1
|
Zaki-Dizaji M, Taheri Z, Heiat M, Hushmandi K. Tumor-educated platelet, a potential liquid biopsy biosource in pancreatic cancer: A review. Pathol Res Pract 2025; 270:155986. [PMID: 40286788 DOI: 10.1016/j.prp.2025.155986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 04/13/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
Pancreatic cancer (PC) is a frequent and aggressive digestive system cancer with a very poor prognosis. The best chance for recovery lies in early surgical removal of the tumor. Unfortunately, because PC often develops without noticeable symptoms, diagnosis is frequently delayed. Limited treatment options, the metastasis potential of pancreatic cancer cells, and its generally poor prognosis mean that patients are often diagnosed late, significantly reducing the effectiveness of treatment. Consequently, there's a critical need for new biomarkers and technologies to improve early detection through screening. Recently, the liquid biopsy has developed as a powerful means for detecting and monitoring cancer at the molecular level. Its advantages include the ease and non-invasive nature of sample collection and its ability to reflect the dynamic changes within a tumor. Platelets, the second most numerous type of blood cell, offer a particularly promising source for liquid biopsy. It is known that cancer affects various aspects of platelets, including their number, size, activation state, and the proteins and RNA they contain. However, the full implications of these changes for cancer detection have not yet been fully integrated into routine clinical practice. Platelets have a unique ability to captivate nucleic acids and proteins from their surroundings, and they alter their transcriptome in response to external signals. This leads to the development of tumor-educated platelets (TEPs). Liquid biopsies that utilize TEP biomarkers hold considerable potential for screening, early detection, prognosis, guiding personalized treatment strategies, ongoing monitoring of the disease, and predicting recurrence. Encouraging results from preclinical studies have highlighted the potential of platelets as a novel liquid biopsy source for a wide range of cancers. This review will explore the potential of using platelets as a liquid biopsy method, specifically for pancreatic cancer.
Collapse
Affiliation(s)
- Majid Zaki-Dizaji
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zahra Taheri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Hussain MS, Moglad E, Goyal A, Rekha MM, Sharma GC, Jayabalan K, Sahoo S, Devi A, Goyal K, Gupta G, Shahwan M, Alzarea SI, Kazmi I. Tumor-educated platelets in lung cancer. Clin Chim Acta 2025; 573:120307. [PMID: 40228574 DOI: 10.1016/j.cca.2025.120307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/10/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
Non-invasive diagnostic monitoring techniques have become essential for treating lung cancer (LC), which continues to be the primary cause of cancer-related death worldwide. The new diagnostic biomarkers called tumour-educated platelets (TEPs) show strong prospects for providing vital information about tumor biology, tumor spread pathways, and treatment reaction patterns. Despite lacking a nucleus, platelets exhibit an active RNA profile that develops through interactions with tumor-derived compounds and the tumor microenvironments (TME). This review explains platelet-tumour interaction regulatory mechanisms while focusing on platelet contributions toward cancer development, immune system avoidance, and blood clot formation. The detection and classification of LC show promise through the analysis of RNA molecules extracted from platelets that encompass mRNAs and non-coding RNAs. RNA sequencing technology based on TEP demonstrates excellent diagnostic power by correctly identifying LC patients alongside their oncogenic alterations of EGFR, KRAS, and ALK. Treatment predictions have proven successful using platelet RNA profiles, specifically in immunotherapy and targeted therapy. Integrating next-generation sequencing with machine learning and artificial intelligence enhances TEP-based diagnostic tools, improving detection accuracy. Standardizing platelet extraction methods and vesicle purification from tumor material needs better development for effective and affordable clinical use. Future investigations should combine TEPs with circulating tumor DNA and exosomal RNA markers to enhance both earliest-stage LC diagnosis and patient-specific therapeutic approaches. TEPs introduce a groundbreaking technique in oncology since they can transform non-invasive medical diagnostics and therapeutic monitoring for cancer.
Collapse
Affiliation(s)
- Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Alkharj 11942, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - M M Rekha
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Girish Chandra Sharma
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Karthikeyan Jayabalan
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Samir Sahoo
- Department of General Medicine IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India
| | - Anita Devi
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307 Punjab, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf 72341, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
3
|
Tian Y, Zong Y, Pang Y, Zheng Z, Ma Y, Zhang C, Gao J. Platelets and diseases: signal transduction and advances in targeted therapy. Signal Transduct Target Ther 2025; 10:159. [PMID: 40374650 DOI: 10.1038/s41392-025-02198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/18/2024] [Accepted: 02/24/2025] [Indexed: 05/17/2025] Open
Abstract
Platelets are essential anucleate blood cells that play pivotal roles in hemostasis, tissue repair, and immune modulation. Originating from megakaryocytes in the bone marrow, platelets are small in size but possess a highly specialized structure that enables them to execute a wide range of physiological functions. The platelet cytoplasm is enriched with functional proteins, organelles, and granules that facilitate their activation and participation in tissue repair processes. Platelet membranes are densely populated with a variety of receptors, which, upon activation, initiate complex intracellular signaling cascades. These signaling pathways govern platelet activation, aggregation, and the release of bioactive molecules, including growth factors, cytokines, and chemokines. Through these mechanisms, platelets are integral to critical physiological processes such as thrombosis, wound healing, and immune surveillance. However, dysregulated platelet function can contribute to pathological conditions, including cancer metastasis, atherosclerosis, and chronic inflammation. Due to their central involvement in both normal physiology and disease, platelets have become prominent targets for therapeutic intervention. Current treatments primarily aim to modulate platelet signaling to prevent thrombosis in cardiovascular diseases or to reduce excessive platelet aggregation in other pathological conditions. Antiplatelet therapies are widely employed in clinical practice to mitigate clot formation in high-risk patients. As platelet biology continues to evolve, emerging therapeutic strategies focus on refining platelet modulation to enhance clinical outcomes and prevent complications associated with platelet dysfunction. This review explores the structure, signaling pathways, biological functions, and therapeutic potential of platelets, highlighting their roles in both physiological and pathological contexts.
Collapse
Affiliation(s)
- Yuchen Tian
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Yidan Pang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhikai Zheng
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyang Ma
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Wang Y, Jiang L, Wang J, Huang Y, Dong Y. Utilization of TEP miRNAs in tumor proliferation, diagnostic evaluation, therapeutic intervention, and prognostic assessment. Mol Biol Rep 2025; 52:343. [PMID: 40140156 DOI: 10.1007/s11033-025-10433-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025]
Abstract
According to the most recent 2022 statistics, China accounts for 4.82 million cancer patients, leading globally in prevalence. Early detection and intervention remain the most effective strategies for tumor prevention, treatment, and mortality reduction. There is an urgent need to enhance capabilities in cancer diagnosis and prevention. This study examines the association between tumor-educated platelet (TEP) microRNAs (miRNAs) and malignancies, as well as the role of TEP miRNAs in common cancers. TEP miRNAs offer significant advantages over tissue biopsies, conventional tumor biomarkers, and circulating miRNAs, including simplified sampling procedures, efficient monitoring, and longitudinal assessment of therapeutic dynamics. These advantages are instrumental in advancing tumor screening, diagnosis, treatment, and monitoring.
Collapse
Affiliation(s)
- Yuhan Wang
- Department of Clinical Laboratory, Luzhou Longmatan District People's Hospital, Luzhou, 646000, China
| | - Ling Jiang
- Department of Transfusion, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jie Wang
- Department of Transfusion, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yuanshuai Huang
- Department of Transfusion, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Ya Dong
- Department of Oncology, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Chunhui Road 182#, Longmatan District, Luzhou, 646000, Sichuan Province, China.
| |
Collapse
|
5
|
Xie L, Gan F, Hu Y, Zheng Y, Lan J, Liu Y, Zhou X, Zheng J, Zhou X, Lou J. From Blood to Therapy: The Revolutionary Application of Platelets in Cancer-Targeted Drug Delivery. J Funct Biomater 2025; 16:15. [PMID: 39852571 PMCID: PMC11766108 DOI: 10.3390/jfb16010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/24/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
Biomimetic nanodrug delivery systems based on cell membranes have emerged as a promising approach for targeted cancer therapy due to their biocompatibility and low immunogenicity. Among them, platelet-mediated systems are particularly noteworthy for their innate tumor-homing and cancer cell interaction capabilities. These systems utilize nanoparticles shielded and directed by platelet membrane coatings for efficient drug delivery. This review highlights the role of platelets in cancer therapy, summarizes the advancements in platelet-based drug delivery systems, and discusses their integration with other cancer treatments. Additionally, it addresses the limitations and challenges of platelet-mediated drug delivery, offering insights into future developments in this innovative field.
Collapse
Affiliation(s)
- Lijuan Xie
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (L.X.); (F.G.); (Y.H.); (Y.Z.); (J.L.); (Y.L.); (X.Z.); (J.Z.)
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Fengxu Gan
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (L.X.); (F.G.); (Y.H.); (Y.Z.); (J.L.); (Y.L.); (X.Z.); (J.Z.)
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Yun Hu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (L.X.); (F.G.); (Y.H.); (Y.Z.); (J.L.); (Y.L.); (X.Z.); (J.Z.)
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Yibin Zheng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (L.X.); (F.G.); (Y.H.); (Y.Z.); (J.L.); (Y.L.); (X.Z.); (J.Z.)
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Junshan Lan
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (L.X.); (F.G.); (Y.H.); (Y.Z.); (J.L.); (Y.L.); (X.Z.); (J.Z.)
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Yuting Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (L.X.); (F.G.); (Y.H.); (Y.Z.); (J.L.); (Y.L.); (X.Z.); (J.Z.)
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Xiaofang Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (L.X.); (F.G.); (Y.H.); (Y.Z.); (J.L.); (Y.L.); (X.Z.); (J.Z.)
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Jianyu Zheng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (L.X.); (F.G.); (Y.H.); (Y.Z.); (J.L.); (Y.L.); (X.Z.); (J.Z.)
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Xing Zhou
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, School of Rehabilitation, Kunming Medical University, Kunming 650500, China
| | - Jie Lou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (L.X.); (F.G.); (Y.H.); (Y.Z.); (J.L.); (Y.L.); (X.Z.); (J.Z.)
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
6
|
Karp JM, Modrek AS, Ezhilarasan R, Zhang ZY, Ding Y, Graciani M, Sahimi A, Silvestro M, Chen T, Li S, Wong KK, Ramkhelawon B, Bhat KP, Sulman EP. Deconvolution of the tumor-educated platelet transcriptome reveals activated platelet and inflammatory cell transcript signatures. JCI Insight 2024; 9:e178719. [PMID: 39190500 PMCID: PMC11466191 DOI: 10.1172/jci.insight.178719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Tumor-educated platelets (TEPs) are a potential method of liquid biopsy for the diagnosis and monitoring of cancer. However, the mechanism underlying tumor education of platelets is not known, and transcripts associated with TEPs are often not tumor-associated transcripts. We demonstrated that direct tumor transfer of transcripts to circulating platelets is an unlikely source of the TEP signal. We used CDSeq, a latent Dirichlet allocation algorithm, to deconvolute the TEP signal in blood samples from patients with glioblastoma. We demonstrated that a substantial proportion of transcripts in the platelet transcriptome are derived from nonplatelet cells, and the use of this algorithm allows the removal of contaminant transcripts. Furthermore, we used the results of this algorithm to demonstrate that TEPs represent a subset of more activated platelets, which also contain transcripts normally associated with nonplatelet inflammatory cells, suggesting that these inflammatory cells, possibly in the tumor microenvironment, transfer transcripts to platelets that are then found in circulation. Our analysis suggests a useful and efficient method of processing TEP transcriptomic data to enable the isolation of a unique TEP signal associated with specific tumors.
Collapse
Affiliation(s)
- Jerome M. Karp
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, New York, USA
| | - Aram S. Modrek
- Department of Radiation Oncology, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Ravesanker Ezhilarasan
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, New York, USA
| | - Ze-Yan Zhang
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, New York, USA
| | - Yingwen Ding
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, New York, USA
| | - Melanie Graciani
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, New York, USA
| | - Ali Sahimi
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, New York, USA
| | | | - Ting Chen
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York, USA
| | - Shuai Li
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York, USA
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York, USA
| | | | | | - Erik P. Sulman
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, New York, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
7
|
Ultimescu F, Hudita A, Popa DE, Olinca M, Muresean HA, Ceausu M, Stanciu DI, Ginghina O, Galateanu B. Impact of Molecular Profiling on Therapy Management in Breast Cancer. J Clin Med 2024; 13:4995. [PMID: 39274207 PMCID: PMC11396537 DOI: 10.3390/jcm13174995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/16/2024] Open
Abstract
Breast cancer (BC) remains the most prevalent cancer among women and the leading cause of cancer-related mortality worldwide. The heterogeneity of BC in terms of histopathological features, genetic polymorphisms, and response to therapies necessitates a personalized approach to treatment. This review focuses on the impact of molecular profiling on therapy management in breast cancer, emphasizing recent advancements in next-generation sequencing (NGS) and liquid biopsies. These technologies enable the identification of specific molecular subtypes and the detection of blood-based biomarkers such as circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and tumor-educated platelets (TEPs). The integration of molecular profiling with traditional clinical and pathological data allows for more tailored and effective treatment strategies, improving patient outcomes. This review also discusses the current challenges and prospects of implementing personalized cancer therapy, highlighting the potential of molecular profiling to revolutionize BC management through more precise prognostic and therapeutic interventions.
