1
|
Richmann DP, Contento J, Cleveland V, Hamman K, Downing T, Kanter J, Berger JT, Christopher A, Cross R, Chow K, Olivieri L. Accuracy of free-breathing multi-parametric SASHA in identifying T1 and T2 elevations in pediatric orthotopic heart transplant patients. Int J Cardiovasc Imaging 2024; 40:83-91. [PMID: 37874446 PMCID: PMC10842347 DOI: 10.1007/s10554-023-02965-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/21/2023] [Indexed: 10/25/2023]
Abstract
T1/T2 parametric mapping may reveal patterns of elevation ("hotspots") in myocardial diseases, such as rejection in orthotopic heart transplant (OHT) patients. This study aimed to evaluate the diagnostic accuracy of free-breathing (FB) multi-parametric SAturation recovery single-SHot Acquisition (mSASHA) T1/T2 mapping in identifying hotspots present on conventional Breath-held Modified Look-Locker Inversion recovery (BH MOLLI) T1 and T2-prepared balanced steady-state free-precession (BH T2p-bSSFP) maps in pediatric OHT patients. Pediatric OHT patients underwent noncontrast 1.5T CMR with BH MOLLI T1 and T2p-bSSFP and prototype FB mSASHA T1/T2 mapping in 8 short-axis slices. FB and BH T1/T2 hotspots were segmented using semi-automated thresholding (ITK-SNAP) and their 3D coordinate locations were collected (3-Matic, Materialise, Leuven, Belgium). Receiver operator characteristic curve analysis and measures of central tendency were utilized. 40 imaging datasets from 23 pediatric OHT patients were obtained. FB mSASHA yielded a sensitivity of 82.8% for T1 and 80% for T2 maps when compared to the standard BH MOLLI, as well as 100% specificity for both T1 and T2 maps. When identified on both FB and BH maps, hotspots overlapped in all cases, with an average long axis offset between FB and BH hotspot centers of 5.8 mm (IQR 3.5-8.2) on T1 and 5.9 mm (IQR 3.5-8.2) on T2 maps. FB mSASHA T1/T2 maps can identify hotspots present on conventional BH T1/T2 maps in pediatric patients with OHT, with high sensitivity, specificity, and overlap in 3D space. Free-breathing mapping may improve patient comfort and facilitate OHT assessment in younger patient populations.
Collapse
Affiliation(s)
- Devika P Richmann
- Division of Cardiology, Children's National Hospital, Washington, DC, USA.
| | | | - Vincent Cleveland
- Division of Cardiology, Children's National Hospital, Washington, DC, USA
| | - Karin Hamman
- Division of Cardiology, Children's National Hospital, Washington, DC, USA
| | - Tacy Downing
- Division of Cardiology, Children's National Hospital, Washington, DC, USA
| | - Joshua Kanter
- Division of Cardiology, Children's National Hospital, Washington, DC, USA
| | - John T Berger
- Division of Cardiology, Children's National Hospital, Washington, DC, USA
| | - Adam Christopher
- Division of Pediatric Cardiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Russell Cross
- Division of Cardiology, Children's National Hospital, Washington, DC, USA
| | - Kelvin Chow
- Siemens Medical Solutions USA Inc., Chicago, IL, USA
| | - Laura Olivieri
- Division of Pediatric Cardiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Svetlove A, Ritter CO, Dullin C, Schmid M, Schauer S, Uihlein J, Uecker M, Mietsch M, Stadelmann C, Lotz J, Unterberg-Buchwald C. Evaluation of MR-safe bioptomes for MR-guided endomyocardial biopsy in minipigs: a potential radiation-free clinical approach. Eur Radiol Exp 2023; 7:76. [PMID: 38049615 PMCID: PMC10695907 DOI: 10.1186/s41747-023-00391-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/21/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Diagnostic accuracy of endomyocardial biopsy could improve if clinically safe magnetic resonance (MR)-compatible bioptomes were available. We explored two novel MR-compatible cardiac bioptomes for performance, safety, and clinical viability, employing in vivo minipig trials and phase-contrast synchrotron radiation computed microtomography (SRµCT). METHODS Analysis of ex vivo obtained pig endomyocardial biopsies was performed using phase-contrast SRµCT and conventional two-dimensional histology. The technical performance was evaluated by measuring volume, inner and outer integrities, compression, and histological diagnostic value in 3 sets (6 per set) of biopsies for each experimental bioptome. The bioptomes were tested in vivo in 3 healthy minipigs per bioptome. The clinical feasibility was evaluated by procedural and cutting success as well as histological diagnostic value. RESULTS The bioptome with the 'grind-grind' design achieved similar values to control in compression (p = 0.822), inner (p = 0.628), and outer (p = 0.507), integrities ex vivo. It showed a better performance in the in vivo real-time MRI setting demonstrating a higher cutting success (91.7%) than the 'grind-anvil' (86.2%) design. In both ex vivo and in vivo evaluations, the 'grind-grind' design displayed sufficient diagnostic value (83% and 95%). The 'grind-anvil' design showed adequate diagnostic value both ex vivo and in vivo (78% and 87.5%) but was not comparable to control according to the three-dimensional (3D) analysis. CONCLUSION A novel MR-compatible bioptome was identified as plausible in a clinical setting. Additionally, SRµCT and subsequent 3D structural analysis could be valuable in the label-free investigation of myocardial tissue at a micrometer level. RELEVANCE STATEMENT Implementation of MR-guided biopsy can improve animal studies on structural myocardial changes at any point in an experimental setup. With further improvements in guiding catheters, MR-guided biopsy, using the new bioptome, has a potential to increase quality and diagnostic accuracy in patients both with structural and inflammatory cardiomyopathies. KEY POINTS • Novel MR-compatible bioptomes show promise for a clinical application. • SRµCT enabled detailed analysis of endomyocardial biopsies. • The bioptomes showed adequate in vivo performance without major complications.
