1
|
Groenhoff L, De Zan G, Costantini P, Siani A, Ostillio E, Carriero S, Muscogiuri G, Bergamaschi L, Patti G, Pizzi C, Sironi S, Pavon AG, Carriero A, Guglielmo M. The Non-Invasive Diagnosis of Chronic Coronary Syndrome: A Focus on Stress Computed Tomography Perfusion and Stress Cardiac Magnetic Resonance. J Clin Med 2023; 12:jcm12113793. [PMID: 37297986 DOI: 10.3390/jcm12113793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Coronary artery disease is still a major cause of death and morbidity worldwide. In the setting of chronic coronary disease, demonstration of inducible ischemia is mandatory to address treatment. Consequently, scientific and technological efforts were made in response to the request for non-invasive diagnostic tools with better sensitivity and specificity. To date, clinicians have at their disposal a wide range of stress-imaging techniques. Among others, stress cardiac magnetic resonance (S-CMR) and computed tomography perfusion (CTP) techniques both demonstrated their diagnostic efficacy and prognostic value in clinical trials when compared to other non-invasive ischemia-assessing techniques and invasive fractional flow reserve measurement techniques. Standardized protocols for both S-CMR and CTP usually imply the administration of vasodilator agents to induce hyperemia and contrast agents to depict perfusion defects. However, both methods have their own limitations, meaning that optimizing their performance still requires a patient-tailored approach. This review focuses on the characteristics, drawbacks, and future perspectives of these two techniques.
Collapse
Affiliation(s)
- Léon Groenhoff
- Radiology Department, Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Giulia De Zan
- Department of Translational Medicine, University of Eastern Piedmont, Maggiore della Carità Hospital, 28100 Novara, Italy
- Department of Cardiology, Division of Heart and Lungs, Utrecht University Medical Center, 3584 CX Utrecht, The Netherlands
| | - Pietro Costantini
- Radiology Department, Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Agnese Siani
- Radiology Department, Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Eleonora Ostillio
- Radiology Department, Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Serena Carriero
- Postgraduate School in Radiodiagnostics, University of Milan, 20122 Milan, Italy
| | - Giuseppe Muscogiuri
- Department of Radiology, IRCCS Istituto Auxologico Italiano, San Luca Hospital, 20149 Milan, Italy
- School of Medicine, University of Milano-Bicocca, 20900 Monza, Italy
| | - Luca Bergamaschi
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences-DIMEC, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Giuseppe Patti
- Department of Translational Medicine, University of Eastern Piedmont, Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Carmine Pizzi
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences-DIMEC, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Sandro Sironi
- School of Medicine, University of Milano-Bicocca, 20900 Monza, Italy
- Department of Radiology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Anna Giulia Pavon
- Cardiovascular Department, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
| | | | - Marco Guglielmo
- Department of Cardiology, Division of Heart and Lungs, Utrecht University Medical Center, 3584 CX Utrecht, The Netherlands
- Department of Cardiology, Haga Teaching Hospital, 2545 AA The Hague, The Netherlands
| |
Collapse
|
2
|
Bazoukis G, Papadatos SS, Michelongona A, Lampropoulos K, Farmakis D, Vassiliou V. Contemporary Role of Cardiac Magnetic Resonance in the Management of Patients with Suspected or Known Coronary Artery Disease. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:649. [PMID: 34202588 PMCID: PMC8303732 DOI: 10.3390/medicina57070649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/21/2021] [Accepted: 06/21/2021] [Indexed: 11/19/2022]
Abstract
Cardiac magnetic resonance imaging (CMR) is a useful non-invasive radiation-free imaging modality for the management of patients with coronary artery disease (CAD). CMR cine imaging provides the "gold standard" assessment of ventricular function, late gadolinium enhancement (LGE) provides useful data for the diagnosis and extent of myocardial scar and viability, while stress imaging is an established technique for the detection of myocardial perfusion defects indicating ischemia. Beyond its role in the diagnosis of CAD, CMR allows accurate risk stratification of patients with established CAD. This review aims to summarize the data regarding the role of CMR in the contemporary management of patients with suspected or known coronary artery disease.
Collapse
Affiliation(s)
- George Bazoukis
- Department of Cardiology, Larnaca General Hospital, 6051 Larnaca, Cyprus
| | - Stamatis S. Papadatos
- Department of Anatomy, Histology and Embryology, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece;
| | | | - Konstantinos Lampropoulos
- Department of Cardiology, General Hospital of Athens “Evangelismos”, 106 76 Athens, Greece;
- Department of Pathophysiology, School of Medicine, European University of Cyprus, 1678 Nicosia, Cyprus
| | - Dimitrios Farmakis
- Shakolas Educational Center for Clinical Medicine, University of Cyprus Medical School, Palaios Dromos Lefkosias Lemesou No.215/6, Aglantzia, 2029 Nicosia, Cyprus;
| | - Vassilis Vassiliou
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK;
| |
Collapse
|
3
|
Doan TT, Wilkinson JC, Loar RW, Pednekar AS, Masand PM, Noel CV. Regadenoson Stress Perfusion Cardiac Magnetic Resonance Imaging in Children With Kawasaki Disease and Coronary Artery Disease. Am J Cardiol 2019; 124:1125-1132. [PMID: 31371063 DOI: 10.1016/j.amjcard.2019.06.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/13/2019] [Accepted: 06/19/2019] [Indexed: 12/18/2022]
Abstract
Coronary artery (CA) stenosis and occlusion in convalescent Kawasaki disease (KD) is progressive and may result in myocardial infarction. The use of regadenoson, a strong selective CA vasodilator with low side effect profile, for stress cardiac magnetic resonance (CMR) imaging has not been studied in children with KD. The safety, feasibility, and diagnostic utility of regadenoson stress CMR was assessed in children with KD and CA abnormalities. A retrospective review of regadenoson stress CMR in children with convalescent KD was performed. Hemodynamics changes after regadenoson administration and adverse effects were recorded. First-pass perfusion was evaluated at rest and during pharmacologic stress. The results were compared with anatomic CA imaging. Forty-one stress CMR (18 sedated examinations, 44%) were performed successfully in 32 patients. Median age was 11.2 years (range 2.2 to 18.6) and weight 41 kg (range 13 to 93.4). Heart rate increased 66 ± 25% (p <0.005) after regadenoson. Minor adverse events occurred in 6 sedated and 1 unsedated patients. Hypoperfusion during stress occurred in 16 of 41 (39%), including 5 inducible, 9 inducible and fixed, and 2 fixed lesions. Late gadolinium enhancement was present in 10 of 16 with hypoperfusion and in 1 without hypoperfusion. Stress CMR had 100% positive agreement and >90% negative and overall agreement with moderate-to-severe CA stenoses. Four patients with hypoperfusion underwent revascularization for severe CA stenoses. In conclusion, regadenoson stress CMR is hemodynamically safe and feasible in children with KD and CA disease. It has excellent agreement with CA angiography and aided decision-making to proceed with revascularization.
Collapse
Affiliation(s)
- Tam T Doan
- Department of Pediatrics, The Lillie Frank Abercrombie Section of Cardiology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas.
| | - James C Wilkinson
- Department of Pediatrics, The Lillie Frank Abercrombie Section of Cardiology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Robert W Loar
- Department of Pediatrics, The Lillie Frank Abercrombie Section of Cardiology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Amol S Pednekar
- Department of Pediatric Radiology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Prakash M Masand
- Department of Pediatric Radiology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Cory V Noel
- Department of Pediatrics, The Lillie Frank Abercrombie Section of Cardiology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| |
Collapse
|