1
|
Wei H, Hou J, Liu Y, Shaytan AK, Liu B, Wu H. iPiDA-LGE: a local and global graph ensemble learning framework for identifying piRNA-disease associations. BMC Biol 2025; 23:119. [PMID: 40346532 PMCID: PMC12065364 DOI: 10.1186/s12915-025-02221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 04/23/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Exploring piRNA-disease associations can help discover candidate diagnostic or prognostic biomarkers and therapeutic targets. Several computational methods have been presented for identifying associations between piRNAs and diseases. However, the existing methods encounter challenges such as over-smoothing in feature learning and overlooking specific local proximity relationships, resulting in limited representation of piRNA-disease pairs and insufficient detection of association patterns. RESULTS In this study, we propose a novel computational method called iPiDA-LGE for piRNA-disease association identification. iPiDA-LGE comprises two graph convolutional neural network modules based on local and global piRNA-disease graphs, aimed at capturing specific and general features of piRNA-disease pairs. Additionally, it integrates their refined and macroscopic inferences to derive the final prediction result. CONCLUSIONS The experimental results show that iPiDA-LGE effectively leverages the advantages of both local and global graph learning, thereby achieving more discriminative pair representation and superior predictive performance.
Collapse
Affiliation(s)
- Hang Wei
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China.
| | - Jialu Hou
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yumeng Liu
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, Guangdong, 518118, China
| | - Alexey K Shaytan
- Department of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- International Laboratory of Bioinformatics, AI and Digital Sciences Institute, Faculty of Computer Science, HSE University, Moscow, 109028, Russia
| | - Bin Liu
- SMBU-MSU-BIT Joint Laboratory On Bioinformatics and Engineering Biology, Shenzhen MSU-BIT University, Shenzhen, Guangdong, 518172, China.
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China.
- Zhongguancun Academy, Beijing, 100094, China.
| | - Hao Wu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
2
|
Yang H, Gong F, Yao C, Cheng J, He S, Jia Y, Zhang Y, Ma Q, Guo X, He H, Zhong X. A catalytic hairpin assembly system with sliding replication for the detection of piRNAs. Analyst 2025; 150:1899-1907. [PMID: 40167401 DOI: 10.1039/d5an00076a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
As novel noncoding small RNA molecules, piRNAs play crucial roles in cancer development. However, due to their short sequences, easy degradation, and low abundance, developing specific detection methods is challenging. Rapid and early detection is important for the early clinical detection of tumours. Here, a novel one-step, dual-signal amplification piRNA detection system based on sliding replication and catalytic hairpin assembly (CHA), termed CTA, was developed for rapid, ultrasensitive and specific detection of piRNA-823. By utilizing the unique characteristics of tandem repeat sequences to improve amplification efficiency and fluorescence signal intensity, CTA achieved efficient target recognition and signal amplification by embedding tandem repeat sequences in one of the hairpin probes and utilizing chain displacement reactions to produce strong and detectable signals. CTA detected piRNA-823 with a low detection limit of 70 fM. Moreover, the whole detection process could be completed within 45 min. In addition, CTA performed excellently in the detection of cell and cancer samples, and its detection results were consistent with those of RT-qPCR. More importantly, CTA was successfully applied to effectively differentiate between healthy individuals and patients with colorectal cancer. These findings suggest its promising application in the diagnosis of cancer.
Collapse
Affiliation(s)
- Hui Yang
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000 Sichuan, China.
- School of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000 Sichuan, China
| | - Feng Gong
- School of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000 Sichuan, China
| | - Chengjiao Yao
- Department of Geriatrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000 Sichuan, China
| | - Jiao Cheng
- School of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000 Sichuan, China
| | - Shuang He
- School of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000 Sichuan, China
| | - Yijie Jia
- School of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000 Sichuan, China
| | - Yuxiang Zhang
- School of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000 Sichuan, China
| | - Qiang Ma
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000 Sichuan, China.
| | - Xiaolan Guo
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000 Sichuan, China.
| | - Hongfei He
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000 Sichuan, China.
| | - Xiaowu Zhong
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000 Sichuan, China.
