1
|
Poudel P, Miteva MA, Alexov E. Strategies for in Silico Drug Discovery to Modulate Macromolecular Interactions Altered by Mutations. FRONT BIOSCI-LANDMRK 2025; 30:26339. [PMID: 40302318 DOI: 10.31083/fbl26339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/22/2024] [Accepted: 10/09/2024] [Indexed: 05/02/2025]
Abstract
Most human diseases have genetic components, frequently single nucleotide variants (SNVs), which alter the wild type characteristics of macromolecules and their interactions. A straightforward approach for correcting such SNVs-related alterations is to seek small molecules, potential drugs, that can eliminate disease-causing effects. Certain disorders are caused by altered protein-protein interactions, for example, Snyder-Robinson syndrome, the therapy for which focuses on the development of small molecules that restore the wild type homodimerization of spermine synthase. Other disorders originate from altered protein-nucleic acid interactions, as in the case of cancer; in these cases, the elimination of disease-causing effects requires small molecules that eliminate the effect of mutation and restore wild type p53-DNA affinity. Overall, especially for complex diseases, pathogenic mutations frequently alter macromolecular interactions. This effect can be direct, i.e., the alteration of wild type affinity and specificity, or indirect via alterations in the concentration of the binding partners. Here, we outline progress made in methods and strategies to computationally identify small molecules capable of altering macromolecular interactions in a desired manner, reducing or increasing the binding affinity, and eliminating the disease-causing effect. When applicable, we provide examples of the outlined general strategy. Successful cases are presented at the end of the work.
Collapse
Affiliation(s)
- Pitambar Poudel
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Maria A Miteva
- Université Paris Cité, CNRS UMR 8038 CiTCoM, Inserm, U1268 MCTR Paris, France
| | - Emil Alexov
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
2
|
Iacopini D, Santi M, Santangelo MC, Sardelli G, Piazza L, Mosca R, Comparini LM, Granchi C, Pineschi M, Di Pietro S, Signore G, Di Bussolo V. Glycoconjugate coumarins exploiting metabolism-enhanced fluorescence and preferential uptake: New optical tools for tumor cell staining. Bioorg Chem 2024; 153:107836. [PMID: 39326338 DOI: 10.1016/j.bioorg.2024.107836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
The possibility to visually discriminate cells based on their metabolism and capability to uptake exogenous molecules is an important topic with exciting fallback on translational and precision medicine. To this end, probes that combine several complementary features are necessary. The ideal probe is selectively uptaken and activated in tumor cells compared with control ones and is not fluorescent in the extracellular medium. Fluorogenic compounds that combine enzyme-activated pH sensitivity and good cell uptake can be an ideal solution, provided that the sensed enzymes are dysregulated in tumor cells. Here, we present synthesis and in vitro evaluation of a new class of glyco-coumarin based probes that merge all these features. These probes show uptake ratio in tumor vs. control cells up to 3:1, with a cell to background ratio upon administration of the probe up to 5:1. These features make this new family of fluorogenic targeted probes a promising tool in life science.
Collapse
Affiliation(s)
- Dalila Iacopini
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 33, 56126 Pisa, Italy
| | - Melissa Santi
- Istituto Nanoscienze-CNR, NEST Laboratory, Piazza San Silvestro 12, 56127 Pisa, Italy
| | | | - Gemma Sardelli
- Biochemistry Unit, Department of Biology, University of Pisa, 56123 Pisa, Italy
| | - Lucia Piazza
- Biochemistry Unit, Department of Biology, University of Pisa, 56123 Pisa, Italy; Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Rossella Mosca
- Biochemistry Unit, Department of Biology, University of Pisa, 56123 Pisa, Italy
| | | | - Carlotta Granchi
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 33, 56126 Pisa, Italy
| | - Mauro Pineschi
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 33, 56126 Pisa, Italy
| | - Sebastiano Di Pietro
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 33, 56126 Pisa, Italy.
| | - Giovanni Signore
- Biochemistry Unit, Department of Biology, University of Pisa, 56123 Pisa, Italy; Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, 56123 Pisa, Italy.