Collapse
Affiliation(s)
- Angelika Svetlove
- Translational Molecular Imaging, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
- Institute for Diagnostic and Interventional Radiology, University Medical Centre, Göttingen, Germany
| | - Christian O Ritter
- Institute for Diagnostic and Interventional Radiology, University Medical Centre, Göttingen, Germany
- Institute for Diagnostic and Interventional Radiology, Klinikum St. Marien Amberg, Amberg, Germany
| | - Christian Dullin
- Translational Molecular Imaging, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute for Diagnostic and Interventional Radiology, University Medical Centre, Göttingen, Germany
- Department for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- TLRC (Translational Lung Research Center), University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Schmid
- EPflex Feinwerktechnik GmbH, Dettingen an der Erms, Germany
| | - Senta Schauer
- EPflex Feinwerktechnik GmbH, Dettingen an der Erms, Germany
| | | | - Martin Uecker
- Institute for Diagnostic and Interventional Radiology, University Medical Centre, Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- Institute of Biomedical Imaging, Graz University of Technology, Graz, Austria
| | - Matthias Mietsch
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- Laboratory Animal Science Unit, Leibniz-Institut Für Primatenforschung, Deutsches Primatenzentrum GmbH, Göttingen, Germany
| | | | - Joachim Lotz
- Institute for Diagnostic and Interventional Radiology, University Medical Centre, Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Christina Unterberg-Buchwald
- Institute for Diagnostic and Interventional Radiology, University Medical Centre, Göttingen, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.
- Department of Cardiology and Pneumology, University Medical Centre, Göttingen, Germany.
| |
Collapse
|
3
|
Rier SC, Vreemann S, Nijhof WH, van Driel VJHM, van der Bilt IAC. Interventional cardiac magnetic resonance imaging: current applications, technology readiness level, and future perspectives. Ther Adv Cardiovasc Dis 2022; 16:17539447221119624. [PMID: 36039865 PMCID: PMC9434707 DOI: 10.1177/17539447221119624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Cardiac magnetic resonance (CMR) provides excellent temporal and spatial resolution, tissue characterization, and flow measurements. This enables major advantages when guiding cardiac invasive procedures compared with X-ray fluoroscopy or ultrasound guidance. However, clinical implementation is limited due to limited availability of technological advancements in magnetic resonance imaging (MRI) compatible equipment. A systematic review of the available literature on past and present applications of interventional MR and its technology readiness level (TRL) was performed, also suggesting future applications. METHODS A structured literature search was performed using PubMed. Search terms were focused on interventional CMR, cardiac catheterization, and other cardiac invasive procedures. All search results were screened for relevance by language, title, and abstract. TRL was adjusted for use in this article, level 1 being in a hypothetical stage and level 9 being widespread clinical translation. The papers were categorized by the type of procedure and the TRL was estimated. RESULTS Of 466 papers, 117 papers met the inclusion criteria. TRL was most frequently estimated at level 5 meaning only applicable to in vivo animal studies. Diagnostic right heart catheterization and cavotricuspid isthmus ablation had the highest TRL of 8, meaning proven feasibility and efficacy in a series of humans. CONCLUSION This article shows that interventional CMR has a potential widespread application although clinical translation is at a modest level with TRL usually at 5. Future development should be directed toward availability of MR-compatible equipment and further improvement of the CMR techniques. This could lead to increased TRL of interventional CMR providing better treatment.