- School of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000 Sichuan, China
- Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000 Sichuan, China
| |
Collapse
|
3
|
Piergentili R, Sechi S. Targeting Regulatory Noncoding RNAs in Human Cancer: The State of the Art in Clinical Trials. Pharmaceutics 2025; 17:471. [PMID: 40284466 PMCID: PMC12030637 DOI: 10.3390/pharmaceutics17040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
Noncoding RNAs (ncRNAs) are a heterogeneous group of RNA molecules whose classification is mainly based on arbitrary criteria such as the molecule length, secondary structures, and cellular functions. A large fraction of these ncRNAs play a regulatory role regarding messenger RNAs (mRNAs) or other ncRNAs, creating an intracellular network of cross-interactions that allow the fine and complex regulation of gene expression. Altering the balance between these interactions may be sufficient to cause a transition from health to disease and vice versa. This leads to the possibility of intervening in these mechanisms to re-establish health in patients. The regulatory role of ncRNAs is associated with all cancer hallmarks, such as proliferation, apoptosis, invasion, metastasis, and genomic instability. Based on the function performed in carcinogenesis, ncRNAs may behave either as oncogenes or tumor suppressors. However, this distinction is not rigid; some ncRNAs can fall into both classes depending on the tissue considered or the target molecule. Furthermore, some of them are also involved in regulating the response to traditional cancer-therapeutic approaches. In general, the regulation of molecular mechanisms by ncRNAs is very complex and still largely unclear, but it has enormous potential both for the development of new therapies, especially in cases where traditional methods fail, and for their use as novel and more efficient biomarkers. Overall, this review will provide a brief overview of ncRNAs in human cancer biology, with a specific focus on describing the most recent ongoing clinical trials (CT) in which ncRNAs have been tested for their potential as therapeutic agents or evaluated as biomarkers.
Collapse
|
4
|
Liu Y, Li C, Cui X, Li M, Liu S, Wang Z. Potentially diagnostic and prognostic roles of piRNAs/PIWIs in pancreatic cancer: A review. Biochim Biophys Acta Rev Cancer 2025; 1880:189286. [PMID: 39952623 DOI: 10.1016/j.bbcan.2025.189286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with limited early diagnostic methods and therapeutic options, contributing to its poor prognosis. Recent advances in high-throughput sequencing have highlighted the critical roles of noncoding RNAs (ncRNAs), particularly PIWI-interacting RNAs (piRNAs), in cancer biology. In this review, we systematically summarize the emerging roles of piRNAs and their associated PIWI proteins in PDAC pathogenesis, progression, and prognosis. We provide a comprehensive analysis of the molecular mechanisms by which piRNAs/PIWIs regulate gene expression and cellular signaling pathways in PDAC. Furthermore, we discuss their potential as novel biomarkers for early diagnosis and therapeutic targets. Importantly, this review identifies key piRNAs/PIWIs involved in PDAC and proposes innovative strategies for improving diagnosis and treatment outcomes. Our work not only consolidates current knowledge but also offers new perspectives for future research and clinical applications in PDAC management.
Collapse
Affiliation(s)
- Yukun Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Changlei Li
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaotong Cui
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Miaomiao Li
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China
| | - Shiguo Liu
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China.
| | - Zusen Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
5
|
Tesarova T, Fiala O, Hora M, Vaclavikova R. Non-coding transcriptome profiles in clear-cell renal cell carcinoma. Nat Rev Urol 2025; 22:151-174. [PMID: 39242964 DOI: 10.1038/s41585-024-00926-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/09/2024]
Abstract
Clear-cell renal cell carcinoma (ccRCC) is a common urological malignancy with an increasing incidence. The development of molecular biomarkers that can predict the response to treatment and guide personalized therapy selection would substantially improve patient outcomes. Dysregulation of non-coding RNA (ncRNA) has been shown to have a role in the pathogenesis of ccRCC. Thus, an increasing number of studies are being carried out with a focus on the identification of ncRNA biomarkers in ccRCC tissue samples and the connection of these markers with patients' prognosis, pathological stage and grade (including metastatic potential), and therapy outcome. RNA sequencing analysis led to the identification of several ncRNA biomarkers that are dysregulated in ccRCC and might have a role in ccRCC development. These ncRNAs have the potential to be prognostic and predictive biomarkers for ccRCC, with prospective applications in personalized treatment selection. Research on ncRNA biomarkers in ccRCC is advancing, but clinical implementation remains preliminary owing to challenges in validation, standardization and reproducibility. Comprehensive studies and integration of ncRNAs into clinical trials are essential to accelerate the clinical use of these biomarkers.
Collapse
Affiliation(s)
- Tereza Tesarova
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic.