| | - Valeria Di Bussolo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 33, 56126 Pisa, Italy
| |
Collapse
|
3
|
Abstract
Cancers undergo sequential changes to proton (H+) concentration and sensing that are consequences of the disease and facilitate its further progression. The impact of protonation state on protein activity can arise from alterations to amino acids or their titration. Indeed, many cancer-initiating mutations influence pH balance, regulation or sensing in a manner that enables growth and invasion outside normal constraints as part of oncogenic transformation. These cancer-supporting effects become more prominent when tumours develop an acidic microenvironment owing to metabolic reprogramming and disordered perfusion. The ensuing intracellular and extracellular pH disturbances affect multiple aspects of tumour biology, ranging from proliferation to immune surveillance, and can even facilitate further mutagenesis. As a selection pressure, extracellular acidosis accelerates disease progression by favouring acid-resistant cancer cells, which are typically associated with aggressive phenotypes. Although acid-base disturbances in tumours often occur alongside hypoxia and lactate accumulation, there is now ample evidence for a distinct role of H+-operated responses in key events underpinning cancer. The breadth of these actions presents therapeutic opportunities to change the trajectory of disease.
Collapse
Affiliation(s)
- Pawel Swietach
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Stine Falsig Pedersen
- Department of Biology, University of Copenhagen, University of Copenhagen, Faculty of Science, København, Denmark.
| |
Collapse
|
4
|
Michl J, Monterisi S, White B, Blaszczak W, Hulikova A, Abdullayeva G, Bridges E, Yin Z, Bodmer WF, Swietach P. Acid-adapted cancer cells alkalinize their cytoplasm by degrading the acid-loading membrane transporter anion exchanger 2, SLC4A2. Cell Rep 2023; 42:112601. [PMID: 37270778 DOI: 10.1016/j.celrep.2023.112601] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/16/2023] [Accepted: 05/19/2023] [Indexed: 06/06/2023] Open
Abstract
Acidic environments reduce the intracellular pH (pHi) of most cells to levels that are sub-optimal for growth and cellular functions. Yet, cancers maintain an alkaline cytoplasm despite low extracellular pH (pHe). Raised pHi is thought to be beneficial for tumor progression and invasiveness. However, the transport mechanisms underpinning this adaptation have not been studied systematically. Here, we characterize the pHe-pHi relationship in 66 colorectal cancer cell lines and identify the acid-loading anion exchanger 2 (AE2, SLC4A2) as a regulator of resting pHi. Cells adapt to chronic extracellular acidosis by degrading AE2 protein, which raises pHi and reduces acid sensitivity of growth. Acidity inhibits mTOR signaling, which stimulates lysosomal function and AE2 degradation, a process reversed by bafilomycin A1. We identify AE2 degradation as a mechanism for maintaining a conducive pHi in tumors. As an adaptive mechanism, inhibiting lysosomal degradation of AE2 is a potential therapeutic target.
Collapse
Affiliation(s)
- Johanna Michl
- Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK
| | - Stefania Monterisi
- Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK
| | - Bobby White
- Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK
| | - Wiktoria Blaszczak
- Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK
| | - Alzbeta Hulikova
- Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK
| | - Gulnar Abdullayeva
- MRC Weatherall Institute for Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Esther Bridges
- Department of NDM Experimental Medicine, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, JR Hospital, Headington, Oxford OX3 9DS, UK
| | - Zinan Yin
- Department of NDM Experimental Medicine, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, JR Hospital, Headington, Oxford OX3 9DS, UK
| | - Walter F Bodmer
- MRC Weatherall Institute for Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Pawel Swietach
- Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK.