Collapse
Affiliation(s)
- Flavia Ultimescu
- OncoTeam Diagnostic S.A., 010719 Bucharest, Romania
- Doctoral School of Medicine, "Carol Davila" University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania
| | - Ariana Hudita
- Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest, University of Bucharest, 050663 Bucharest, Romania
| | - Daniela Elena Popa
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy Bucharest, 020956 Bucharest, Romania
| | - Maria Olinca
- OncoTeam Diagnostic S.A., 010719 Bucharest, Romania
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania
| | | | - Mihail Ceausu
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania
| | | | - Octav Ginghina
- Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy Bucharest, 010221 Bucharest, Romania
- Department of Surgery 3, "Prof. Dr. Al. Trestioreanu" Institute of Oncology Bucharest, 022328 Bucharest, Romania
| | - Bianca Galateanu
- Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| |
Collapse
|
8
|
Feng T, Wang Y, Zhang W, Cai T, Tian X, Su J, Zhang Z, Zheng S, Ye S, Dai B, Wang Z, Zhu Y, Zhang H, Chang K, Ye D. Machine Learning-based Framework Develops a Tumor Thrombus Coagulation Signature in Multicenter Cohorts for Renal Cancer. Int J Biol Sci 2024; 20:3590-3620. [PMID: 38993563 PMCID: PMC11234220 DOI: 10.7150/ijbs.94555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/17/2024] [Indexed: 07/13/2024] Open
Abstract
Background: Renal cell carcinoma (RCC) is frequently accompanied by tumor thrombus in the venous system with an extremely dismal prognosis. The current Tumor Node Metastasis (TNM) stage and Mayo clinical classification do not appropriately identify preference-sensitive treatment. Therefore, there is an urgent need to develop a better ideal model for precision medicine. Methods: In this study, we developed a coagulation tumor thrombus signature for RCC with 10 machine-learning algorithms (101 combinations) based on a novel computational framework using multiple independent cohorts. Results: The established tumor thrombus coagulation-related risk stratification (TTCRRS) signature comprises 10 prognostic coagulation-related genes (CRGs). This signature could predict survival outcomes in public and in-house protein cohorts and showed high performance compared to 129 published signatures. Additionally, the TTCRRS signature was significantly related to some immune landscapes, immunotherapy response, and chemotherapy. Furthermore, we also screened out hub genes, transcription factors, and small compounds based on the TTCRRS signature. Meanwhile, CYP51A1 can regulate the proliferation and migration properties of RCC. Conclusions: The TTCRRS signature can complement the traditional anatomic TNM staging system and Mayo clinical stratification and provide clinicians with more therapeutic options.
Collapse
Affiliation(s)
- Tao Feng
- Qingdao Institute, School of Life Medicine, Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Qingdao, 266500, China
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Yue Wang
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Wei Zhang
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Tingting Cai
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Xi Tian
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Jiaqi Su
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Zihao Zhang
- Qingdao Institute, School of Life Medicine, Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Qingdao, 266500, China
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Shengfeng Zheng
- Qingdao Institute, School of Life Medicine, Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Qingdao, 266500, China
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Shiqi Ye
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Bo Dai
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Ziliang Wang
- Central Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Middle Zhijiang Road, Shanghai 200071, China
| | - Yiping Zhu
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Hailiang Zhang
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Kun Chang
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| | - Dingwei Ye
- Department of Urology, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200433, China
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
| |
Collapse
|
9
|
Najafi S, Asemani Y, Majidpoor J, Mahmoudi R, Aghaei-Zarch SM, Mortezaee K. Tumor-educated platelets. Clin Chim Acta 2024; 552:117690. [PMID: 38056548 DOI: 10.1016/j.cca.2023.117690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Beyond traditional roles in homeostasis and coagulation, growing evidence suggests that platelets also reflect malignant transformation in cancer. Platelets are present in the tumor microenvironment where they interact with cancer cells. This interaction results in direct and indirect "education" as evident by platelet alterations in adhesion molecules, glycoproteins, nucleic acids, proteins and various receptors. Subsequently, these tumor-educated platelets (TEPs) circulate throughout the body and play pivotal roles in promotion of tumor growth and dissemination. Accordingly, platelet status can be considered a unique blood-based biomarker that can potentially predict prognosis and therapeutic success. Recently, liquid biopsies including TEPs have received much attention as safe, minimally invasive and sensitive alternatives for patient management. Herein, we provide an overview of TEPs and explore their benefits and limitations in cancer.
Collapse
Affiliation(s)
- Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yahya Asemani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Reza Mahmoudi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
10
|
Meng Y, Huang K, Shi M, Huo Y, Han L, Liu B, Li Y. Research Advances in the Role of the Tropomyosin Family in Cancer. Int J Mol Sci 2023; 24:13295. [PMID: 37686101 PMCID: PMC10488083 DOI: 10.3390/ijms241713295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Cancer is one of the most difficult diseases for human beings to overcome. Its development is closely related to a variety of factors, and its specific mechanisms have been a hot research topic in the field of scientific research. The tropomyosin family (Tpm) is a group of proteins closely related to the cytoskeleton and actin, and recent studies have shown that they play an important role in various cancers, participating in a variety of biological activities, including cell proliferation, invasion, and migration, and have been used as biomarkers for various cancers. The purpose of this review is to explore the research progress of the Tpm family in tumorigenesis development, focusing on the molecular pathways associated with them and their relevant activities involved in tumors. PubMed and Web of Science databases were searched for relevant studies on the role of Tpms in tumorigenesis and development and the activities of Tpms involved in tumors. Data from the literature suggest that the Tpm family is involved in tumor cell proliferation and growth, tumor cell invasion and migration, tumor angiogenesis, tumor cell apoptosis, and immune infiltration of the tumor microenvironment, among other correlations. It can be used as a potential biomarker for early diagnosis, follow-up, and therapeutic response of some tumors. The Tpm family is involved in cancer in a close relationship with miRNAs and LncRNAs. Tpms are involved in tumor tissue invasion and migration as a key link. On this basis, TPM is frequently used as a biomarker for various cancers. However, the specific molecular mechanism of its involvement in cancer progression has not been explained clearly, which remains an important direction for future research.
Collapse
Affiliation(s)
- Yucheng Meng
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (Y.M.); (K.H.); (M.S.); (Y.H.); (L.H.)
| | - Ke Huang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (Y.M.); (K.H.); (M.S.); (Y.H.); (L.H.)
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China
| | - Mingxuan Shi
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (Y.M.); (K.H.); (M.S.); (Y.H.); (L.H.)
| | - Yifei Huo
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (Y.M.); (K.H.); (M.S.); (Y.H.); (L.H.)
| | - Liang Han
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (Y.M.); (K.H.); (M.S.); (Y.H.); (L.H.)
| | - Bin Liu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (Y.M.); (K.H.); (M.S.); (Y.H.); (L.H.)
| | - Yi Li
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (Y.M.); (K.H.); (M.S.); (Y.H.); (L.H.)
| |
Collapse
|
11
|
Zhu J, Giannakeas V, Narod SA, Akbari MR. Emerging applications of tumour-educated platelets in the detection and prognostication of ovarian cancer. Protein Cell 2023; 14:556-559. [PMID: 36971351 PMCID: PMC10392028 DOI: 10.1093/procel/pwad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 08/02/2023] Open
Affiliation(s)
- Jiewei Zhu
- Women's College Research Institute, Women's College Hospital, University of Toronto, Toronto, Ontario M5S 1B2, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A, Canada
| | - Vasily Giannakeas
- Women's College Research Institute, Women's College Hospital, University of Toronto, Toronto, Ontario M5S 1B2, Canada
| | - Steven A Narod
- Women's College Research Institute, Women's College Hospital, University of Toronto, Toronto, Ontario M5S 1B2, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario M5S 1A, Canada
| | - Mohammad R Akbari
- Women's College Research Institute, Women's College Hospital, University of Toronto, Toronto, Ontario M5S 1B2, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario M5S 1A, Canada
| |
Collapse
|
12
|
Wei J, Meng X, Wei X, Zhu K, Du L, Wang H. Down-regulated lncRNA ROR in tumor-educated platelets as a liquid-biopsy biomarker for nasopharyngeal carcinoma. J Cancer Res Clin Oncol 2023; 149:4403-4409. [PMID: 36107245 PMCID: PMC10349751 DOI: 10.1007/s00432-022-04350-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022]
Abstract
PURPOSES To evaluate the diagnostic value of tumor-educated platelets (TEP) lncRNA ROR for nasopharyngeal carcinoma (NPC). METHODS Quantitative real-time PCR was used to determine the expression level of TEP lncRNA ROR in NPC patients (n = 50) as compared to normal subjects (n = 33). The ROC curve analysis was performed to assess the diagnostic value of TEP lncRNA ROR for NPC. Correlations between TEP lncRNA ROR and clinical parameters were further analyzed. RESULTS The median of TEP lncRNA ROR was significantly lower in NPC patients than that in normal subjects (0.0209 vs 0.0610, p = 0.0019), while no significant difference was found in plasma lncRNA ROR. ROC analysis showed that TEP lncRNA ROR had a sensitivity of 60%, specificity of 70%, and accuracy of 63.9% in diagnosing NPC, and the area under ROC curve (AUC) was 0.70. The expression level of TEP lncRNA ROR in NPC showed no significant difference among different TNM stages. However, low level of TEP lncRNA ROR correlated well with positive Epstein-Barr virus (EBV) DNA (kappa value = 0.314, p = 0.06), TEP lncRNA ROR and EBV DNA had similar diagnostic positive rate (58.3%) for NPC, and the combination of TEP lncRNA ROR and EBV DNA increased the positive rate to 74%. CONCLUSION The expression level of TEP lncRNA ROR was down-regulated in NPC and the diagnostic value of TEP lncRNA ROR was similar to EBV DNA. Our study indicated that TEP lncRNA ROR might serve as a novel type of liquid biopsy biomarker in diagnosis of NPC patients.
Collapse
Affiliation(s)
- Jiazhou Wei
- Department of Laboratory Medicine, Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xian Meng
- Department of Laboratory Medicine, Wuhan Jiangxia Hospital of Traditional Chinese Medicine, Wuhan, 430022, People's Republic of China
| | - Xiuqi Wei
- Department of Laboratory Medicine, Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Kaidong Zhu
- Department of Laboratory Medicine, Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Li Du
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
| | - Hui Wang
- Department of Laboratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
13
|
Antunes-Ferreira M, D'Ambrosi S, Arkani M, Post E, In 't Veld SGJG, Ramaker J, Zwaan K, Kucukguzel ED, Wedekind LE, Griffioen AW, Oude Egbrink M, Kuijpers MJE, van den Broek D, Noske DP, Hartemink KJ, Sabrkhany S, Bahce I, Sol N, Bogaard HJ, Koppers-Lalic D, Best MG, Wurdinger T. Tumor-educated platelet blood tests for Non-Small Cell Lung Cancer detection and management. Sci Rep 2023; 13:9359. [PMID: 37291189 PMCID: PMC10250384 DOI: 10.1038/s41598-023-35818-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/24/2023] [Indexed: 06/10/2023] Open
Abstract
Liquid biopsy approaches offer a promising technology for early and minimally invasive cancer detection. Tumor-educated platelets (TEPs) have emerged as a promising liquid biopsy biosource for the detection of various cancer types. In this study, we processed and analyzed the TEPs collected from 466 Non-small Cell Lung Carcinoma (NSCLC) patients and 410 asymptomatic individuals (controls) using the previously established thromboSeq protocol. We developed a novel particle-swarm optimization machine learning algorithm which enabled the selection of an 881 RNA biomarker panel (AUC 0.88). Herein we propose and validate in an independent cohort of samples (n = 558) two approaches for blood samples testing: one with high sensitivity (95% NSCLC detected) and another with high specificity (94% controls detected). Our data explain how TEP-derived spliced RNAs may serve as a biomarker for minimally-invasive clinical blood tests, complement existing imaging tests, and assist the detection and management of lung cancer patients.