Collapse
Affiliation(s)
- Sophie C Rier
- Cardiology Division, Department of Cardiology, Haga Teaching Hospital, Els Borst-Eilersplein 275, Postbus 40551, The Hague 2504 LN, The Netherlands
| | - Suzan Vreemann
- Department of Cardiology, Haga Teaching Hospital, The Hague, The Netherlands Siemens Healthineers Nederland B.V., Den Haag, The Netherlands
| | - Wouter H Nijhof
- Siemens Healthineers Nederland B.V., Den Haag, The Netherlands
| | | | | |
Collapse
|
4
|
Micro-biopsy for detection of gene expression changes in ischemic swine myocardium: A pilot study. PLoS One 2021; 16:e0250582. [PMID: 33909677 PMCID: PMC8081259 DOI: 10.1371/journal.pone.0250582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/09/2021] [Indexed: 11/19/2022] Open
Abstract
Micro-endomyocardial biopsy (micro-EMB) is a novel catheter-based biopsy technique, aiming to increase flexibility and safety compared to conventional EMB. The technique was developed and evaluated in healthy swine. Therefore, the ability to detect disease related tissue changes could not be evaluated. The aim of the present pilot study was to investigate the ability to detect disease related gene expression changes using micro-EMB. Myocardial infarction was induced in three swine by coronary artery balloon occlusion. Micro-EMB samples (n = 164) were collected before, during, and after occlusion. RNA-sequencing was performed on 85 samples, and 53 of these were selected for bioinformatic analysis. A large number of responding genes was detected from the infarcted area (n = 1911). The early responding genes (n = 1268) were mostly related to apoptosis and inflammation. There were fewer responding genes two days after infarction (n = 6), which were related to extra-cellular matrix changes, and none after 14 days. In contrast to the infarcted area, samples harvested from a non-infarcted myocardial region showed considerably fewer regulated genes (n = 33). Deconvolution analysis, to estimate the proportion of different cell types, revealed a higher proportion of fibroblasts and a reduced proportion of cardiomyocytes two days after occlusion compared to baseline (p < 0.02 and p < 0.01, respectively. S5 File). In conclusion, this pilot study demonstrates the capabilities of micro-EMB to detect local gene expression responses at an early stage after ischemia, but not at later timepoints.
Collapse
|
5
|
Bietenbeck M, Florian A, Chatzantonis G, Meier C, Korthals D, Martens S, Yilmaz A. Introduction of a CMR-conditional cardiac phantom simulating cardiac anatomy and function and enabling training of interventional CMR procedures. Sci Rep 2019; 9:19852. [PMID: 31882762 PMCID: PMC6934499 DOI: 10.1038/s41598-019-56506-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/13/2019] [Indexed: 11/30/2022] Open
Abstract
Interventional magnetic resonance imaging (MRI) procedures promise to open-up new vistas regarding clinically relevant diagnostic and/or therapeutic procedures in the field of cardiology. However, a number of major limitations and challenges regarding interventional cardiovascular magnetic resonance (CMR) procedures still delay their translation from pre-clinical studies to human application. A CMR-conditional cardiac phantom was constructed using MR-safe or -conditional materials only that is based on a unique modular composition allowing quick replacement of individual components. A maximal flow of 76 ml/sec in the aorta and 111 ml/sec in the pulmonary artery were measured, whereas the maximal flow velocity was 56 cm/sec and 89 cm/sec, respectively. A conventional wedge-pressure catheter was advanced over a MRI-conditional guidewire into the right ventricle and thereafter positioned in the pulmonary artery. Pulmonary artery pressure was measured, obtaining the following values for our cardiac phantom: max/min/mean = 16/10/12 mmHg. The presented CMR-conditional cardiac phantom is the first of its kind that does not only mimic cardiac mechanics with adjustable fluid pressure in a four chamber setup that is closely adapted to that of the human heart, but also enables introduction and testing of interventional tools such as guidewires and catheters.
Collapse
Affiliation(s)
- Michael Bietenbeck
- Department of Cardiology, Division of Cardiovascular Imaging, University Hospital Münster, Münster, Germany
| | - Anca Florian
- Department of Cardiology, Division of Cardiovascular Imaging, University Hospital Münster, Münster, Germany
| | - Grigorios Chatzantonis
- Department of Cardiology, Division of Cardiovascular Imaging, University Hospital Münster, Münster, Germany
| | - Claudia Meier
- Department of Cardiac Surgery, University Hospital Münster, Münster, Germany
| | - Dennis Korthals
- Department of Cardiology, Division of Cardiovascular Imaging, University Hospital Münster, Münster, Germany
| | - Sven Martens
- Department of Cardiac Surgery, University Hospital Münster, Münster, Germany
| | - Ali Yilmaz
- Department of Cardiology, Division of Cardiovascular Imaging, University Hospital Münster, Münster, Germany.