| |
Collapse
|
5
|
Liu Y, Chen H, Bao H, Zhang J, Wu R, Zhu L. Comprehensive characterization of FBXW7 mutational and clinicopathological profiles in human colorectal cancers. Front Oncol 2023; 13:1154432. [PMID: 37064111 PMCID: PMC10091464 DOI: 10.3389/fonc.2023.1154432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
BackgroundFBXW7 is recognized as a critical tumor suppressor gene and a component of the ubiquitin-proteasome system, mediating the degradation of multiple oncogenic proteins, including c-MYC, Cyclin E, c-Jun, Notch, p53. Around 16% of colorectal cancer (CRC) patients carried FBXW7 somatic mutations, while a comprehensive characterization of FBXW7 somatic mutations in CRC is still lacking.MethodsColorectal cancer patients with tumor samples and matching white blood cell samples in the past five years were screened and DNA sequenced. DNA sequencing data of MSK MetTropism cohort and RNA sequencing data of TCGA COAD cohort were analyzed.ResultsWe discovered that the FBXW7 mutations were associated with higher tumor mutation burden (TMB), higher microsatellite instability (MSI) score, and lower chromosomal instability (CIN) score. Patients with FBXW7 mutations showed better overall survival (HR: 0.67; 95%CI: 0.55-0.80, P < 0.001). However, patients with FBXW7 R465C mutation displayed worse overall survival in multi-variate cox analysis when compared with patients carrying other FBXW7 mutations (HR: 1.6; 95%CI: 1.13-3.1, P = 0.015), and with all other patients (HR: 1.87; 95%CI: 0.99-2.5, P = 0.053). Moreover, in MSI patients, the FBXW7 mutated group showed higher M1 macrophage, CD8+ T cell, and regulatory T cell (Tregs) infiltration rates, and significant enrichment of multiple immune-related gene sets, including interferon-gamma response, interferon-alpha response, IL6 JAK STAT3 signaling, p53 pathway.ConclusionThis analysis comprehensively identified FBXW7 alterations in colorectal cancer patients and uncovered the molecular, clinicopathological, and immune-related patterns of FBXW7-altered CRC patients.
Collapse
Affiliation(s)
- Yiping Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Hanlin Chen
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Hua Bao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Jinfeng Zhang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Runda Wu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Runda Wu, ; Lingjun Zhu,
| | - Lingjun Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Runda Wu, ; Lingjun Zhu,
| |
Collapse
|
6
|
Chang X, Zhao G, Liu C, Wang X, Abdulkhaleq AMA, Zhang J, Zhou X. One-step microwave synthesis of red-emissive carbon dots for cell imaging in extreme acidity and light emitting diodes. RSC Adv 2022; 12:28021-28033. [PMID: 36320228 PMCID: PMC9524442 DOI: 10.1039/d2ra04026c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022] Open
Abstract
Red emissive carbon dots (R-CDs) have received great attention in biological fields due to their deep tissue penetrability, great bioimaging capability, low interference from auto-fluorescence, and potential for optoelectronic applications. Herein, excitation-independent, highly acid-sensitive R-CDs were successfully obtained via one-step microwave treatment of o-phenylenediamine (o-PD) and phosphoric acid and carefully purified by column chromatography. The relationship between the fluorescence emission and surface groups of the R-CDs was studied in detail using XPS, NMR, and fluorescence spectroscopy, and the different mechanisms of action of the R-CDs and acid in H2O and ethanol were determined. The excellent anti-interference ability and biocompatibility of the R-CDs were confirmed, and the probes were successfully used for imaging A549 and Escherichia coli (E. coli) cells in extreme acidity. Finally, based on their relatively high quantum yield and long wavelength emission, the application potential of the R-CDs in the fabrication of red light-emitting diodes (LEDs) was investigated.