Collapse
Affiliation(s)
- Mafalda Antunes-Ferreira
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Silvia D'Ambrosi
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Mohammad Arkani
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Pulmonary Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Department of Biomedical Data Science, Leiden University Medical Center, Leiden, The Netherlands
| | - Edward Post
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Sjors G J G In 't Veld
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Jip Ramaker
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Kenn Zwaan
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Ece Demirel Kucukguzel
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Laurine E Wedekind
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Arjan W Griffioen
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Mirjam Oude Egbrink
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Marijke J E Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Daan van den Broek
- Department of Laboratory Medicine, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - David P Noske
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Koen J Hartemink
- Department of Thoracic Surgery, The Netherlands Cancer Institute-Antoni Van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Siamack Sabrkhany
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Idris Bahce
- Department of Pulmonary Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Nik Sol
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
- Department of Neurology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Harm-Jan Bogaard
- Department of Pulmonary Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | | | - Myron G Best
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Thomas Wurdinger
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Amsterdam, The Netherlands.
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Mulder FI, Kraaijpoel N, Carrier M, Guman NA, Jara-Palomares L, Di Nisio M, Ageno W, Beyer-Westendorf J, Klok FA, Vanassche T, Otten HMB, Cosmi B, Wolde MT, In 't Veld SGJG, Post E, Ramaker J, Zwaan K, Peters M, Delluc A, Kamphuisen PW, Sanchez-Lopez V, Porreca E, Bossuyt PMM, Büller HR, Wurdinger T, Best MG, van Es N. Platelet RNA sequencing for cancer screening in patients with unprovoked venous thromboembolism: a prospective cohort study. J Thromb Haemost 2023; 21:905-916. [PMID: 36841648 DOI: 10.1016/j.jtha.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
BACKGROUND Platelet RNA sequencing has been shown to accurately detect cancer in previous studies. OBJECTIVES To compare the diagnostic accuracy of platelet RNA sequencing with standard-of-care limited cancer screening in patients with unprovoked venous thromboembolism (VTE). METHODS Patients aged ≥40 years with unprovoked VTE were recruited at 13 centers and followed for 12 months for cancer. Participants underwent standard-of-care limited cancer screening, and platelet RNA sequencing analysis was performed centrally at study end for cases and selected controls. Sensitivity and specificity were calculated, using the predefined primary positivity threshold of 0.54 for platelet RNA sequencing aiming at 86% test sensitivity, and an additional predefined threshold of 0.89 aiming at 99% test specificity. RESULTS A total of 476 participants were enrolled, of whom 25 (5.3%) were diagnosed with cancer during 12-month follow-up. For each cancer patient, 3 cancer-free patients were randomly selected for the analysis. The sensitivity of limited screening was 72% (95% CI, 52-86) at a specificity of 91% (95% CI, 82-95). The area under the receiver operator characteristic for platelet RNA sequencing was 0.54 (95% CI, 0.41-0.66). At the primary positivity threshold, all patients had a positive test, for a sensitivity estimated at 100% (95% CI, 87-99) and a specificity of 8% (95% CI, 3.7-16.4). At the secondary threshold, sensitivity was 68% (95% CI, 48-83; p value compared with limited screening 0.71) at a specificity of 36% (95% CI, 26-47). CONCLUSION Platelet RNA sequencing had poor diagnostic accuracy for detecting occult cancer in patients with unprovoked VTE with the current algorithm.
Collapse
Affiliation(s)
- Frits I Mulder
- Amsterdam UMC location University of Amsterdam, Department of Vascular Medicine, Amsterdam, the Netherlands; Department of Internal Medicine, Tergooi Hospital, Hilversum, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension & Thrombosis, Amsterdam, the Netherlands.
| | - Noémie Kraaijpoel
- Amsterdam UMC location University of Amsterdam, Department of Vascular Medicine, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension & Thrombosis, Amsterdam, the Netherlands
| | - Marc Carrier
- Department of Medicine, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Noori A Guman
- Amsterdam UMC location University of Amsterdam, Department of Vascular Medicine, Amsterdam, the Netherlands; Department of Internal Medicine, Tergooi Hospital, Hilversum, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension & Thrombosis, Amsterdam, the Netherlands
| | - Luis Jara-Palomares
- Medical Surgical Unit of Respiratory Diseases, Virgen del Rocio Hospital, Seville, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Marcello Di Nisio
- Department of Medicine and Ageing Sciences, Gabriele D'Annunzio University, Chieti, Italy
| | - Walter Ageno
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Jan Beyer-Westendorf
- Thrombosis Research Unit, Department of Medicine I, Division Hematology, University Hospital "Carl Gustav Carus," Dresden, Germany
| | - Frederikus A Klok
- Department of Medicine - Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands
| | - Thomas Vanassche
- Department of Cardiovascular Sciences, University Hospitals Leuven, Leuven, Belgium
| | - Hans-Martin B Otten
- Department of Internal Medicine, Meander Medisch Centrum, Amersfoort, the Netherlands
| | - Benilde Cosmi
- Department of Angiology and Blood Coagulation, S. Orsola-Malpighi University Hospital, IRCSS -University of Bologna, Bologna, Italy
| | - Marije Ten Wolde
- Department of Internal Medicine, Flevo Hospital, Almere, the Netherlands
| | - Sjors G J G In 't Veld
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam, the Netherlands; Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Brain Tumor Center Amsterdam, Amsterdam, the Netherlands
| | - Edward Post
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam, the Netherlands; Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Brain Tumor Center Amsterdam, Amsterdam, the Netherlands
| | - Jip Ramaker
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam, the Netherlands; Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Brain Tumor Center Amsterdam, Amsterdam, the Netherlands
| | - Kenn Zwaan
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam, the Netherlands; Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Brain Tumor Center Amsterdam, Amsterdam, the Netherlands
| | - Mike Peters
- Department of Internal Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Aurélien Delluc
- Department of Medicine, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Pieter W Kamphuisen
- Amsterdam UMC location University of Amsterdam, Department of Vascular Medicine, Amsterdam, the Netherlands; Department of Internal Medicine, Tergooi Hospital, Hilversum, the Netherlands
| | - Veronica Sanchez-Lopez
- Medical Surgical Unit of Respiratory Diseases, Virgen del Rocio Hospital, Seville, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Ettore Porreca
- Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Patrick M M Bossuyt
- Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Harry R Büller
- Amsterdam UMC location University of Amsterdam, Department of Vascular Medicine, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension & Thrombosis, Amsterdam, the Netherlands
| | - Thomas Wurdinger
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam, the Netherlands; Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Brain Tumor Center Amsterdam, Amsterdam, the Netherlands
| | - Myron G Best
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam, the Netherlands; Cancer Center Amsterdam and Liquid Biopsy Center, Amsterdam, the Netherlands; Brain Tumor Center Amsterdam, Amsterdam, the Netherlands
| | - Nick van Es
- Amsterdam UMC location University of Amsterdam, Department of Vascular Medicine, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension & Thrombosis, Amsterdam, the Netherlands
| |
Collapse
|
15
|
Zhang Q, Song X, Song X. Contents in tumor-educated platelets as the novel biosource for cancer diagnostics. Front Oncol 2023; 13:1165600. [PMID: 37139159 PMCID: PMC10151018 DOI: 10.3389/fonc.2023.1165600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Liquid biopsy, a powerful non-invasive test, has been widely used in cancer diagnosis and treatment. Platelets, the second most abundant cells in peripheral blood, are becoming one of the richest sources of liquid biopsy with the capacity to systematically and locally respond to the presence of cancer and absorb and store circulating proteins and different types of nucleic acids, thus called "tumor-educated platelets (TEPs)". The contents of TEPs are significantly and specifically altered, empowering them with the potential as cancer biomarkers. The current review focuses on the alternation of TEP content, including coding and non-coding RNA and proteins, and their role in cancer diagnostics.
Collapse
Affiliation(s)
- Qianru Zhang
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xianrang Song
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xingguo Song
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- *Correspondence: Xingguo Song,
| |
Collapse
|
16
|
Incorvaia L, Dimino A, Algeri L, Brando C, Magrin L, De Luca I, Pedone E, Perez A, Sciacchitano R, Bonasera A, Bazan Russo TD, Li Pomi F, Peri M, Gristina V, Galvano A, Giuffrida D, Fazio I, Toia F, Cordova A, Florena AM, Giordano A, Bazan V, Russo A, Badalamenti G. Body mass index and baseline platelet count as predictive factors in Merkel cell carcinoma patients treated with avelumab. Front Oncol 2023; 13:1141500. [PMID: 37139149 PMCID: PMC10149939 DOI: 10.3389/fonc.2023.1141500] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/23/2023] [Indexed: 05/05/2023] Open
Abstract
Background Merkel cell carcinoma (MCC) is a rare and aggressive skin cancer, associated with a worse prognosis. The Immune Checkpoint Inhibitors (ICIs) avelumab and pembrolizumab have been recently approved as first-line treatment in metastatic MCC (mMCC). The clinical observation of improved outcomes in obese patients following treatment with ICIs, known as the "obesity paradox", has been studied across many types of tumors. Probably due to the rarity of this tumor, data on mMMC patients are lacking. Patients and methods This is an observational, hospital-based, study to investigate the role of Body Mass Index (BMI) as predictive biomarker of ICI response in mMCC patients treated with avelumab as first-line treatment. The study population included the patients treated from February 2019 to October 2022 in an Italian referral center for rare tumors. Clinico-pathological characteristics, BMI, laboratory parameters (NLR and platelet count), and response to avelumab were analyzed from a MCC System database prospectively collected. Results Thirty-two (32) patients were included. Notably, the presence of pre-treatment BMI ≥ 30 was significantly associated with longer PFS [BMI < 30 Group: median PFS, 4 months (95% CI: 2.5-5.4); BMI ≥ 30 Group: median PFS, not reached; p<0.001)[. Additionally, the median PFS was significantly higher in patients with higher PLT (median PFS: 10 months in the "low PLT" Group (95% CI: 4.9, 16.1) vs 33 months (95% CI: 24.3, 43.2) in the "high PLT" Group (p=0.006). The multivariable Cox regression model confirmed these results. Conclusion To our knowledge, this is the first study that investigates the predictive role of BMI in MCC patients. Our data were consistent with the clinical observation of improved outcomes in obese patients across other tumor types. Thus, advanced age, a weakened immune system, and the obesity-associated "inflammaging", are key factors that could impact the cancer immune responses of mMCC patients.
Collapse
Affiliation(s)
- Lorena Incorvaia
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Alessandra Dimino
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Laura Algeri
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Chiara Brando
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Luigi Magrin
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Ida De Luca
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Erika Pedone
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Alessandro Perez
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Roberta Sciacchitano
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Annalisa Bonasera
- Department of Oncology, Istituto Oncologico del Mediterraneo, Catania, Italy
| | - Tancredi Didier Bazan Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Federica Li Pomi
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, Messina, Italy
| | - Marta Peri
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Valerio Gristina
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Antonio Galvano
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Dario Giuffrida
- Department of Oncology, Istituto Oncologico del Mediterraneo, Catania, Italy
| | - Ivan Fazio
- Radiotherapy Unit, Clinica Macchiarella, Palermo, Italy
| | - Francesca Toia
- Division of Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Adriana Cordova
- Division of Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Ada Maria Florena
- Pathologic Anatomy Unit, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bind.), Section of Medical Oncology, University of Palermo, Palermo, Italy
- Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, Temple University, Philadelphia, PA, United States
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
- Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, Temple University, Philadelphia, PA, United States
- *Correspondence: Antonio Russo,
| | - Giuseppe Badalamenti
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| |
Collapse
|
17
|
Application of tumor-educated platelets as new fluid biopsy markers in various tumors. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:114-125. [PMID: 36284061 DOI: 10.1007/s12094-022-02937-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/22/2022] [Indexed: 01/07/2023]
Abstract
The incidence of malignant tumors is increasing year by year. Early detection and diagnosis of malignant tumors can improve the prognosis of patients and prolong their life. Pathological biopsy is the current gold standard for diagnosis, but the results of pathological biopsy are affected by the sampling site and cannot fully reflect the nature of the disease. Moreover, the invasive nature of pathological biopsy limits repeated detection. Liquid biopsies are non-invasive and can be used for early detection and monitoring of tumors, which considered to represent a promising tool. Platelets make themselves to be one of the richest liquid biopsy sources by the capacity to take up proteins and nucleic acids and alter their megakaryocyte-derived transcripts and proteins in response to external signals, which are called tumor-educated platelets (TEPs). In this article, we will review the application of tumor-educated platelets in various malignancies (nasopharyngeal carcinoma, prostate cancer, lung cancer, glioblastoma, colorectal cancer, pancreas cancer, ovarian cancer, sarcoma, breast cancer and hepatocellular carcinoma) and provide theoretical basis for the research of TEPs in tumor diagnosis, monitoring and treatment.