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
| | - Ondrej Fiala
- Department of Oncology and Radiotherapeutics, Faculty of Medicine in Pilsen and University Hospital, Charles University, Pilsen, Czech Republic
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Milan Hora
- Department of Urology, Faculty of Medicine in Pilsen and University Hospital, Charles University, Pilsen, Czech Republic
| | - Radka Vaclavikova
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
6
|
Zhao AR, Kouznetsova VL, Kesari S, Tsigelny IF. Machine-learning diagnostics of breast cancer using piRNA biomarkers. Biomarkers 2025; 30:167-177. [PMID: 39899375 DOI: 10.1080/1354750x.2025.2461067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/25/2025] [Indexed: 02/05/2025]
Abstract
BACKGROUND AND OBJECTIVES Prior studies have shown that small non-coding RNAs (sncRNAs) are associated with cancer occurrence or development. Recently, a newly discovered class of small ncRNAs known as PIWI-interacting RNAs (piRNAs) have been found to play a vital role in physiological processes and cancer initiation. This study aims to utilize piRNAs as innovative, noninvasive diagnostic biomarkers for breast cancer. Our objective is to develop computational methods that leverage piRNA attributes for breast cancer prediction and its application in diagnostics. METHODS We created a set of piRNA sequence descriptors using information extracted from the piRNA sequences. To ensure accuracy, we found a path to convert non-standard piRNA names to standard ones to enable precise identification of these sequences. Using these descriptors, we applied machine-learning (ML) techniques in WEKA (Waikato Environment for Knowledge Analysis) to a dataset of piRNA to assess the predictive accuracy of the following classifiers: Logistic Regression model, Sequential Minimal Optimization (SMO), Random Forest classifier, and Logistic Model Tree (LMT). Furthermore, we performed Shapley additive explanations (SHAP) Analysis to understand which descriptors were the most relevant to the prediction accuracy. The ML models were then validated on an independent dataset to evaluate their effectiveness in predicting breast cancer. RESULTS The top three performing classifiers in WEKA were Logistic Regression, SMO, and LMT. The Logistic Regression model achieved an accuracy of 90.7% in predicting breast cancer, while SMO and LMT attained 89.7% and 85.65%, respectively. CONCLUSIONS Our study demonstrates the effectiveness of using ML-based piRNA classifiers in diagnosing breast cancer and contributes to the growing body of evidence supporting piRNAs as biomarkers in cancer diagnosis. However, additional research is needed to validate these findings and further assess the clinical applicability of this approach.
Collapse
Affiliation(s)
- Amy R Zhao
- Scholars Program, CureScience Institute, San Diego, CA, USA
| | - Valentina L Kouznetsova
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA, USA
- BIAna Institute, San Diego, CA, USA
- CureScience Institute, San Diego, CA, USA
| | - Santosh Kesari
- Department of Neuro-oncology, Pacific Neuroscience Institute, Santa Monica, CA, USA
| | - Igor F Tsigelny
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA, USA
- BIAna Institute, San Diego, CA, USA
- CureScience Institute, San Diego, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
7
|
Karpagavalli M, Sindal MD, Arunachalam JP, Chidambaram S. miRNAs, piRNAs, and lncRNAs: A triad of non-coding RNAs regulating the neurovascular unit in diabetic retinopathy and their therapeutic potentials. Exp Eye Res 2025; 251:110236. [PMID: 39800284 DOI: 10.1016/j.exer.2025.110236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 12/04/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Diabetic Retinopathy (DR), a leading complication of diabetes mellitus, has long been considered as a microvascular disease of the retina. However, recent evidence suggests that DR is a neurovascular disease, characterized by the degeneration of retinal neural tissue and microvascular abnormalities encompassing ischemia, neovascularization, and blood-retinal barrier breakdown, ultimately leading to blindness. The intricate relationship between the retina and vascular cells constitutes a neurovascular unit, a multi-cellular framework of retinal neurons, glial cells, immune cells, and vascular cells, which facilitates neurovascular coupling, linking neuronal activity to blood flow. These interconnections between the neurovascular components get compromised due to hyperglycemia and are further associated with the progression of DR early on in the disease. As a result, therapeutic approaches are needed to avert the advancement of DR by acting at its initial stage to delay or prevent the pathogenesis. Non-coding RNAs (ncRNAs) such as microRNAs, piwi-interacting RNAs, and long non-coding RNAs regulate various cellular components in the neurovascular unit. These ncRNAs are key regulators of neurodegeneration, apoptosis, inflammation, and oxidative stress in DR. In this review, research related to alterations in the expression of ncRNAs and, correspondingly, their effect on the disintegration of the neurovascular coupling will be discussed briefly to understand the potential of ncRNAs as therapeutic targets for treating this debilitating disease.