Collapse
Affiliation(s)
- Xiaojie Chang
- College of Pharmacy, Jinzhou Medical University Jinzhou Liaoning 121001 P. R. China
| | - Guizhi Zhao
- College of Pharmacy, Jinzhou Medical University Jinzhou Liaoning 121001 P. R. China
| | - Chang Liu
- College of Pharmacy, Jinzhou Medical University Jinzhou Liaoning 121001 P. R. China
| | - Xueshi Wang
- College of Pharmacy, Jinzhou Medical University Jinzhou Liaoning 121001 P. R. China
| | | | - Jie Zhang
- College of Pharmacy, Jinzhou Medical University Jinzhou Liaoning 121001 P. R. China
| | - Xibin Zhou
- College of Pharmacy, Jinzhou Medical University Jinzhou Liaoning 121001 P. R. China
| |
Collapse
|
7
|
Electrostatics in Computational Biophysics and Its Implications for Disease Effects. Int J Mol Sci 2022; 23:ijms231810347. [PMID: 36142260 PMCID: PMC9499338 DOI: 10.3390/ijms231810347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 12/25/2022] Open
Abstract
This review outlines the role of electrostatics in computational molecular biophysics and its implication in altering wild-type characteristics of biological macromolecules, and thus the contribution of electrostatics to disease mechanisms. The work is not intended to review existing computational approaches or to propose further developments. Instead, it summarizes the outcomes of relevant studies and provides a generalized classification of major mechanisms that involve electrostatic effects in both wild-type and mutant biological macromolecules. It emphasizes the complex role of electrostatics in molecular biophysics, such that the long range of electrostatic interactions causes them to dominate all other forces at distances larger than several Angstroms, while at the same time, the alteration of short-range wild-type electrostatic pairwise interactions can have pronounced effects as well. Because of this dual nature of electrostatic interactions, being dominant at long-range and being very specific at short-range, their implications for wild-type structure and function are quite pronounced. Therefore, any disruption of the complex electrostatic network of interactions may abolish wild-type functionality and could be the dominant factor contributing to pathogenicity. However, we also outline that due to the plasticity of biological macromolecules, the effect of amino acid mutation may be reduced, and thus a charge deletion or insertion may not necessarily be deleterious.
Collapse
|
8
|
de Oliveira VM, Dias MMG, Avelino TM, Videira NB, da Silva FB, Doratioto TR, Whitford PC, Leite VBP, Figueira ACM. pH and the Breast Cancer Recurrent Mutation D538G Affect the Process of Activation of Estrogen Receptor α. Biochemistry 2022; 61:455-463. [PMID: 35238537 DOI: 10.1021/acs.biochem.1c00806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Estrogen receptor α (ERα) is a regulatory protein that can access a set of distinct structural configurations. ERα undergoes extensive remodeling as it interacts with different agonists and antagonists, as well as transcription activation and repression factors. Moreover, breast cancer tumors resistant to hormone therapy have been associated with the imbalance between the active and inactive ERα states. Cancer-activating mutations in ERα play a crucial role in this imbalance and can promote the progression of cancer. However, the rate of this progression can also be increased by dysregulated pH in the tumor microenvironment. Many molecular aspects of the process of activation of ERα that can be affected by these pH changes and mutations are still unclear. Thus, we applied computational and experimental techniques to explore the activation process dynamics of ER for environments with different pHs and in the presence of one of the most recurrent cancer-activating mutations, D538G. Our results indicated that the effect of the pH increase associated with the D538G mutation promoted a robust stabilization of the active state of ER. We were also able to determine the main protein regions that have the most potential to influence the activation process under different pH conditions, which may provide targets of future therapeutics for the treatment of hormone-resistant breast cancer tumors. Finally, the approach used here can be applied for proteins associated with the proliferation of other cancer types, which can also have their function affected by small pH changes.
Collapse
Affiliation(s)
- Vinícius M de Oliveira
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, LNBio/CNPEM, Campinas 13083-970, SP, Brazil
| | - Marieli M G Dias
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, LNBio/CNPEM, Campinas 13083-970, SP, Brazil
| | - Thayná M Avelino
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, LNBio/CNPEM, Campinas 13083-970, SP, Brazil
| | - Natália B Videira
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, LNBio/CNPEM, Campinas 13083-970, SP, Brazil