Collapse
|
18
|
Prediction of Potential Biomarkers in Early-Stage Nasopharyngeal Carcinoma Based on Platelet RNA Sequencing. Mol Biotechnol 2022:10.1007/s12033-022-00611-z. [DOI: 10.1007/s12033-022-00611-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022]
Abstract
AbstractEarly diagnosis is essential for the treatment and prevention of nasopharyngeal cancer. However, there is a lack of effective biological indicators for nasopharyngeal carcinoma (NPC). Therefore, we explored the potential biomarkers in tumour-educated blood platelet (TEP) RNA in early NPC. Platelets were isolated from blood plasma and their RNA was extracted. High-throughput sequenced data from a total of 33 plasma samples were analysed using DESeq2 to identify the differentially expressed genes (DEGs). Subsequently, the DEGs were subjected to principal component analysis (PCA), gene ontology (GO) analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis; and Cytoscape, TargetScan, and miRanda software were used for inferring the competing endogenous RNA network. We identified 19 long non-coding (lnc) RNAs (DElncRNAs) and 248 mRNAs (DEmRNAs) that were differentially expressed in the TEP RNA. In addition, SELP gene mRNA and lncRNAs AC092135.3, AC012358.2, AL021807.1, AP001972.5, and GPX1 were found to be down-regulated DEmRNA and DElncRNAs in the early stage of NPC. Bioinformatic analysis showed that these DEmRNAs and DElncRNAs may be involved in regulating the pathogenesis of NPC. Our research may provide new insights for exploring the biological mechanisms of NPC and early diagnosis using potential biomarkers.
Collapse
|
19
|
Pablo‐Torres C, Delgado‐Dolset MI, Sanchez‐Solares J, Mera‐Berriatua L, Núñez Martín Buitrago L, Reaño Martos M, Bueno JL, Escribese MM, Barber D, Gomez‐Casado C. A method based on plateletpheresis to obtain functional platelet, CD3 + and CD14 + matched populations for research immunological studies. Clin Exp Allergy 2022; 52:1157-1168. [PMID: 35757844 PMCID: PMC9796013 DOI: 10.1111/cea.14192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/23/2022] [Accepted: 06/20/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND In previous studies with peripheral blood cells, platelet factors were found to be associated with severe allergic phenotypes. A reliable method yielding highly concentrated and pure platelet samples is usually not available for immunological studies. Plateletpheresis is widely used in the clinics for donation purposes. In this study, we designed a protocol based on plateletpheresis to obtain Platelet-Rich Plasma (PRP), Platelet-Poor Plasma (PPP) as well as CD3+ and CD14+ cells matched samples from a waste plateletpheresis product for immunological studies. METHODS Twenty-seven subjects were voluntarily subjected to plateletpheresis. PRP, PPP and blood cell concentrate contained in a leukocyte reduction system chamber (LRSC) were obtained in this process. CD3+ and CD14+ cells were isolated from the LRSC by density-gradient centrifugation and positive magnetic bead isolation. RNA was isolated from PRP, CD3+ and CD14+ cell samples and used for transcriptomic studies by Affymetrix. PRP and PPP samples were used for platelet protein quantification by multiplex assays. RESULTS A reliable high yield method to obtain matched samples of PRP, PPP, CD3+ and CD14+ from a single donor for RNA and protein analyses has been designed. The RNA quality indicators (RQI) routinely used for other cell types were not suitable for platelet RNA characterization. Despite this, the platelet RNA was valid for transcriptomic studies by Affymetrix, as platelet transcripts obtained in our previous studies were confirmed in PRP samples. Platelet samples were enriched in platelet factors as determined in protein multiplex analysis. CONCLUSIONS We have developed a method that yields not only high content and pure platelet samples from a single donor but also CD3+ and CD14+ matched samples that can be used for RNA and protein analyses in immunological studies.
Collapse
Affiliation(s)
- Carmela Pablo‐Torres
- Institute of Applied Molecular Medicine (IMMA) Nemesio DíezDepartment of Basic Medical SciencesSchool of MedicineSan Pablo‐CEU UniversityCEU UniversitiesBoadilla del MonteSpain
| | - María Isabel Delgado‐Dolset
- Institute of Applied Molecular Medicine (IMMA) Nemesio DíezDepartment of Basic Medical SciencesSchool of MedicineSan Pablo‐CEU UniversityCEU UniversitiesBoadilla del MonteSpain,Centre for Metabolomics and Bioanalysis (CEMBIO)Department of Chemistry and BiochemistrySchool of PharmacySan Pablo‐CEU UniversityCEU UniversitiesBoadilla del MonteSpain
| | - Javier Sanchez‐Solares
- Institute of Applied Molecular Medicine (IMMA) Nemesio DíezDepartment of Basic Medical SciencesSchool of MedicineSan Pablo‐CEU UniversityCEU UniversitiesBoadilla del MonteSpain
| | - Leticia Mera‐Berriatua
- Institute of Applied Molecular Medicine (IMMA) Nemesio DíezDepartment of Basic Medical SciencesSchool of MedicineSan Pablo‐CEU UniversityCEU UniversitiesBoadilla del MonteSpain
| | | | - Mar Reaño Martos
- Department of Allergy and ImmunologyPuerta de Hierro‐Majadahonda University HospitalMadridSpain
| | - José Luis Bueno
- Department of Hematology and HemotherapyPuerta de Hierro‐Majadahonda University HospitalMadridSpain
| | - Maria M. Escribese
- Institute of Applied Molecular Medicine (IMMA) Nemesio DíezDepartment of Basic Medical SciencesSchool of MedicineSan Pablo‐CEU UniversityCEU UniversitiesBoadilla del MonteSpain
| | - Domingo Barber
- Institute of Applied Molecular Medicine (IMMA) Nemesio DíezDepartment of Basic Medical SciencesSchool of MedicineSan Pablo‐CEU UniversityCEU UniversitiesBoadilla del MonteSpain
| | - Cristina Gomez‐Casado
- Institute of Applied Molecular Medicine (IMMA) Nemesio DíezDepartment of Basic Medical SciencesSchool of MedicineSan Pablo‐CEU UniversityCEU UniversitiesBoadilla del MonteSpain,Department of DermatologyMedical FacultyUniversity Hospital DüsseldorfHeinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| |
Collapse
|
20
|
Tosevska A, Morselli M, Basak SK, Avila L, Mehta P, Wang MB, Srivatsan ES, Pellegrini M. Cell-Free RNA as a Novel Biomarker for Response to Therapy in Head & Neck Cancer. Front Oncol 2022; 12:869108. [PMID: 35600369 PMCID: PMC9121879 DOI: 10.3389/fonc.2022.869108] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/23/2022] [Indexed: 12/17/2022] Open
Abstract
Liquid biopsies are gaining more traction as non-invasive tools for the diagnosis and monitoring of cancer. In a new paradigm of cancer treatment, a synergistic botanical drug combination (APG-157) consisting of multiple molecules, is emerging as a new class of cancer therapeutics, targeting multiple pathways and providing a durable clinical response, wide therapeutic window and high level of safety. Monitoring the efficacy of such drugs involves assessing multiple molecules and cellular events simultaneously. We report, for the first time, a methodology that uses circulating plasma cell-free RNA (cfRNA) as a sensitive indicator of patient response upon drug treatment. Plasma was collected from six patients with head and neck cancer (HNC) and four healthy controls receiving three doses of 100 or 200 mg APG-157 or placebo through an oral mucosal route, before treatment and on multiple points post-dosing. Circulating cfRNA was extracted from plasma at 0-, 3- and 24-hours post-treatment, followed by RNA sequencing. We performed comparative analyses of the circulating transcriptome and were able to detect significant perturbation following APG-157 treatment. Transcripts associated with inflammatory response, leukocyte activation and cytokine were upregulated upon treatment with APG-157 in cancer patients, but not in healthy or placebo-treated patients. A platelet-related transcriptional signature could be detected in cancer patients but not in healthy individuals, indicating a platelet-centric pathway involved in the development of HNC. These results from a Phase 1 study are a proof of principle of the utility of cfRNAs as non-invasive circulating biomarkers for monitoring the efficacy of APG-157 in HNC.
Collapse
Affiliation(s)
- Anela Tosevska
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, United States
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, Vienna, Austria
| | - Marco Morselli
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, United States
| | - Saroj K Basak
- Department of Surgery, Veterans Administration Greater Los Angeles Healthcare System, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States
| | - Luis Avila
- Aveta Biomics Inc, Bedford, MA, United States
| | - Parag Mehta
- Aveta Biomics Inc, Bedford, MA, United States
| | - Marilene B Wang
- Department of Surgery, Veterans Administration Greater Los Angeles Healthcare System, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA, United States
| | - Eri S Srivatsan
- Department of Surgery, Veterans Administration Greater Los Angeles Healthcare System, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA, United States
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
21
|
Liquid biopsy: early and accurate diagnosis of brain tumor. J Cancer Res Clin Oncol 2022; 148:2347-2373. [PMID: 35451698 DOI: 10.1007/s00432-022-04011-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/01/2022] [Indexed: 12/15/2022]
Abstract
Noninvasive examination is an emerging area in the field of neuro-oncology. Liquid biopsy captures the landscape of genomic alterations of brain tumors and revolutionizes the traditional diagnosis approaches. Rapidly changing sequencing technologies and more affordable prices put the screws on more application of liquid biopsy in clinical settings. In the past few years, extensive application of liquid biopsy has been seen throughout the whole diagnosis and treatment process of brain tumors, including early and accurate detection, characterization and dynamic monitoring. Here, we summarized and compared the most advanced techniques and target molecules or macrostructures related to brain tumor liquid biopsy. We further reviewed and emphasized recent progression in different clinical settings for brain tumors in blood and CSF. The preferred protocol, potential novel biomarkers and future development are discussed in the last part.
Collapse
|
22
|
Zhou H, Zhu L, Song J, Wang G, Li P, Li W, Luo P, Sun X, Wu J, Liu Y, Zhu S, Zhang Y. Liquid biopsy at the frontier of detection, prognosis and progression monitoring in colorectal cancer. Mol Cancer 2022; 21:86. [PMID: 35337361 PMCID: PMC8951719 DOI: 10.1186/s12943-022-01556-2] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide and a leading cause of carcinogenic death. To date, surgical resection is regarded as the gold standard by the operator for clinical decisions. Because conventional tissue biopsy is invasive and only a small sample can sometimes be obtained, it is unable to represent the heterogeneity of tumor or dynamically monitor tumor progression. Therefore, there is an urgent need to find a new minimally invasive or noninvasive diagnostic strategy to detect CRC at an early stage and monitor CRC recurrence. Over the past years, a new diagnostic concept called “liquid biopsy” has gained much attention. Liquid biopsy is noninvasive, allowing repeated analysis and real-time monitoring of tumor recurrence, metastasis or therapeutic responses. With the advanced development of new molecular techniques in CRC, circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), exosomes, and tumor-educated platelet (TEP) detection have achieved interesting and inspiring results as the most prominent liquid biopsy markers. In this review, we focused on some clinical applications of CTCs, ctDNA, exosomes and TEPs and discuss promising future applications to solve unmet clinical needs in CRC patients.
Collapse
Affiliation(s)
- Hui Zhou
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China.,Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Liyong Zhu
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Jun Song
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Guohui Wang
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Pengzhou Li
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Weizheng Li
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Ping Luo
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xulong Sun
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Jin Wu
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Yunze Liu
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Shaihong Zhu
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| | - Yi Zhang
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China.
| |
Collapse
|
23
|
Platelets Purification Is a Crucial Step for Transcriptomic Analysis. Int J Mol Sci 2022; 23:ijms23063100. [PMID: 35328521 PMCID: PMC8953733 DOI: 10.3390/ijms23063100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 01/24/2023] Open
Abstract
Platelets are small anucleate cells derived from the fragmentation of megakaryocytes and are involved in different biological processes especially hemostasis, thrombosis, and immune response. Despite their lack of nucleus, platelets contain a reservoir of megakaryocyte-derived RNAs and all the machinery useful for mRNA translation. Interestingly, platelet transcriptome was analyzed in health and diseases and led to the identification of disease-specific molecular signatures. Platelet contamination by leukocytes and erythrocytes during platelet purification is a major problem in transcriptomic analysis and the presence of few contaminants in platelet preparation could strongly alter transcriptome results. Since contaminant impacts on platelet transcriptome remains theoretical, we aimed to determine whether low leukocyte and erythrocyte contamination could cause great or only minor changes in platelet transcriptome. Using microarray technique, we compared the transcriptome of platelets from the same donor, purified by common centrifugation method or using magnetic microbeads to eliminate contaminating cells. We found that platelet transcriptome was greatly altered by contaminants, as the relative amount of 8274 transcripts was different between compared samples. We observed an increase of transcripts related to leukocytes and erythrocytes in platelet purified without microbeads, while platelet specific transcripts were falsely reduced. In conclusion, serious precautions should be taken during platelet purification process for transcriptomic analysis, in order to avoid platelets contamination and result alteration.