Collapse
Affiliation(s)
| | | | - Jayamuruga Pandian Arunachalam
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607 402, India
| | - Subbulakshmi Chidambaram
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605 014, India.
| |
Collapse
|
8
|
Liao Z, Yang L, Cheng X, Huang X, Zhang Q, Wen D, Song Z, Li Y, Wen S, Li Y, Ou M, Huang Z, Liu T, He M. pir-hsa-216911 inhibit pyroptosis in hepatocellular carcinoma by suppressing TLR4 initiated GSDMD activation. Cell Death Discov 2025; 11:11. [PMID: 39824843 PMCID: PMC11742400 DOI: 10.1038/s41420-024-02285-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/15/2024] [Accepted: 12/30/2024] [Indexed: 01/20/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a global health concern, ranking as the fourth leading cause of cancer-related deaths worldwide. However, the role of piwi-interacting RNAs (piRNAs) in HCC processes has not been extensively explored. Through small RNA sequencing, our study identified a specific piRNA, pir-hsa-216911, which is highly expressed in HCC cells. This overexpression of pir-hsa-216911 promotes HCC cell invasion and inhibits cell death, particularly pyroptosis. Knocking out pir-hsa-216911 led to increased cell pyroptosis activity, resulting in the activation of caspase-1 and GSDMD. Further analysis revealed that pir-hsa-216911 targets and suppresses TLR4, a key gene associated with pyroptosis in HCC. In the Huh7 cell line, pir-hsa-216911 knockout confirmed its role in suppressing the TLR4/NFκB/NLRP3 pathway by silencing TLR4. Knocking out pir-hsa-216911 significantly inhibited the formation of Huh7 xenograft tumor. In HCC patients, pir-hsa-216911 was highly expressed in HCC tumor samples with steatosis, suppressing TLR4 expression and inhibiting GSDMD activation. This study introduces pir-hsa-216911 as a new high-expressing piRNA in HCC, which inhibits pyroptosis by silencing TLR4 to suppress GSDMD activation. These findings have significant implications for HCC molecular subtyping and as a potential target for cancer therapy.
Collapse
Affiliation(s)
- Zhouxiang Liao
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Lichao Yang
- Laboratory Animal Center of Guangxi Medical University, Nanning, 530021, China
| | - Xiaojing Cheng
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Life Sciences Institute of Guangxi Medical University, Nanning, 530021, China
| | - Xuejing Huang
- Laboratory Animal Center of Guangxi Medical University, Nanning, 530021, China
| | - Qi Zhang
- Laboratory Animal Center of Guangxi Medical University, Nanning, 530021, China
| | - Daoqiang Wen
- Department of Hepatobiliary Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Zhenyu Song
- Laboratory Animal Center of Guangxi Medical University, Nanning, 530021, China
| | - Yasi Li
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, 17033, USA
| | - Sha Wen
- Laboratory Animal Center of Guangxi Medical University, Nanning, 530021, China
| | - Yongfeng Li
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Meizhen Ou
- Laboratory Animal Center of Guangxi Medical University, Nanning, 530021, China
| | - Zhangnan Huang
- Department of Hepatobiliary Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Tianqi Liu
- Department of Hepatobiliary Surgery, Hospital of Guangxi Jiang Bing, Nanning, 530021, China.
| | - Min He
- School of Public Health, Guangxi Medical University, Nanning, 530021, China.
- Laboratory Animal Center of Guangxi Medical University, Nanning, 530021, China.
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, China.
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
9
|
Shaker FH, Sanad EF, Elghazaly H, Hsia SM, Hamdy NM. piR-823 tale as emerging cancer-hallmark molecular marker in different cancer types: a step-toward ncRNA-precision. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:47-68. [PMID: 39102033 PMCID: PMC11787197 DOI: 10.1007/s00210-024-03308-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024]
Abstract
PIWI-interacting RNAs (piRNAs) have received a lot of attention for their functions in cancer research. This class of short non-coding RNAs (ncRNA) has roles in genomic stability, chromatin remodeling, messenger RNA (mRNA) integrity, and genome structure. We summarized the mechanisms underlying the biogenesis and regulatory molecular functions of piRNAs. Among all piRNAs studied in cancer, this review offers a comprehensive analysis of the emerging roles of piR-823 in various types of cancer, including colorectal, gastric, liver, breast, and renal cancers, as well as multiple myeloma. piR-823 has emerged as a crucial modulator of various cancer hallmarks through regulating multiple pathways. In the current review, we analyzed several databases and conducted an extensive literature search to explore the influence of piR-823 in carcinogenesis in addition to describing the potential application of piR-823 as prognostic and diagnostic markers as well as the therapeutic potential toward ncRNA precision.
