the need for contrast agent. Lesion enhancement pattern showed good correspondence to gross pathology and was well visualized by volume rendering. This method may provide valuable intra- or post-procedural assessment of RFA treatment.
Collapse
Affiliation(s)
- Michael A Guttman
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Susumu Tao
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Sarah Fink
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Rick Tunin
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Ehud J Schmidt
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Daniel A Herzka
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Henry R Halperin
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Aravindan Kolandaivelu
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
15
|
Mukherjee RK, Whitaker J, Williams SE, Razavi R, O'Neill MD. Magnetic resonance imaging guidance for the optimization of ventricular tachycardia ablation. Europace 2019; 20:1721-1732. [PMID: 29584897 PMCID: PMC6212773 DOI: 10.1093/europace/euy040] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/19/2018] [Indexed: 01/02/2023] Open
Abstract
Catheter ablation has an important role in the management of patients with ventricular tachycardia (VT) but is limited by modest long-term success rates. Magnetic resonance imaging (MRI) can provide valuable anatomic and functional information as well as potentially improve identification of target sites for ablation. A major limitation of current MRI protocols is the spatial resolution required to identify the areas of tissue responsible for VT but recent developments have led to new strategies which may improve substrate assessment. Potential ways in which detailed information gained from MRI may be utilized during electrophysiology procedures include image integration or performing a procedure under real-time MRI guidance. Image integration allows pre-procedural magnetic resonance (MR) images to be registered with electroanatomical maps to help guide VT ablation and has shown promise in preliminary studies. However, multiple errors can arise during this process due to the registration technique used, changes in ventricular geometry between the time of MRI and the ablation procedure, respiratory and cardiac motion. As isthmus sites may only be a few millimetres wide, reducing these errors may be critical to improve outcomes in VT ablation. Real-time MR-guided intervention has emerged as an alternative solution to address the limitations of pre-acquired imaging to guide ablation. There is now a growing body of literature describing the feasibility, techniques, and potential applications of real-time MR-guided electrophysiology. We review whether real-time MR-guided intervention could be applied in the setting of VT ablation and the potential challenges that need to be overcome.
Collapse
Affiliation(s)
- Rahul K Mukherjee
- School of Biomedical Engineering and Imaging Sciences, 4th Floor, North Wing, St Thomas' Hospital, King's College London, London, UK
| | - John Whitaker
- School of Biomedical Engineering and Imaging Sciences, 4th Floor, North Wing, St Thomas' Hospital, King's College London, London, UK
| | - Steven E Williams
- School of Biomedical Engineering and Imaging Sciences, 4th Floor, North Wing, St Thomas' Hospital, King's College London, London, UK.,Department of Cardiology, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
| | - Reza Razavi
- School of Biomedical Engineering and Imaging Sciences, 4th Floor, North Wing, St Thomas' Hospital, King's College London, London, UK
| | - Mark D O'Neill
- School of Biomedical Engineering and Imaging Sciences, 4th Floor, North Wing, St Thomas' Hospital, King's College London, London, UK.,Department of Cardiology, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
16
|
Chen Z, Sun B, Duan Q, Xue Y, Chen L. 3.0T Contrast-enhanced whole-heart coronary magnetic resonance angiography for simultaneous coronary artery angiography and myocardial viability in chronic myocardial infarction: A single-center preliminary study. Medicine (Baltimore) 2018; 97:e13138. [PMID: 30407340 PMCID: PMC6250500 DOI: 10.1097/md.0000000000013138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