Collapse
|
24
|
Herath S, Sadeghi Rad H, Radfar P, Ladwa R, Warkiani M, O’Byrne K, Kulasinghe A. The Role of Circulating Biomarkers in Lung Cancer. Front Oncol 2022; 11:801269. [PMID: 35127511 PMCID: PMC8813755 DOI: 10.3389/fonc.2021.801269] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the leading cause of cancer morbidity and mortality worldwide and early diagnosis is crucial for the management and treatment of this disease. Non-invasive means of determining tumour information is an appealing diagnostic approach for lung cancers as often accessing and removing tumour tissue can be a limiting factor. In recent years, liquid biopsies have been developed to explore potential circulating tumour biomarkers which are considered reliable surrogates for understanding tumour biology in a non-invasive manner. Most common components assessed in liquid biopsy include circulating tumour cells (CTCs), cell-free DNA (cfDNA), circulating tumour DNA (ctDNA), microRNA and exosomes. This review explores the clinical use of circulating tumour biomarkers found in liquid biopsy for screening, early diagnosis and prognostication of lung cancer patients.
Collapse
|
25
|
Martins Castanheira N, Spanhofer AK, Wiener S, Bobe S, Schillers H. Uptake of platelets by cancer cells and recycling of the platelet protein CD42a. J Thromb Haemost 2022; 20:170-181. [PMID: 34592045 DOI: 10.1111/jth.15543] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND It is well accepted that the bidirectional crosstalk between platelets and cancer cells promotes tumorigenesis and metastasis. In an early step, cancer cells trigger platelet granule and extracellular vesicle release that is needed to facilitate cancer cell survival in circulation. OBJECTIVES To discover the early crosstalk of cancer cells and platelets. METHODS Cancer cells were incubated with freshly isolated and stained human platelets. Confocal laser scanning microscopy and flow cytometry was used to visualize and to quantify platelet uptake and the membrane presence of CD42 on cancer cells. Dyngo4a was used to test if platelet uptake is a dynamin-dependent process. RESULTS We found a dynamin-dependent uptake of platelets by cancer cells. This is followed by the recycling of the platelet-specific protein CD42a and its incorporation into cancer cells' plasma membrane, which is not a result of platelet RNA transfer by platelet-derived microparticles and exosomes. Time course of platelet uptake follows a sigmoid function revealing that 50% of the cancer cells are positive for platelets after approximately 38 min. Platelet uptake was observed for the tested cancerous cells (A549, MCF-7, and MV3) but not for the non-cancerous cell line 16HBE14o-. CONCLUSIONS Our results demonstrate that cancer cells hijack platelets by phagocytosis and recycling of platelet membrane proteins. The uptake of platelets has additional advantages for cancer cells: access to the entire and undiluted platelet proteome, transcriptome, and secretome. These novel findings will allow further mechanistic elucidation and thus help us gain deeper insights into platelet-assisted hematogenous metastasis.
Collapse
Affiliation(s)
| | - Anna K Spanhofer
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Sebastian Wiener
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Stefanie Bobe
- Institute of Physiology II, University of Muenster, Muenster, Germany
- Gerhard-Domagk-Institute of Pathology, University Hospital Muenster, Muenster, Germany
| | - Hermann Schillers
- Institute of Physiology II, University of Muenster, Muenster, Germany
| |
Collapse
|
26
|
Xie G, Liu C, Miao Y, Xia M, Zhang Q, Guo A. A comprehensive platelet expression atlas (PEA) resource and platelet transcriptome landscape. Am J Hematol 2022; 97:E18-E21. [PMID: 34714959 DOI: 10.1002/ajh.26393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 01/16/2023]
Affiliation(s)
- Gui‐Yan Xie
- Center for Artificial Intelligence Biology, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology Huazhong University of Science and Technology Wuhan China
| | - Chun‐Jie Liu
- Center for Artificial Intelligence Biology, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology Huazhong University of Science and Technology Wuhan China
| | - Ya‐Ru Miao
- Center for Artificial Intelligence Biology, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology Huazhong University of Science and Technology Wuhan China
| | - Mengxuan Xia
- Center for Artificial Intelligence Biology, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology Huazhong University of Science and Technology Wuhan China
| | - Qiong Zhang
- Research Center of Clinical Medicine Affiliated Hospital of Nantong University Nantong China
| | - An‐Yuan Guo
- Center for Artificial Intelligence Biology, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology Huazhong University of Science and Technology Wuhan China
- Research Center of Clinical Medicine Affiliated Hospital of Nantong University Nantong China
| |
Collapse
|
27
|
Bioinformatics analysis of tumor-educated platelet microRNAs in patients with hepatocellular carcinoma. Biosci Rep 2021; 41:230271. [PMID: 34806748 PMCID: PMC8661502 DOI: 10.1042/bsr20211420] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/09/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies that seriously threaten global health. The primary reason for its grim prognosis is the lack of sensitive tools for early diagnosis. The purpose of the present study was to apply bioinformatics analysis to explore tumor-educated platelet (TEP) microRNA (miRNA) expression and its potential diagnostic utility in HCC. Methods: Twenty-five HCC patients and 25 healthy controls were included. RNA sequencing was utilized to screen miRNA alterations in platelets derived from HCC patients (n=5) and controls (n=5). Gene set enrichment analysis was performed to analyze the targeted mRNAs of differentially expressed miRNAs by using the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, aiming at main functions and pathways, respectively. We then verified the selected platelet miRNAs in another cohort by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) amplification. Results: A total of 250 differentially expressed miRNAs were identified, among which 111 were down-regulated and 139 were up-regulated. The functional enrichment analysis of differentially expressed miRNAs suggested that their target genes were involved primarily in pathways related to HCC. Expression levels of miR-495-3p and miR-1293 were further validated by qRT-PCR, which yielded results consistent with the sequencing analysis. The area under the receiver operating characteristic (ROC) curve of miR-495-3p and miR-1293 as diagnostic tests for HCC were 0.76 and 0.78, respectively. Conclusion: TEP miRNAs such as miR-495-3p and miR-1293 were differentially expressed in HCC patients, and may be involved in the pathophysiology of HCC.
Collapse
|
28
|
Wang J, Li J, Wei S, Xu J, Jiang X, Yang L. The Ratio of Platelets to Lymphocytes Predicts the Prognosis of Metastatic Colorectal Cancer: A Review and Meta-Analysis. Gastroenterol Res Pract 2021; 2021:9699499. [PMID: 34764993 PMCID: PMC8577954 DOI: 10.1155/2021/9699499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/15/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND In recent years, the incidence of colorectal cancer (CRC) has continued to increase. Although the overall prognosis of CRC has improved with the continuous improvement of the level of treatment, the prognosis of metastatic colorectal cancer (mCRC) is still poor. The purpose of our study is to explore the prognostic value of platelet to lymphocyte ratio (PLR) in mCRC. METHODS The PubMed, Web of Science, and Embase (via OVID) were systematically searched to obtain all relevant research. We used hazard ratio (HR) with 95% confidence interval (CI) to assess the associations of PLR and overall survival (OS) and progression free survival (PFS). RESULTS A total of twelve studies containing 1452 patients were included in this meta-analysis. Pooled analysis showed that high levels of PLR were associated with poor OS (HR: 1.72, 95% CI: 1.27-2.33, and P < 0.01) and PFS (HR: 1.64, 95% CI: 1.16-2.31, and P = 0.033). CONCLUSION Our analysis suggested that high levels of PLR pretreatment may be an effective predictive biomarker for the prognosis of mCRC patients.
Collapse
Affiliation(s)
- Jinming Wang
- Cancer Research Center Nantong, Nantong Tumor Hospital & Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Jing Li
- Cancer Research Center Nantong, Nantong Tumor Hospital & Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Sheng Wei
- Cancer Research Center Nantong, Nantong Tumor Hospital & Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Jie Xu
- Cancer Research Center Nantong, Nantong Tumor Hospital & Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Xiaohui Jiang
- Department of General Surgery, Nantong Tumor Hospital & Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Lei Yang
- Department of Oncology, Nantong Tumor Hospital & Affiliated Tumor Hospital of Nantong University, Nantong, China
| |
Collapse
|
29
|
Varkey J, Nicolaides T. Tumor-Educated Platelets: A Review of Current and Potential Applications in Solid Tumors. Cureus 2021; 13:e19189. [PMID: 34873529 PMCID: PMC8635758 DOI: 10.7759/cureus.19189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2021] [Indexed: 12/30/2022] Open
Abstract
In this current era of precision medicine, liquid biopsy poses a unique opportunity for an easily accessible, comprehensive molecular profile that would allow for the identification of therapeutic targets and sequential monitoring. Solid tumors are definitively diagnosed by analyzing primary tumor tissue, but surgical sampling is not always sufficient to generate a comprehensive genetic fingerprint at the time of diagnosis, or an appropriate means for continued monitoring. Platelets are known to have a dynamic, bidirectional relationship with tumors, acting beyond their role of hemostasis. Tumor-educated platelets (TEP) are modified by the tumor in multiple ways and act as a carrier and protector of metastasis. Data so far have shown that the mRNA in TEP can be harnessed for cancer diagnostics, with many potential applications.
Collapse
Affiliation(s)
- Joyce Varkey
- Pediatric Hematology Oncology, New York University Langone, New York, USA
| | | |
Collapse
|
30
|
Sun K, Wang H, Xu X, Wei X, Su J, Zhu K, Fan J. Tumor-Educated Platelet miR-18a-3p as a Novel Liquid-Biopsy Biomarker for Early Diagnosis and Chemotherapy Efficacy Monitoring in Nasopharyngeal Carcinoma. Front Oncol 2021; 11:736412. [PMID: 34692511 PMCID: PMC8526886 DOI: 10.3389/fonc.2021.736412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/17/2021] [Indexed: 01/20/2023] Open
Abstract
Aims To evaluate the value of tumor-educated platelet (TEP) miR-18a-3p in the early diagnosis and chemotherapy efficacy monitoring of nasopharyngeal carcinoma (NPC). Methods Expression levels of miR-18a-3p in platelets and plasma were detected by relative quantitative real-time PCR in NPC patients (n=54) and normal subjects (n=36). Diagnostic values of TEP miR-18a-3p for NPC was assessed by receiver operating characteristic (ROC) curve analysis. Follow up study was carried out to observe the dynamic changes of TEP miR-18a-3p with chemotherapy on 3 NPC patients. Results The expression levels of TEP miR-18a-3p in NPC patients were significantly higher than that in healthy controls (p < 0.0001). ROC curve analysis showed that the area under the curve (AUC) value was 0.841, the sensitivity and specificity for the diagnosis of NPC were 87% and 72.7%. No correlation was found between expression levels of TEP miR-18a-3p and patients’ clinical parameters and their NPC tumor-node-metastasis (TNM) stage. The positive rate of TEP miR-18a-3p and EBV DNA for NPC diagnosis were 85.4% and 66.7%. TEP miR-18a-3p expression were down-regulated after 77.8% (7 of 9) of chemotherapy, and in 66.7% (2 of 3) patients, TEP miR-18a-3p levels decreased after 3 cycles of chemotherapy. Conclusion The expression levels of TEP miR-18a-3p are upregulated in NPC and have a high probability to downregulated after chemotherapy, indicating a significant clinical value. TEP miR-18a-3p might serve as a novel type of liquid-biopsy biomarker for early diagnosis and chemotherapy efficacy monitoring in NPC.
Collapse
Affiliation(s)
- Kaiyu Sun
- Department of Otolaryngology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Wang
- Department of Laboratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianqun Xu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiuqi Wei
- Department of Laboratory Medicine, Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyu Su
- Department of Laboratory Medicine, Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaidong Zhu
- Department of Laboratory Medicine, Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junli Fan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
31
|
Perales S, Torres C, Jimenez-Luna C, Prados J, Martinez-Galan J, Sanchez-Manas JM, Caba O. Liquid biopsy approach to pancreatic cancer. World J Gastrointest Oncol 2021; 13:1263-1287. [PMID: 34721766 PMCID: PMC8529923 DOI: 10.4251/wjgo.v13.i10.1263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/18/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) continues to pose a major clinical challenge. There has been little improvement in patient survival over the past few decades, and it is projected to become the second leading cause of cancer mortality by 2030. The dismal 5-year survival rate of less than 10% after the diagnosis is attributable to the lack of early symptoms, the absence of specific biomarkers for an early diagnosis, and the inadequacy of available chemotherapies. Most patients are diagnosed when the disease has already metastasized and cannot be treated. Cancer interception is vital, actively intervening in the malignization process before the development of a full-blown advanced tumor. An early diagnosis of PC has a dramatic impact on the survival of patients, and improved techniques are urgently needed to detect and evaluate this disease at an early stage. It is difficult to obtain tissue biopsies from the pancreas due to its anatomical position; however, liquid biopsies are readily available and can provide useful information for the diagnosis, prognosis, stratification, and follow-up of patients with PC and for the design of individually tailored treatments. The aim of this review was to provide an update of the latest advances in knowledge on the application of carbohydrates, proteins, cell-free nucleic acids, circulating tumor cells, metabolome compounds, exosomes, and platelets in blood as potential biomarkers for PC, focusing on their clinical relevance and potential for improving patient outcomes.