| |
Collapse
|
6
|
Reiber JHC, Pereira GTR, Bezerra HG, De Sutter J, Schoenhagen P, Stillman AE, Van de Veire NRL. Cardiovascular imaging 2018 in the International Journal of Cardiovascular Imaging. Int J Cardiovasc Imaging 2019; 35:1175-1188. [PMID: 30868339 DOI: 10.1007/s10554-019-01579-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Johan H C Reiber
- Department of Radiology, Division of Image Processing, Leiden University Medical Center, Leiden, The Netherlands.
| | | | - Hiram G Bezerra
- Department of Cardiology, Case Western Hospitals, Cleveland, OH, USA
| | - Johan De Sutter
- Department of Cardiology, AZ Maria Middelares Gent and University Gent, Ghent, Belgium
| | - Paul Schoenhagen
- Department of Radiology, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Arthur E Stillman
- Department of Radiology, Emory University Hospital, Atlanta, GA, USA
| | - Nico R L Van de Veire
- Department of Cardiology, AZ Maria Middelares Gent and Free University Brussels, Brussels, Belgium
| |
Collapse
|
7
|
Eichhorn C, Bière L, Schnell F, Schmied C, Wilhelm M, Kwong RY, Gräni C. Myocarditis in Athletes Is a Challenge: Diagnosis, Risk Stratification, and Uncertainties. JACC Cardiovasc Imaging 2019; 13:494-507. [PMID: 31202742 DOI: 10.1016/j.jcmg.2019.01.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/10/2018] [Accepted: 01/05/2019] [Indexed: 12/12/2022]
Abstract
Presentation of myocarditis in athletes is heterogeneous and establishing the diagnosis is challenging with no current uniform clinical gold standard. The combined information from symptoms, electrocardiography, laboratory testing, echocardiography, cardiac magnetic resonance imaging, and in certain cases endomyocardial biopsy helps to establish the diagnosis. Most patients with myocarditis recover spontaneously; however, athletes may be at higher risk of adverse cardiac events. Based on scarce evidence and mainly autopsy studies and expert's opinions, current recommendations generally advise abstinence from competitive sports ranging from a minimum of 3 to 6 months. However, the dilemma poses that (un)necessary prolonged disqualification of athletes to avoid adverse cardiac events can cause considerable disruption to training schedules and tournament preparation and lead to a decline in performance and ability to compete. Therefore, better risk stratification tools are imperatively needed. Using latest available data, this review contrasts existing recommendations and presents a new proposed diagnostic flowchart putting a greater focus on the use of cardiac magnetic resonance imaging in athletes with suspected myocarditis. This may enable cardiac caregivers to counsel athletes with suspected myocarditis more systematically and furthermore allow for pooling of more unified data. To modify recommendations regarding sports behavior in athletes with myocarditis, evidence, based on large multicenter registries including cardiac magnetic resonance imaging and endomyocardial biopsy, is needed. In the future, physicians might rely on combined novel risk stratification methods, by implementing both noninvasive and invasive tissue characterization methods.
Collapse
Affiliation(s)
- Christian Eichhorn
- Noninvasive Cardiovascular Imaging Section, Cardiovascular Division, Department of Medicine, Brigham and Womens Hospital, Harvard Medical School, Boston, Massachusetts
| | - Loïc Bière
- Noninvasive Cardiovascular Imaging Section, Cardiovascular Division, Department of Medicine, Brigham and Womens Hospital, Harvard Medical School, Boston, Massachusetts; Institut MitoVasc, Laboratoire Cardioprotection, Remodelage et Thrombose, University of Angers, Angers, France; Department of Cardiology, University Hospital of Angers, Angers, France
| | - Frédéric Schnell
- Rennes University Health Centre, Sports Medicine Division, Physiology Laboratories, Rennes-1 University, Rennes, France
| | - Christian Schmied
- Department of Cardiology, University Heart Center, Zurich, Switzerland
| | - Matthias Wilhelm
- Department of Cardiology, Swiss Cardiovascular Center, University Hospital Berne, Berne, Switzerland
| | - Raymond Y Kwong
- Noninvasive Cardiovascular Imaging Section, Cardiovascular Division, Department of Medicine, Brigham and Womens Hospital, Harvard Medical School, Boston, Massachusetts
| | - Christoph Gräni
- Noninvasive Cardiovascular Imaging Section, Cardiovascular Division, Department of Medicine, Brigham and Womens Hospital, Harvard Medical School, Boston, Massachusetts; Department of Cardiology, Swiss Cardiovascular Center, University Hospital Berne, Berne, Switzerland; Cardiac Imaging, Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
8
|
Rothe M, Jahn A, Weiss K, Hwang JH, Szendroedi J, Kelm M, Schrader J, Roden M, Flögel U, Bönner F. In vivo 19F MR inflammation imaging after myocardial infarction in a large animal model at 3 T. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2018; 32:5-13. [DOI: 10.1007/s10334-018-0714-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/04/2018] [Accepted: 10/22/2018] [Indexed: 12/19/2022]
|