To evaluate the accuracy of contrast-enhanced whole-heart magnetic resonance coronary angiography at 3.0T for assessing significant stenosis (≥50% lumen diameter reduction) in patients with myocardial infarction, by using conventional coronary artery angiography as the reference standard, and also test the performance of that for the detection and assessment of chronic myocardial infarction (MI), compared with standard delayed-enhancement coronary magnetic resonance (DE-CMR) for the determination of infarct size.We studied 42 consecutive patients (37 men, 5 women, mean age 58.5 ± 10.7 years) with MI scheduled for conventional coronary angiography. Contrast-enhanced whole-heart coronary magnetic resonance angiography (CMRA) was employed after sublingual nitroglycerin (NTG) with the abdominal banding rolled tightly along the side of ribs. Finally, a 3D phase-sensitive inversion-recovery gradient-echo (3D-PSIR-GRE) sequence was performed during free breathing. The assessment of MI sizes on WH-CMRA reconstructed images and 3D-PSIR-GRE images were compared using a paired student t test.The acquisition of CMRA was completed in 40 (95.2%) of 42 patients, with an imaging time averaged at 9.5 ± 3.1 minutes. The average navigator efficiency was 47%. The sensitivity, specificity, and positive and negative predictive values of whole-heart CMRA for the detection of significant lesions on a segment-by-segment analysis were 91.7% (95% confidence interval [CI] 83.8-96.1), 84.0% (95% CI 80.0-87.4), 57.9% (95% CI 50.0-65.8), 97.7% (95% CI 95.3-98.9), respectively, and on a patient-based analysis 93.5% (95% CI 77.2-98.9), 88.9% (95% CI 50.7-99.4), 96.7% (95% CI 80.9-99.8), and 80.0% (95% CI 44.2-96.5), respectively. Infarcts were generally higher on the CE-CMRA technique compared with the standard technique (18.0 ± 7.2 cm vs 16.1 ± 6.4 cm; P < .0001).Contrast-enhanced whole-heart CMRA with 3.0-T not only may permit reliable detection of significant obstructive coronary artery disease in patients with myocardial infarction, but also could identify and quantify the volume of myocardial infarction. This technique could be considered the preferred approach in patients who could not overcome longer scanning times or unable to hold their breath instead of delayed-enhancement magnetic resonance imaging for detection of infarcted myocardium. However, compared with standard imaging, the volume of myocardial infarction is slightly overestimated.
Collapse
Affiliation(s)
| | | | | | | | - Lianglong Chen
- Department of Cardiology, Union Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| |
Collapse
|
17
|
Ginami G, Neji R, Rashid I, Chiribiri A, Ismail TF, Botnar RM, Prieto C. 3D whole-heart phase sensitive inversion recovery CMR for simultaneous black-blood late gadolinium enhancement and bright-blood coronary CMR angiography. J Cardiovasc Magn Reson 2017; 19:94. [PMID: 29178893 PMCID: PMC5702978 DOI: 10.1186/s12968-017-0405-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/06/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Phase sensitive inversion recovery (PSIR) applied to late gadolinium enhancement (LGE) imaging is widely used in clinical practice. However, conventional 2D PSIR LGE sequences provide sub-optimal contrast between scar tissue and blood pool, rendering the detection of subendocardial infarcts and scar segmentation challenging. Furthermore, the acquisition of a low flip angle reference image doubles the acquisition time without providing any additional diagnostic information. The purpose of this study was to develop and test a novel 3D whole-heart PSIR-like framework, named BOOST, enabling simultaneous black-blood LGE assessment and bright-blood visualization of cardiac anatomy. METHODS The proposed approach alternates the acquisition of a 3D volume preceded by a T2-prepared Inversion Recovery (T2Prep-IR) module (magnitude image) with the acquisition of a T2-prepared 3D volume (reference image). The two volumes (T2Prep-IR BOOST and bright-blood T2Prep BOOST) are combined in a PSIR-like reconstruction to obtain a complementary 3D black-blood volume for LGE assessment (PSIR BOOST). The black-blood PSIR BOOST and the bright-blood T2Prep BOOST datasets were compared to conventional clinical sequences for scar detection and coronary CMR angiography (CMRA) in 18 patients with a spectrum of cardiovascular disease (CVD). RESULTS Datasets from 12 patients were quantitatively analysed. The black-blood PSIR BOOST dataset provided statistically improved contrast to noise ratio (CNR) between blood and scar when compared to a clinical 2D PSIR sequence (15.8 ± 3.3 and 4.1 ± 5.6, respectively). Overall agreement in LGE depiction was found between 3D black-blood PSIR BOOST and clinical 2D PSIR acquisitions, with 11/12 PSIR BOOST datasets considered diagnostic. The bright-blood T2Prep BOOST dataset provided high quality depiction of the proximal coronary segments, with improvement of visual score when compared to a clinical CMRA sequence. Acquisition time of BOOST (~10 min), providing information on both LGE uptake and heart anatomy, was comparable to that of a clinical single CMRA sequence. CONCLUSIONS The feasibility of BOOST for simultaneous black-blood LGE assessment and bright-blood coronary angiography was successfully tested in patients with cardiovascular disease. The framework enables free-breathing multi-contrast whole-heart acquisitions with 100% scan efficiency and predictable scan time. Complementary information on 3D LGE and heart anatomy are obtained reducing examination time.