Collapse
Affiliation(s)
- Sonia Perales
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - Carolina Torres
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - Cristina Jimenez-Luna
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain
| | - Joaquina Martinez-Galan
- Department of Medical Oncology, Hospital Universitario Virgen de las Nieves, Granada 18011, Spain
| | | | - Octavio Caba
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain
| |
Collapse
|
32
|
Ac Kar L, Casjens S, Andreas A, Raiko I, Brüning T, Geffken M, Peine S, Kollmeier J, Johnen G, Bartkowiak K, Weber DG, Pantel K. Blood-based detection of lung cancer using cysteine-rich angiogenic inducer 61 (CYR61) as a circulating protein biomarker: a pilot study. Mol Oncol 2021; 15:2877-2890. [PMID: 34510714 PMCID: PMC8564649 DOI: 10.1002/1878-0261.13099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/27/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022] Open
Abstract
Lung cancer is the most often diagnosed cancer and the main cause of cancer deaths in the world compared with other tumor entities. To date, the only screening method for high‐risk lung cancer patients is low‐dosed computed tomography which still suffers from high false‐positive rates and overdiagnosis. Therefore, there is an obvious need to identify biomarkers for the detection of lung cancer that could be used to guide the use of low‐dosed computed tomography or other imaging procedures. We aimed to assess the performance of the protein cysteine‐rich angiogenic inducer 61 (CYR61) as a circulating biomarker for the detection of lung cancer. CYR61 concentrations in plasma were significantly elevated in 87 lung cancer patients (13.7 ± 18.6 ng·mL−1) compared with 150 healthy controls (0.29 ± 0.22 ng·mL−1). Subset analysis stratified by sex revealed increased CYR61 concentrations for adenocarcinoma and squamous cell carcinoma in men compared with women. For male lung cancer patients versus male healthy controls, the sensitivity was 84% at a specificity of 100%, whereas for females, the sensitivity was 27% at a specificity of 99%. The determination of circulating CYR61 protein in plasma might improve the detection of lung cancer in men. The findings of this pilot study support further verification of CYR61 as a biomarker for lung cancer detection in men. Additionally, CYR61 is significantly elevated in women but sensitivity and specificity for CYR61 are too low for the improvement of the detection of lung cancer in women.
Collapse
Affiliation(s)
- Lucija Ac Kar
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Germany
| | - Swaantje Casjens
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Germany
| | - Antje Andreas
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Germany
| | - Irina Raiko
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Germany
| | - Maria Geffken
- Department of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Germany
| | - Sven Peine
- Department of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Germany
| | - Jens Kollmeier
- Lungenklinik Heckeshorn, Helios Klinikum Emil von Behring, Berlin, Germany
| | - Georg Johnen
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Germany
| | - Kai Bartkowiak
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Germany
| | - Daniel Gilbert Weber
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
33
|
Waqar W, Asghar S, Manzoor S. Platelets' RNA as biomarker trove for differentiation of early-stage hepatocellular carcinoma from underlying cirrhotic nodules. PLoS One 2021; 16:e0256739. [PMID: 34469466 PMCID: PMC8409664 DOI: 10.1371/journal.pone.0256739] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/15/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND & AIMS Among the multiplicity of factors involved in rising incidence of hepatocellular carcinoma (HCC)-the second deadliest cancer, late diagnosis of early-stage HCC nodules originating from late-stage cirrhotic nodules is the most crucial. In recent years, Tumor-educated platelets (TEPs) have emerged as a strong multimodal tool to be used in liquid-biopsy of cancers because of changes in their mRNA content. This study assessed the reliability of selected mRNA repertoire of platelets as biomarkers to differentiate early HCC from late-stage cirrhotic nodules. METHODS Quantitative real time PCR (qRT-PCR) was used to evaluate expression levels of selected platelets-specific mRNA between HCC patients compared to cirrhosis patients. ROC curve analysis assessed the sensitivity and specificity of the biomarkers. RESULTS RhoA, CTNNB1 and SPINK1 showed a significant 3.3-, 3.2- and 3.18-folds upregulation, respectively, in HCC patients compared to cirrhosis patients while IFITM3 and SERPIND1 presented a 2.24-fold change. Strikingly, CD41+ platelets also demonstrated a marked difference of expression in HCC and cirrhosis groups. CONCLUSIONS Our study reports liquid biopsy-based platelets mRNA signature for early diagnosis of HCC from underlying cirrhotic nodules. Moreover, differential expression of CD41+ platelets in two groups provides new insights into a probable link between CD41 expression on platelets with the progression of cirrhosis to HCC.
Collapse
MESH Headings
- Adult
- Aged
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/metabolism
- Blood Platelets/metabolism
- Carcinoma, Hepatocellular/blood
- Carcinoma, Hepatocellular/diagnosis
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Case-Control Studies
- Diagnosis, Differential
- Female
- Gene Expression Regulation, Neoplastic
- Healthy Volunteers
- Humans
- Liquid Biopsy/methods
- Liver/pathology
- Liver Cirrhosis/blood
- Liver Cirrhosis/diagnosis
- Liver Cirrhosis/genetics
- Liver Cirrhosis/pathology
- Liver Neoplasms/blood
- Liver Neoplasms/diagnosis
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Male
- Middle Aged
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Reproducibility of Results
- Trypsin Inhibitor, Kazal Pancreatic/genetics
- beta Catenin/genetics
- rhoA GTP-Binding Protein/genetics
Collapse
Affiliation(s)
- Walifa Waqar
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sidra Asghar
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sobia Manzoor
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
- * E-mail: ,
| |
Collapse
|
34
|
Mohanty A, Mohanty SK, Rout S, Pani C. Liquid Biopsy, the hype vs. hope in molecular and clinical oncology. Semin Oncol 2021; 48:259-267. [PMID: 34384614 DOI: 10.1053/j.seminoncol.2021.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 05/28/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022]
Abstract
The molecular landscape of tumors has been traditionally established using a biopsy or resection specimens. These modalities result in sampling bias that offer only a single snapshot of tumor heterogeneity. Over the last decade intensive research towards alleviating such a bias and obtaining an integral yet accurate portrait of the tumors, evolved to the use of established molecular and genetic analysis using blood and several other body fluids, such as urine, saliva, and pleural effusions as liquid biopsies. Genomic profiling of the circulating markers including circulating cell-free tumor DNA (ctDNA), circulating tumor cells (CTCs) or even RNA, proteins, and lipids constituting exosomes, have facilitated the diligent monitoring of response to treatment, allowed one to follow the emergence of drug resistance, and enumerate minimal residual disease. The prevalence of tumor educated platelets (TEPs) and our understanding of how tumor cells influence platelets are beginning to unearth TEPs as a potentially dynamic component of liquid biopsies. Here, we review the biology, methodology, approaches, and clinical applications of biomarkers used to assess liquid biopsies. The current review addresses recent technological advances and different forms of liquid biopsy along with upcoming challenges and how they can be integrated to get the best possible tumor-derived genetic information that can be leveraged to more precise therapies for patient as liquid biopsies become increasingly routine in clinical practice.
Collapse
Affiliation(s)
- Abhishek Mohanty
- Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India.
| | - Sambit K Mohanty
- Advanced Medical Research Institute, Bhubaneswar, Odisha, India; CORE Diagnostics, Gurgaon, Haryana, India
| | - Sipra Rout
- Christian Medical College, Vellore, Tamil Nadu, India
| | | |
Collapse
|
35
|
Sabrkhany S, Kuijpers MJE, Oude Egbrink MGA, Griffioen AW. Platelets as messengers of early-stage cancer. Cancer Metastasis Rev 2021; 40:563-573. [PMID: 33634328 PMCID: PMC8213673 DOI: 10.1007/s10555-021-09956-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/28/2021] [Indexed: 12/14/2022]
Abstract
Platelets have an important role in tumor angiogenesis, growth, and metastasis. The reciprocal interaction between cancer and platelets results in changes of several platelet characteristics. It is becoming clear that analysis of these platelet features could offer a new strategy in the search for biomarkers of cancer. Here, we review the human studies in which platelet characteristics (e.g., count, volume, protein, and mRNA content) are investigated in early-stage cancer. The main focus of this paper is to evaluate which platelet features are suitable for the development of a blood test that could detect cancer in its early stages.
Collapse
Affiliation(s)
- Siamack Sabrkhany
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Marijke J E Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Mirjam G A Oude Egbrink
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Cancer Center Amsterdam, Department of Medical Oncology, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
36
|
Miao S, Zhang Q, Chang W, Wang J. New Insights Into Platelet-enriched miRNAs: Production, Functions, Roles in Tumors, and Potential Targets for Tumor Diagnosis and Treatment. Mol Cancer Ther 2021; 20:1359-1366. [PMID: 34045229 DOI: 10.1158/1535-7163.mct-21-0050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/12/2021] [Accepted: 05/03/2021] [Indexed: 11/16/2022]
Abstract
In view of the increasing number of malignant tumors worldwide and their high mortality, efforts are being made to find effective biomarkers for early detection and effective treatment measures of cancer. In recent years, the roles of platelets in tumors have attracted considerable attention. Although platelets do not have nuclei, they are rich in miRNAs, which are important molecules in platelet regulation of tumors. Platelet miRNA expression in tumor patients is abnormal and tumor-specific. Platelet miRNAs have higher accuracy and specificity than conventional tumor detection markers and circulating miRNAs in tumor diagnosis. Platelets enriched miRNAs are involved in the regulation of tumor proliferation, metastasis, tumor-related immunity, tumor-related thrombosis, and antitumor therapy. To understand the role of platelet miRNAs in tumors, this article reviews the biological functions of miRNAs in platelets and summarizes the regulatory roles of platelet miRNAs in tumors and the potential roles of platelet miRNAs in tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Shuo Miao
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qingsong Zhang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenguang Chang
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
37
|
Meng Y, Sun J, Zheng Y, Zhang G, Yu T, Piao H. Platelets: The Emerging Clinical Diagnostics and Therapy Selection of Cancer Liquid Biopsies. Onco Targets Ther 2021; 14:3417-3428. [PMID: 34079287 PMCID: PMC8164876 DOI: 10.2147/ott.s311907] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/16/2021] [Indexed: 12/11/2022] Open
Abstract
Due to the inherent molecular heterogeneity of metastatic tumours and the dynamic evolution ability of tumour genomes, tumour tissues obtained through biopsy and other methods cannot capture all of the features of tumour genomes. A new diagnostic concept called “liquid biopsy” has received widespread attention in recent years. Liquid biopsy has changed the clinical practice of oncology and is widely used to guide targeted drug utilization, monitor disease progression and track drug resistance. The latest research subject in liquid biopsy is platelets. Platelets originate from multifunctional haematopoietic stem cells in the bone marrow haematopoietic system. They are small cells from the cytoplasm of bone marrow megakaryocytes. Their main physiological functions are to participate in the processes of physiological haemostasis and coagulation. Tumour cells transfer biomolecules (such as RNA) to platelets through direct contact and release of exosomes, which changes the platelet precursor RNA. Under the stimulation of tumour cells and the tumour microenvironment, platelet precursor mRNA is spliced into mature RNA and converted into functional protein to respond to external stimuli, forming tumour-educated platelets (TEPs). The detection of TEPs in the peripheral blood of patients is expected to be used in clinical tumour diagnosis. This emerging liquid biopsy method can replace and supplement the current tumour detection methods. Further research on the role of platelets in tumour diagnosis will help provide a novel theoretical basis for clinical tumour diagnosis.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of China Medical University, Liaoning province Cancer Hospital, Shenyang, 110042, People's Republic of China
| | - Jing Sun
- Department of Biobank, Cancer Hospital of China Medical University, Liaoning Province Cancer Hospital, Shenyang, 110042, People's Republic of China
| | - Yang Zheng
- Department of Clinical Laboratory, Cancer Hospital of China Medical University, Liaoning Province Cancer Hospital, Shenyang, 110042, People's Republic of China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of China Medical University, Liaoning province Cancer Hospital, Shenyang, 110042, People's Republic of China
| | - Tao Yu
- Department of Medical Imaging, Cancer Hospital of China Medical University, Liaoning Province Cancer Hospital, Shenyang, 110042, People's Republic of China
| | - Haozhe Piao
- Department of Central Laboratory, Cancer Hospital of China Medical University, Liaoning province Cancer Hospital, Shenyang, 110042, People's Republic of China.,Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Province Cancer Hospital, Shenyang, 110042, People's Republic of China
| |
Collapse
|
38
|
Platelets and extracellular vesicles and their cross talk with cancer. Blood 2021; 137:3192-3200. [PMID: 33940593 DOI: 10.1182/blood.2019004119] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Platelets play significant and varied roles in cancer progression, as detailed throughout this review series, via direct interactions with cancer cells and by long-range indirect interactions mediated by platelet releasates. Microvesicles (MVs; also referred to as microparticles) released from activated platelets have emerged as major contributors to the platelet-cancer nexus. Interactions of platelet-derived MVs (PMVs) with cancer cells can promote disease progression through multiple mechanisms, but PMVs also harbor antitumor functions. This complex relationship derives from PMVs' binding to both cancer cells and nontransformed cells in the tumor microenvironment and transferring platelet-derived contents to the target cell, each of which can have stimulatory or modulatory effects. MVs are extracellular vesicles of heterogeneous size, ranging from 100 nm to 1 µm in diameter, shed by living cells during the outward budding of the plasma membrane, entrapping local cytosolic contents in an apparently stochastic manner. Hence, PMVs are encapsulated by a lipid bilayer harboring surface proteins and lipids mirroring the platelet exterior, with internal components including platelet-derived mature messenger RNAs, pre-mRNAs, microRNAs, and other noncoding RNAs, proteins, second messengers, and mitochondria. Each of these elements engages in established and putative PMV functions in cancer. In addition, PMVs contribute to cancer comorbidities because of their roles in coagulation and thrombosis and via interactions with inflammatory cells. However, separating the effects of PMVs from those of platelets in cancer contexts continues to be a major hurdle. This review summarizes our emerging understanding of the complex roles of PMVs in the development and progression of cancer and cancer comorbidities.