| | - Fernando B da Silva
- Department of Physics, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto 01140-070, SP, Brazil
| | - Tábata R Doratioto
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, LNBio/CNPEM, Campinas 13083-970, SP, Brazil
| | - Paul C Whitford
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Vitor B P Leite
- Department of Physics, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto 01140-070, SP, Brazil
| | - Ana Carolina M Figueira
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, LNBio/CNPEM, Campinas 13083-970, SP, Brazil
| |
Collapse
|
9
|
Network Biology and Artificial Intelligence Drive the Understanding of the Multidrug Resistance Phenotype in Cancer. Drug Resist Updat 2022; 60:100811. [DOI: 10.1016/j.drup.2022.100811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/07/2023]
|
10
|
Feng B, Zhu Y, Wu J, Huang X, Song R, Huang L, Feng X, Zeng W. Monitoring intracellular pH fluctuation with an excited-state intramolecular proton transfer-based ratiometric fluorescent sensor. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Kazyken D, Lentz SI, Fingar DC. Alkaline intracellular pH (pHi) activates AMPK-mTORC2 signaling to promote cell survival during growth factor limitation. J Biol Chem 2021; 297:101100. [PMID: 34418433 PMCID: PMC8479482 DOI: 10.1016/j.jbc.2021.101100] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 01/12/2023] Open
Abstract
The mechanistic target of rapamycin (mTOR) complex 2 (mTORC2) signaling controls cell metabolism, promotes cell survival, and contributes to tumorigenesis, yet its upstream regulation remains poorly defined. Although considerable evidence supports the prevailing view that amino acids activate mTOR complex 1 but not mTORC2, several studies reported paradoxical activation of mTORC2 signaling by amino acids. We noted that after amino acid starvation of cells in culture, addition of an amino acid solution increased mTORC2 signaling. Interestingly, we found the pH of the amino acid solution to be alkaline, ∼pH 10. These observations led us to discover and demonstrate here that alkaline intracellular pH (pHi) represents a previously unknown activator of mTORC2. Using a fluorescent pH-sensitive dye (cSNARF1-AM) coupled with live-cell imaging, we demonstrate that culturing cells in media at an alkaline pH induces a rapid rise in the pHi, which increases mTORC2 catalytic activity and downstream signaling to the pro-growth and pro-survival kinase Akt. Alkaline pHi also activates AMPK, a canonical sensor of energetic stress. Functionally, alkaline pHi activates AMPK-mTOR signaling, which attenuates apoptosis caused by growth factor withdrawal. Collectively, these findings reveal that alkaline pHi increases mTORC2- and AMPK-mediated signaling to promote cell survival during conditions of growth factor limitation, analogous to the demonstrated ability of energetic stress to activate AMPK–mTORC2 and promote cell survival. As an elevated pHi represents an underappreciated hallmark of cancer cells, we propose that the alkaline pHi stress sensing by AMPK–mTORC2 may contribute to tumorigenesis by enabling cancer cells at the core of a growing tumor to evade apoptosis and survive.
Collapse
Affiliation(s)
- D Kazyken
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - S I Lentz
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - D C Fingar
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
12
|
Abstract
Extracellular acidification is a well-known driver of tumorigenesis that has been extensively studied. In contrast, the role of endosomal pH is novel and relatively unexplored. There is emerging evidence from a growing number of studies showing that the pH of endosomal compartments controls proliferation, migration, stemness, and sensitivity to chemoradiation therapy in a variety of tumors. Endosomes are a crucial hub, mediating cellular communication with the external environment. By finely regulating the sorting and trafficking of vesicular cargo for degradation or recycling, endosomal pH determines the fate of plasma membrane proteins, lipids, and extracellular signals including growth factor receptors and their ligands. Several critical regulators of endosomal pH have been identified, including multiple isoforms of the family of electroneutral Na+/H+ exchangers (NHE) such as NHE6 and NHE9. Recent studies have shed light on molecular mechanisms linking endosomal pH to cancer malignancy. Manipulating endosomal pH by epigenetic reprogramming, small molecules, or nanoparticles may offer promising new options in cancer therapy. In this review, we summarize evidence linking endosomal pH to cancer, with a focus on the role of endosomal Na+/H+ exchangers and how they affect the prognosis of cancer patients, and also suggest how regulation of endosomal pH may be exploited to develop new cancer therapies.