Collapse
Affiliation(s)
- Giulia Ginami
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St Thomas’ Hospital (Lambeth Wing), Westminster Bridge Rd, London, SE1 7EH UK
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St Thomas’ Hospital (Lambeth Wing), Westminster Bridge Rd, London, SE1 7EH UK
- MR Research Collaborations, Siemens Healthcare Limited, Sir William Siemens Square Frimley, Camberley, GU16 8QD UK
| | - Imran Rashid
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St Thomas’ Hospital (Lambeth Wing), Westminster Bridge Rd, London, SE1 7EH UK
| | - Amedeo Chiribiri
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St Thomas’ Hospital (Lambeth Wing), Westminster Bridge Rd, London, SE1 7EH UK
| | - Tevfik F. Ismail
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St Thomas’ Hospital (Lambeth Wing), Westminster Bridge Rd, London, SE1 7EH UK
| | - René M. Botnar
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St Thomas’ Hospital (Lambeth Wing), Westminster Bridge Rd, London, SE1 7EH UK
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Vicuna Mackenna, 4860 Santiago, Chile
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St Thomas’ Hospital (Lambeth Wing), Westminster Bridge Rd, London, SE1 7EH UK
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Vicuna Mackenna, 4860 Santiago, Chile
| |
Collapse
|
18
|
Jablonowski R, Chaudhry U, van der Pals J, Engblom H, Arheden H, Heiberg E, Wu KC, Borgquist R, Carlsson M. Cardiovascular Magnetic Resonance to Predict Appropriate Implantable Cardioverter Defibrillator Therapy in Ischemic and Nonischemic Cardiomyopathy Patients Using Late Gadolinium Enhancement Border Zone: Comparison of Four Analysis Methods. Circ Cardiovasc Imaging 2017; 10:CIRCIMAGING.116.006105. [PMID: 28838961 DOI: 10.1161/circimaging.116.006105] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 07/07/2017] [Indexed: 01/27/2023]
Abstract
BACKGROUND Late gadolinium enhancement (LGE) border zone on cardiac magnetic resonance imaging has been proposed as an independent predictor of ventricular arrhythmias. The purpose was to determine whether size and heterogeneity of LGE predict appropriate implantable cardioverter defibrillator (ICD) therapy in ischemic cardiomyopathy (ICM) and nonischemic cardiomyopathy (NICM) patients and to evaluate 4 LGE border-zone algorithms. METHODS AND RESULTS ICM and NICM patients who underwent LGE cardiac magnetic resonance imaging prior to ICD implantation were retrospectively included. Two semiautomatic algorithms, expectation maximization, weighted intensity, a priori information and a weighted border zone algorithm, were compared with a modified full-width half-maximum and a 2-3SD threshold-based algorithm (2-3SD). Hazard ratios were calculated per 1% increase in LGE. A total of 74 ICM and 34 NICM were followed for 63 months (1-140) and 52 months (0-133), respectively. ICM patients had 27 appropriate ICD events, and NICM patients had 7 ICD events. In ICM patients with primary prophylactic ICD, LGE border zone predicted ICD therapy in univariable and multivariable analysis measured by the expectation maximization, weighted intensity, a priori information, weighted border zone, and modified full-width half-maximum algorithms (hazard ratios 1.23, 1.22, and 1.05, respectively; P<0.05; negative predictive value 92%). For NICM, total LGE by all 4 methods was the strongest predictor (hazard ratios, 1.03-1.04; P<0.05), though the number of events was small. CONCLUSIONS Appropriate ICD therapy can be predicted in ICM patients with primary prevention ICD by quantifying the LGE border zone. In NICM patients, total LGE but not LGE border zone had predictive value for ICD therapy. However, the algorithms used affects the predictive value of these measures.
Collapse
Affiliation(s)
- Robert Jablonowski
- From the Clinical Physiology (R.J., H.E., H.A., E.H., M.C.) and Cardiology (U.C., J.v.d.P., R.B.), Department of Clinical Sciences, Lund University, Lund University Hospital, Sweden; Department of Biomedical Engineering and Centre for Mathematical Sciences, Faculty of Engineering, Lund University, Sweden (E.H.); and Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (K.C.W.)
| | - Uzma Chaudhry
- From the Clinical Physiology (R.J., H.E., H.A., E.H., M.C.) and Cardiology (U.C., J.v.d.P., R.B.), Department of Clinical Sciences, Lund University, Lund University Hospital, Sweden; Department of Biomedical Engineering and Centre for Mathematical Sciences, Faculty of Engineering, Lund University, Sweden (E.H.); and Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (K.C.W.)