Collapse
|
39
|
Heredia-Soto V, Rodríguez-Salas N, Feliu J. Liquid Biopsy in Pancreatic Cancer: Are We Ready to Apply It in the Clinical Practice? Cancers (Basel) 2021; 13:1986. [PMID: 33924143 PMCID: PMC8074327 DOI: 10.3390/cancers13081986] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) exhibits the poorest prognosis of all solid tumors, with a 5-year survival of less than 10%. To improve the prognosis, it is necessary to advance in the development of tools that help us in the early diagnosis, treatment selection, disease monitoring, evaluation of the response and prognosis. Liquid biopsy (LB), in its different modalities, represents a particularly interesting tool for these purposes, since it is a minimally invasive and risk-free procedure that can detect both the presence of genetic material from the tumor and circulating tumor cells (CTCs) in the blood and therefore distantly reflect the global status of the disease. In this work we review the current status of the main LB modalities (ctDNA, exosomes, CTCs and cfRNAs) for detecting and monitoring PDAC.
Collapse
Affiliation(s)
- Victoria Heredia-Soto
- Translational Oncology Research Laboratory, Biomedical Research Institute, La Paz University Hospital, IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain; (V.H.-S.); (N.R.-S.)
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Instituto de Salud Carlos III, Monforte de Lemos 5, 28029 Madrid, Spain
| | - Nuria Rodríguez-Salas
- Translational Oncology Research Laboratory, Biomedical Research Institute, La Paz University Hospital, IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain; (V.H.-S.); (N.R.-S.)
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Instituto de Salud Carlos III, Monforte de Lemos 5, 28029 Madrid, Spain
- Cátedra UAM-AMGEN, Medical Oncology Department, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Jaime Feliu
- Translational Oncology Research Laboratory, Biomedical Research Institute, La Paz University Hospital, IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain; (V.H.-S.); (N.R.-S.)
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Instituto de Salud Carlos III, Monforte de Lemos 5, 28029 Madrid, Spain
- Cátedra UAM-AMGEN, Medical Oncology Department, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain
| |
Collapse
|
40
|
Zhou Y, Heitmann JS, Clar KL, Kropp KN, Hinterleitner M, Engler T, Koch A, Hartkopf AD, Zender L, Salih HR, Maurer S, Hinterleitner C. Platelet-expressed immune checkpoint regulator GITRL in breast cancer. Cancer Immunol Immunother 2021; 70:2483-2496. [PMID: 33538861 PMCID: PMC8360840 DOI: 10.1007/s00262-021-02866-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/17/2021] [Indexed: 12/13/2022]
Abstract
Owing to their key role in several diseases including cancer, activating and inhibitory immune checkpoint molecules are increasingly exploited as targets for immunotherapy. Recently, we demonstrated that platelets, which largely influence tumor progression and immune evasion, functionally express the ligand of the checkpoint molecule GITR. This immunoreceptor modulates effector functions of T cells and NK cells with its function varying dependent on cellular context and activation state. Here, we provide a comparative analysis of platelet-derived GITRL (pGITRL) in breast cancer patients and healthy volunteers. The levels of pGITRL were found to be higher on platelets derived from cancer patients and appeared to be specifically regulated during tumor progression as exemplified by several clinical parameters including tumor stage/grade, the occurrence of metastases and tumor proliferation (Ki67) index. In addition, we report that pGITRL is upregulated during platelet maturation and particularly induced upon exposure to tumor-derived soluble factors. Our data indicate that platelets modulate the GITR/GITRL immune checkpoint in the context of malignant disease and provide a rationale to further study the GITR/GITRL axis for exploitation for immunotherapeutic intervention in cancer patients.
Collapse
Affiliation(s)
- Yanjun Zhou
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
| | - Jonas S Heitmann
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
| | - Kim L Clar
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
| | - Korbinian N Kropp
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of Mainz, Mainz, Germany
| | - Martina Hinterleitner
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany
| | - Tobias Engler
- Department of Obstetrics and Gynecology, University Hospital Tuebingen, Tuebingen, Germany
| | - André Koch
- Department of Obstetrics and Gynecology, University Hospital Tuebingen, Tuebingen, Germany
| | - Andreas D Hartkopf
- Department of Obstetrics and Gynecology, University Hospital Tuebingen, Tuebingen, Germany
| | - Lars Zender
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany
- German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Tübingen, Heidelberg, Germany
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
| | - Stefanie Maurer
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tuebingen, Tuebingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany.
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Clemens Hinterleitner
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
41
|
Kraaijpoel N, Mulder FI, Carrier M, van Lieshout A, Würdinger T, Best MG, van Vlijmen BJ, Mohammed Y, Jara-Palomares L, Kamphuisen PW, Di Nisio M, Ageno W, Beyer-Westendorf J, Vanassche T, Klokm FA, Otten HM, Peters MJ, Cosmi B, Wolde MT, Bossuyt PM, Büller HR, van Es N. Novel biomarkers to detect occult cancer in patients with unprovoked venous thromboembolism: Rationale and design of the PLATO-VTE study. THROMBOSIS UPDATE 2021. [DOI: 10.1016/j.tru.2020.100030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
42
|
Faria AVS, Andrade SS, Peppelenbosch MP, Ferreira-Halder CV, Fuhler GM. Platelets in aging and cancer-"double-edged sword". Cancer Metastasis Rev 2020; 39:1205-1221. [PMID: 32869161 PMCID: PMC7458881 DOI: 10.1007/s10555-020-09926-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
Abstract
Platelets control hemostasis and play a key role in inflammation and immunity. However, platelet function may change during aging, and a role for these versatile cells in many age-related pathological processes is emerging. In addition to a well-known role in cardiovascular disease, platelet activity is now thought to contribute to cancer cell metastasis and tumor-associated venous thromboembolism (VTE) development. Worldwide, the great majority of all patients with cardiovascular disease and some with cancer receive anti-platelet therapy to reduce the risk of thrombosis. However, not only do thrombotic diseases remain a leading cause of morbidity and mortality, cancer, especially metastasis, is still the second cause of death worldwide. Understanding how platelets change during aging and how they may contribute to aging-related diseases such as cancer may contribute to steps taken along the road towards a "healthy aging" strategy. Here, we review the changes that occur in platelets during aging, and investigate how these versatile blood components contribute to cancer progression.
Collapse
Affiliation(s)
- Alessandra V S Faria
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, NL-3000 CA, Rotterdam, The Netherlands
- Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Campinas, SP, 13083-862, Brazil
| | | | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, NL-3000 CA, Rotterdam, The Netherlands
| | - Carmen V Ferreira-Halder
- Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Campinas, SP, 13083-862, Brazil
| | - Gwenny M Fuhler
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, NL-3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
43
|
Asghar S, Waqar W, Umar M, Manzoor S. Tumor educated platelets, a promising source for early detection of hepatocellular carcinoma: Liquid biopsy an alternative approach to tissue biopsy. Clin Res Hepatol Gastroenterol 2020; 44:836-844. [PMID: 32312598 DOI: 10.1016/j.clinre.2020.03.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/17/2020] [Accepted: 03/23/2020] [Indexed: 02/05/2023]
Abstract
PURPOSE Liver cancer is considered to be the sixth deadliest cancer worldwide. Hepatocellular carcinoma (HCC) is known to be the most prevalent type of liver cancer. The number of deaths due to HCC reported per year is on a constant rise especially in lesser developed countries. There are several contributing factors to this rise in number. Among other contributing factors is the late diagnosis of HCC. Patients are usually diagnosed when the disease reaches its advance stage. The present study was conducted with total 30 samples. It was designed for investigating the potential of TGF-β, NF-κβ, VEGF, AKT and PI3K as RNA based biomarkers in tumor educated platelets for early detection of HCC. RESULTS The results obtained from the transcriptional analysis revealed a significant high expression of TGF-β, NF-κβ, VEGF by 2.48, 2.35 and 2.78 folds respectively in comparison to the control. On the other hand, a decrease in expression by 0.6 and 0.65 folds was observed in AKT and PI3K respectively in comparison to controls. Although all selected RNA biomarkers showed promising potential to detect HCC however, AKT and PI3K were better able to detect early stage HCC. CONCLUSIONS The results obtained clearly indicate the increased expression of TGF-β, NF-κβ, VEGF in HCC patients. All these biomarkers are previously known for cancer initiation, progression and metastasis. The significant decrease in expression of AKT and PI3K in HCC patients needs further investigation. All the selected RNA biomarkers can be used for detection of HCC as they were able to distinguish HCC patients from controls successfully with AKT and PI3K showing better potential to detect early stage HCC. However, translational analysis for all these RNA biomarkers should be performed to gain further evidence for the ability of these biomarkers to be used for early HCC detection.
Collapse
Affiliation(s)
- Sidra Asghar
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, H12, 44000 Islamabad, Pakistan.
| | - Walifa Waqar
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, H12, 44000 Islamabad, Pakistan.
| | - Muhammad Umar
- Centre for Liver and Digestive Diseases Holy Family Hospital, Rawalpindi, Pakistan.
| | - Sobia Manzoor
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, H12, 44000 Islamabad, Pakistan.
| |
Collapse
|
44
|
A journey upstream: Fluctuating platelet-specific genes in cell-free plasma as proof-of-concept for using ribonucleic acid sequencing to improve understanding of postinjury platelet biology. J Trauma Acute Care Surg 2020; 88:742-751. [PMID: 32195992 DOI: 10.1097/ta.0000000000002681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND The mechanisms of aberrant circulating platelet behavior following injury remain unclear. Platelets retain megakaryocyte immature ribonucleic acid (RNA) splicing and protein synthesis machinery to alter their functions based on physiologic signals. We sought to identify fluctuating platelet-specific RNA transcripts in cell-free plasma (CFP) from traumatic brain injury (TBI) patients as proof-of-concept for using RNA sequencing to improve our understanding of postinjury platelet behavior. We hypothesized that we could identify differential expression of activated platelet-specific spliced RNA transcripts from CFP of patients with isolated severe fatal TBI (fTBI) compared with minimally injured trauma controls (t-controls), filtered by healthy control (h-control) data sets. METHODS High-read depth RNA sequencing was applied to CFP from 10 patients with fTBI (Abbreviated Injury Scale [AIS] for head ≥3, AIS for all other categories <3, and expired) and five t-controls (Injury Severity Score ≤1, and survived). A publicly available CFP RNA sequencing data set from 23 h-controls was used to determine the relative steady state of splice-form RNA transcripts discoverable in CFP. Activated platelet-specific spliced RNA transcripts were derived from studies of ex vivo platelet activation and identified by splice junction presence greater than 1.5-fold or less than 0.67-fold ex vivo nonactivated platelet-specific RNA transcripts. RESULTS Forty-two differentially spliced activated platelet-specific RNA transcripts in 34 genes were altered in CFP from fTBI patients (both upregulated and downregulated). CONCLUSION We have discovered differentially expressed activated platelet-specific spliced RNA transcripts present in CFP from isolated severe fTBI patients that are upregulated or downregulated compared with minimally injured trauma controls. This proof-of-concept suggests that a pool of immature platelet RNAs undergo splicing events after injury for presumed modulation of platelet protein products involved in platelet function. This validates our exploration of injury-induced platelet RNA transcript modulation as an upstream "liquid biopsy" to identify novel postinjury platelet biology and treatment targets for aberrant platelet behavior. LEVEL OF EVIDENCE Diagnostic tests, level V.