Collapse
|
13
|
Iacopini D, Moscardini A, Lessi F, Di Bussolo V, Di Pietro S, Signore G. Coumarin-based fluorescent biosensor with large linear range for ratiometric measurement of intracellular pH. Bioorg Chem 2020; 105:104372. [DOI: 10.1016/j.bioorg.2020.104372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/11/2020] [Accepted: 10/08/2020] [Indexed: 10/23/2022]
|
14
|
Cancer and pH Dynamics: Transcriptional Regulation, Proteostasis, and the Need for New Molecular Tools. Cancers (Basel) 2020; 12:cancers12102760. [PMID: 32992762 PMCID: PMC7601256 DOI: 10.3390/cancers12102760] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
An emerging hallmark of cancer cells is dysregulated pH dynamics. Recent work has suggested that dysregulated intracellular pH (pHi) dynamics enable diverse cancer cellular behaviors at the population level, including cell proliferation, cell migration and metastasis, evasion of apoptosis, and metabolic adaptation. However, the molecular mechanisms driving pH-dependent cancer-associated cell behaviors are largely unknown. In this review article, we explore recent literature suggesting pHi dynamics may play a causative role in regulating or reinforcing tumorigenic transcriptional and proteostatic changes at the molecular level, and discuss outcomes on tumorigenesis and tumor heterogeneity. Most of the data we discuss are population-level analyses; lack of single-cell data is driven by a lack of tools to experimentally change pHi with spatiotemporal control. Data is also sparse on how pHi dynamics play out in complex in vivo microenvironments. To address this need, at the end of this review, we cover recent advances for live-cell pHi measurement at single-cell resolution. We also discuss the essential role for tool development in revealing mechanisms by which pHi dynamics drive tumor initiation, progression, and metastasis.
Collapse
|
15
|
tpHusion: An efficient tool for clonal pH determination in Drosophila. PLoS One 2020; 15:e0228995. [PMID: 32059043 PMCID: PMC7021318 DOI: 10.1371/journal.pone.0228995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/27/2020] [Indexed: 02/04/2023] Open
Abstract
Genetically encoded pH indicators (GEpHI) have emerged as important tools for investigating intracellular pH (pHi) dynamics in Drosophila. However, most of the indicators are based on the Gal4/UAS binary expression system. Here, we report the generation of a ubiquitously-expressed GEpHI. The fusion protein of super ecliptic pHluorin and FusionRed was cloned under the tubulin promoter (tpHusion) to drive it independently of the Gal4/UAS system. The function of tpHusion was validated in various tissues from different developmental stages of Drosophila. Differences in pHi were also indicated correctly in fixed tissues. Finally, we describe the use of tpHusion for comparative analysis of pHi in manipulated clones and the surrounding cells in epithelial tissues. Our findings establish tpHusion as a robust tool for studying pHi in Drosophila.
Collapse
|
16
|
Yuan Y, Zhang J, Qi X, Li S, Liu G, Siddhanta S, Barman I, Song X, McMahon MT, Bulte JWM. Furin-mediated intracellular self-assembly of olsalazine nanoparticles for enhanced magnetic resonance imaging and tumour therapy. NATURE MATERIALS 2019; 18:1376-1383. [PMID: 31636420 PMCID: PMC6872935 DOI: 10.1038/s41563-019-0503-4] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 09/10/2019] [Indexed: 05/15/2023]
Abstract
Among the strategies used for enhancement of tumour retention of imaging agents or anticancer drugs is the rational design of probes that undergo a tumour-specific enzymatic reaction preventing them from being pumped out of the cell. Here, the anticancer agent olsalazine (Olsa) was conjugated to the cell-penetrating peptide RVRR. Taking advantage of a biologically compatible condensation reaction, single Olsa-RVRR molecules were self-assembled into large intracellular nanoparticles by the tumour-associated enzyme furin. Both Olsa-RVRR and Olsa nanoparticles were readily detected with chemical exchange saturation transfer magnetic resonance imaging by virtue of exchangeable Olsa hydroxyl protons. In vivo studies using HCT116 and LoVo murine xenografts showed that the OlsaCEST signal and anti-tumour therapeutic effect were 6.5- and 5.2-fold increased, respectively, compared to Olsa without RVRR, with an excellent 'theranostic correlation' (R2 = 0.97) between the imaging signal and therapeutic response (normalized tumour size). This furin-targeted, magnetic resonance imaging-detectable platform has potential for imaging tumour aggressiveness, drug accumulation and therapeutic response.
Collapse
Affiliation(s)
- Yue Yuan
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jia Zhang
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaoliang Qi
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shuoguo Li
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Guanshu Liu
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Soumik Siddhanta
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Ishan Barman
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaolei Song
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael T McMahon
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jeff W M Bulte
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|