| | - Jesper van der Pals
- From the Clinical Physiology (R.J., H.E., H.A., E.H., M.C.) and Cardiology (U.C., J.v.d.P., R.B.), Department of Clinical Sciences, Lund University, Lund University Hospital, Sweden; Department of Biomedical Engineering and Centre for Mathematical Sciences, Faculty of Engineering, Lund University, Sweden (E.H.); and Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (K.C.W.)
| | - Henrik Engblom
- From the Clinical Physiology (R.J., H.E., H.A., E.H., M.C.) and Cardiology (U.C., J.v.d.P., R.B.), Department of Clinical Sciences, Lund University, Lund University Hospital, Sweden; Department of Biomedical Engineering and Centre for Mathematical Sciences, Faculty of Engineering, Lund University, Sweden (E.H.); and Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (K.C.W.)
| | - Håkan Arheden
- From the Clinical Physiology (R.J., H.E., H.A., E.H., M.C.) and Cardiology (U.C., J.v.d.P., R.B.), Department of Clinical Sciences, Lund University, Lund University Hospital, Sweden; Department of Biomedical Engineering and Centre for Mathematical Sciences, Faculty of Engineering, Lund University, Sweden (E.H.); and Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (K.C.W.)
| | - Einar Heiberg
- From the Clinical Physiology (R.J., H.E., H.A., E.H., M.C.) and Cardiology (U.C., J.v.d.P., R.B.), Department of Clinical Sciences, Lund University, Lund University Hospital, Sweden; Department of Biomedical Engineering and Centre for Mathematical Sciences, Faculty of Engineering, Lund University, Sweden (E.H.); and Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (K.C.W.)
| | - Katherine C Wu
- From the Clinical Physiology (R.J., H.E., H.A., E.H., M.C.) and Cardiology (U.C., J.v.d.P., R.B.), Department of Clinical Sciences, Lund University, Lund University Hospital, Sweden; Department of Biomedical Engineering and Centre for Mathematical Sciences, Faculty of Engineering, Lund University, Sweden (E.H.); and Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (K.C.W.)
| | - Rasmus Borgquist
- From the Clinical Physiology (R.J., H.E., H.A., E.H., M.C.) and Cardiology (U.C., J.v.d.P., R.B.), Department of Clinical Sciences, Lund University, Lund University Hospital, Sweden; Department of Biomedical Engineering and Centre for Mathematical Sciences, Faculty of Engineering, Lund University, Sweden (E.H.); and Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (K.C.W.)
| | - Marcus Carlsson
- From the Clinical Physiology (R.J., H.E., H.A., E.H., M.C.) and Cardiology (U.C., J.v.d.P., R.B.), Department of Clinical Sciences, Lund University, Lund University Hospital, Sweden; Department of Biomedical Engineering and Centre for Mathematical Sciences, Faculty of Engineering, Lund University, Sweden (E.H.); and Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (K.C.W.).
| |
Collapse
|
19
|
Reiber JHC, De Sutter J, Schoenhagen P, Stillman AE, Vande Veire NRL. Cardiovascular imaging 2016 in the International Journal of Cardiovascular Imaging. Int J Cardiovasc Imaging 2017; 33:761-770. [PMID: 28315986 PMCID: PMC5406479 DOI: 10.1007/s10554-017-1111-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Johan H C Reiber
- Department of Radiology, Division of Image Processing, Leiden University Medical Center, Leiden, The Netherlands.
| | - Johan De Sutter
- Department of Cardiology, AZ Maria Middelares Gent and University Gent, Ghent, Belgium
| | - Paul Schoenhagen
- Department of Radiology, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Arthur E Stillman
- Department of Radiology, Emory University Hospital, Atlanta, GA, USA
| | - Nico R L Vande Veire
- Department of Cardiology, AZ Maria Middelares Gent and Free University Brussels, Brussels, Belgium
| |
Collapse
|
20
|
Quantitative analysis of late gadolinium enhancement in hypertrophic cardiomyopathy: comparison of diagnostic performance in myocardial fibrosis between gadobutrol and gadopentetate dimeglumine. Int J Cardiovasc Imaging 2017; 33:1191-1200. [DOI: 10.1007/s10554-017-1101-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/24/2017] [Indexed: 01/20/2023]
|
21
|
Respiratory optimized data selection for more resilient self-navigated whole-heart coronary MR angiography. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 30:215-225. [DOI: 10.1007/s10334-016-0598-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/04/2016] [Accepted: 10/24/2016] [Indexed: 12/28/2022]
|