Collapse
|
45
|
Dong X, Ding S, Yu M, Niu L, Xue L, Zhao Y, Xie L, Song X, Song X. Small Nuclear RNAs (U1, U2, U5) in Tumor-Educated Platelets Are Downregulated and Act as Promising Biomarkers in Lung Cancer. Front Oncol 2020; 10:1627. [PMID: 32903345 PMCID: PMC7434840 DOI: 10.3389/fonc.2020.01627] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/27/2020] [Indexed: 12/25/2022] Open
Abstract
Background Small nuclear RNA (snRNA) levels are extremely variable across a wide range of biological conditions. SnRNAs could potentially regulate alternative splicing to drive genetic, dysplastic and neoplastic disease, which might be the main reason for mRNA profile alteration in tumor educated platelets (TEPs). Methods Platelets were isolated from the plasma of lung cancer patients and healthy donors by low-speed centrifugation and subjected to RNA isolation. SnRNA U1, U2, U5 levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Exosomes were isolated by ultracentrifugation and identified by qNano. Results TEP U1, U2, U5 levels were significantly decreased in patients with lung cancer as well as with early stage patients, their downregulation was correlated with lung cancer progression, possessing favorable diagnostic efficiency. More importantly, TEP U1, U2 and U5 levels were closely correlated between paired exosomes and TEP from treated patients but not from untreated ones, and U1, U5 but not U2 in platelets were elevated by apo-exosomes. Conclusion Tumor educated platelet small nuclear RNAs are downregulated and act as promising biomarkers in lung cancer.
Collapse
Affiliation(s)
- Xiaohan Dong
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Shanshan Ding
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Miao Yu
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Limin Niu
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Linlin Xue
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yajing Zhao
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Li Xie
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xingguo Song
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xianrang Song
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
46
|
Eslami-S Z, Cortés-Hernández LE, Cayrefourcq L, Alix-Panabières C. The Different Facets of Liquid Biopsy: A Kaleidoscopic View. Cold Spring Harb Perspect Med 2020; 10:a037333. [PMID: 31548226 PMCID: PMC7263091 DOI: 10.1101/cshperspect.a037333] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The current limitations of cancer diagnosis and molecular profiling based on invasive tissue biopsies or clinical imaging have led to the development of the liquid biopsy field. Liquid biopsy includes the isolation of circulating tumor cells (CTCs), circulating free or tumor DNA (cfDNA or ctDNA), extracellular vesicles (EVs), and tumor-educated platelets (TEPs) from body fluid samples and their molecular characterization to identify biomarkers for early cancer diagnosis, prognosis, therapeutic prediction, and follow-up. These innovative biosources show similar features as the primary tumor from where they originated or interacted. This review describes the different technologies and methods used for processing these biosources as well as their main clinical applications with their advantages and limitations.
Collapse
Affiliation(s)
- Zahra Eslami-S
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, 34093 Montpellier, France
| | - Luis Enrique Cortés-Hernández
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, 34093 Montpellier, France
| | - Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, 34093 Montpellier, France
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, 34093 Montpellier, France
| |
Collapse
|
47
|
Davizon-Castillo P, Rowley JW, Rondina MT. Megakaryocyte and Platelet Transcriptomics for Discoveries in Human Health and Disease. Arterioscler Thromb Vasc Biol 2020; 40:1432-1440. [PMID: 32295424 PMCID: PMC7253186 DOI: 10.1161/atvbaha.119.313280] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Anucleate platelets, long viewed as merely cell fragments with a limited repertoire of rapid-acting hemostatic functions, are now recognized to have a complex and dynamic transcriptome mirroring that of many nucleated cells. The field of megakaryocyte and platelet transcriptomics has been rapidly growing, particularly with the advent of newer technologies such as next-generation RNA-sequencing. Studies interrogating the megakaryocyte and platelet transcriptome have led to a number of key insights into human health and disease. In this brief focused review, we will discuss some of the recent discoveries made through transcriptome analysis of megakaryocytes and platelets. We will also highlight the utility of integrating ribosome footprint analysis to augment discoveries. Both bulk and single-cell sequencing approaches will be reviewed, along with comparative studies between human and murine platelets under basal healthy settings and during acute systemic inflammatory diseases.
Collapse
Affiliation(s)
- Pavel Davizon-Castillo
- From the Section of Pediatric Hematology, Oncology, and Bone Marrow Transplant, University of Colorado, Aurora (P.D.-C)
| | - Jesse W Rowley
- University of Utah Molecular Medicine Program, University of Utah, Salt Lake City (J.W.R., M.T.R.).,Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (J.W.R., M.T.R.)
| | - Matthew T Rondina
- From the Section of Pediatric Hematology, Oncology, and Bone Marrow Transplant, University of Colorado, Aurora (P.D.-C).,University of Utah Molecular Medicine Program, University of Utah, Salt Lake City (J.W.R., M.T.R.).,Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (J.W.R., M.T.R.).,Department of Pathology, University of Utah, Salt Lake City (M.T.R.).,George E. Wahlen VAMC, Salt Lake City, UT (M.T.R.)
| |
Collapse
|
48
|
Tumor-educated platelet as liquid biopsy in lung cancer patients. Crit Rev Oncol Hematol 2020; 146:102863. [PMID: 31935617 DOI: 10.1016/j.critrevonc.2020.102863] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/28/2019] [Accepted: 01/01/2020] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is the most frequent cancer for males and third most frequent cancer for females. Targeted therapy drugs based on molecular alterations, such as angiogenesis inhibitors, epidermal growth factor receptor (EGFR) inhibitors, and anaplastic lymphoma kinase (ALK) inhibitors are important part of treatment of NSCLC. However, the quality of the available tumor biopsy and/or cytology material is sometimes not adequate to perform the necessary molecular testing, which has prompted the search for alternatives. This review examines the use of tumor-educated platelet (TEP) as a liquid biopsy in lung cancer patients. The development of sensitive and accurate techniques have made it possible to detect the specific genetic alterations for which targeted therapies are already available. Liquid biopsy offers opportunities to detect resistance mechanisms at an early stage. To conclude, tumor-educated platelet has the potential to be used as liquid biopsy for a variety of clinical and investigational applications.
Collapse
|
49
|
Smith MR, Chacko BK, Johnson MS, Benavides GA, Uppal K, Go YM, Jones DP, Darley-Usmar VM. A precision medicine approach to defining the impact of doxorubicin on the bioenergetic-metabolite interactome in human platelets. Redox Biol 2020; 28:101311. [PMID: 31546171 PMCID: PMC6812033 DOI: 10.1016/j.redox.2019.101311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/22/2019] [Accepted: 08/30/2019] [Indexed: 12/26/2022] Open
Abstract
Non-invasive measures of the response of individual patients to cancer therapeutics is an emerging strategy in precision medicine. Platelets offer a potential dynamic marker for metabolism and bioenergetic responses in individual patients since they have active glycolysis and mitochondrial oxidative phosphorylation and can be easily isolated from a small blood sample. We have recently shown how the bioenergetic-metabolite interactome can be defined in platelets isolated from human subjects by measuring metabolites and bioenergetics in the same sample. In the present study, we used a model system to assess test the hypothesis that this interactome is modified by xenobiotics using exposure to the anti-cancer drug doxorubicin (Dox) in individual donors. We found that unsupervised analysis of the metabolome showed clear differentiation between the control and Dox treated group. Dox treatment resulted in a concentration-dependent decrease in bioenergetic parameters with maximal respiration being most sensitive and this was associated with significant changes in over 166 features. A metabolome-wide association study of Dox was also conducted, and Dox was found to have associations with metabolites in the glycolytic and TCA cycle pathways. Lastly, network analysis showed the impact of Dox on the bioenergetic-metabolite interactome and revealed profound changes in the regulation of reserve capacity. Taken together, these data support the conclusion that platelets are a suitable platform to predict and monitor therapeutic efficacy as well as anticipate susceptibility to toxicity in the context of precision medicine.
Collapse
Affiliation(s)
- Matthew Ryan Smith
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory School of Medicine, Atlanta, GA, USA
| | - Balu K Chacko
- Mitochondrial Medicine Laboratory, Center for Free Radical Biology, Department of Pathology, University of Alabama at Birmingham, USA
| | - Michelle S Johnson
- Mitochondrial Medicine Laboratory, Center for Free Radical Biology, Department of Pathology, University of Alabama at Birmingham, USA
| | - Gloria A Benavides
- Mitochondrial Medicine Laboratory, Center for Free Radical Biology, Department of Pathology, University of Alabama at Birmingham, USA
| | - Karan Uppal
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory School of Medicine, Atlanta, GA, USA
| | - Young-Mi Go
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory School of Medicine, Atlanta, GA, USA
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory School of Medicine, Atlanta, GA, USA
| | - Victor M Darley-Usmar
- Mitochondrial Medicine Laboratory, Center for Free Radical Biology, Department of Pathology, University of Alabama at Birmingham, USA.
| |
Collapse
|
50
|
Christou N, Meyer J, Popeskou S, David V, Toso C, Buchs N, Liot E, Robert J, Ris F, Mathonnet M. Circulating Tumour Cells, Circulating Tumour DNA and Circulating Tumour miRNA in Blood Assays in the Different Steps of Colorectal Cancer Management, a Review of the Evidence in 2019. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5953036. [PMID: 31930130 PMCID: PMC6942724 DOI: 10.1155/2019/5953036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/02/2019] [Accepted: 08/17/2019] [Indexed: 12/24/2022]
Abstract
Despite many advances in the diagnosis and treatment of colorectal cancer (CRC), its incidence and mortality rates continue to make an impact worldwide and in some countries rates are mounting. Over the past decade, liquid biopsies have been the object of fundamental and clinical research with regard to the different steps of CRC patient care such as screening, diagnosis, prognosis, follow-up, and therapeutic response. They are attractive because they are considered to encompass both the cellular and molecular heterogeneity of tumours. They are easily accessible and can be applied to large-scale settings despite the cost. However, liquid biopsies face drawbacks in detection regardless of whether we are testing for circulating tumour cells (CTCs), circulating tumour DNA (ctDNA), or miRNA. This review highlights the different advantages and disadvantages of each type of blood-based biopsy and underlines which specific one may be the most useful and informative for each step of CRC patient care.
Collapse
Affiliation(s)
- Niki Christou
- Endocrine, General and Digestive Surgery Department, CHU de Limoges, Limoges Cedex 87042, France
- Laboratoire EA3842 Contrôle de l'Activation cellulaire, Progression Tumorale et Résistances thérapeutiques «CAPTuR», Faculté de médecine, 2 Rue du Docteur Marcland, 87025 Limoges, France
- Department of Visceral Surgery, University Hospital of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland
| | - Jeremy Meyer
- Department of Visceral Surgery, University Hospital of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland
| | - Sotirios Popeskou
- Department of Visceral Surgery, University Hospital of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland
| | - Valentin David
- Laboratoire EA3842 Contrôle de l'Activation cellulaire, Progression Tumorale et Résistances thérapeutiques «CAPTuR», Faculté de médecine, 2 Rue du Docteur Marcland, 87025 Limoges, France
| | - Christian Toso
- Department of Visceral Surgery, University Hospital of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland
| | - Nicolas Buchs
- Department of Visceral Surgery, University Hospital of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland
| | - Emilie Liot
- Department of Visceral Surgery, University Hospital of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland
| | - Joan Robert
- Department of Visceral Surgery, University Hospital of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland
| | - Frederic Ris
- Department of Visceral Surgery, University Hospital of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland
| | - Muriel Mathonnet
- Endocrine, General and Digestive Surgery Department, CHU de Limoges, Limoges Cedex 87042, France
- Laboratoire EA3842 Contrôle de l'Activation cellulaire, Progression Tumorale et Résistances thérapeutiques «CAPTuR», Faculté de médecine, 2 Rue du Docteur Marcland, 87025 Limoges, France
| |
Collapse
|