Collapse
Affiliation(s)
- Fatma H Shaker
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Abassia, 11566, Egypt
| | - Eman F Sanad
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Abassia, 11566, Egypt
| | - Hesham Elghazaly
- Department of Clinical Oncology, Faculty of Medicine, Ain Shams University, Cairo, Abassia, 11566, Egypt
| | - Shih-Min Hsia
- School of Food and Safety, Nutrition Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, 110301, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, 110301, Taiwan
| | - Nadia M Hamdy
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Abassia, 11566, Egypt.
| |
Collapse
|
10
|
Beňačka R, Szabóová D, Guľašová Z, Hertelyová Z. Non-Coding RNAs in Breast Cancer: Diagnostic and Therapeutic Implications. Int J Mol Sci 2024; 26:127. [PMID: 39795985 PMCID: PMC11719911 DOI: 10.3390/ijms26010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Breast cancer (BC) is one of the most prevalent forms of cancer globally, and has recently become the leading cause of cancer-related mortality in women. BC is a heterogeneous disease comprising various histopathological and molecular subtypes with differing levels of malignancy, and each patient has an individual prognosis. Etiology and pathogenesis are complex and involve a considerable number of genetic alterations and dozens of alterations in non-coding RNA expression. Non-coding RNAs are part of an abundant family of single-stranded RNA molecules acting as key regulators in DNA replication, mRNA processing and translation, cell differentiation, growth, and overall genomic stability. In the context of breast cancer, non-coding RNAs are involved in cell cycle control and tumor cell migration and invasion, as well as treatment resistance. Alterations in non-coding RNA expression may contribute to the development and progression of breast cancer, making them promising biomarkers and targets for novel therapeutic approaches. Currently, the use of non-coding RNAs has not yet been applied to routine practice; however, their potential has been very well studied. The present review is a literature overview of current knowledge and its objective is to delineate the function of diverse classes of non-coding RNAs in breast cancer, with a particular emphasis on their potential utility as diagnostic and prognostic markers or as therapeutic targets and tools.
Collapse
Affiliation(s)
- Roman Beňačka
- Department of Pathophysiology, Medical Faculty, Pavol Jozef Šafarik University, 04011 Košice, Slovakia;
| | - Daniela Szabóová
- Department of Pathophysiology, Medical Faculty, Pavol Jozef Šafarik University, 04011 Košice, Slovakia;
| | - Zuzana Guľašová
- Center of Clinical and Preclinical Research MEDIPARK, Pavol Jozef Šafarik University, 04011 Košice, Slovakia; (Z.G.); (Z.H.)
| | - Zdenka Hertelyová
- Center of Clinical and Preclinical Research MEDIPARK, Pavol Jozef Šafarik University, 04011 Košice, Slovakia; (Z.G.); (Z.H.)
| |
Collapse
|
11
|
Li R, Qian J, Zhu X, Tao T, Zhou X. Nanomolecular machines: Pioneering precision medicine for neoplastic diseases through advanced diagnosis and treatment. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167486. [PMID: 39218275 DOI: 10.1016/j.bbadis.2024.167486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Tumors pose a major threat to human health, accounting for nearly one-sixth of global deaths annually. The primary treatments include surgery, radiotherapy, chemotherapy, and immunotherapy, each associated with significant side effects. This has driven the search for new therapies with fewer side effects and greater specificity. Nanotechnology has emerged as a promising field in this regard, particularly nanomolecular machines at the nanoscale. Nanomolecular machines are typically constructed from biological macromolecules like proteins, DNA, and RNA. These machines can be programmed to perform specialized tasks with precise instructions. Recent research highlights their potential in tumor diagnostics-identifying susceptibility genes, detecting viruses, and pinpointing tumor markers. Nanomolecular machines also offer advancements in tumor therapy. They can reduce traditional treatment side effects by delivering chemotherapy drugs and enhancing immunotherapy, and they support innovative treatments like sonodynamic and phototherapy. Additionally, they can starve tumors by blocking blood vessels, and eliminate tumors by disrupting cell membranes or lysosomes. This review categorizes and explains the latest achievements in molecular machine research, explores their models, and practical clinical uses in tumor diagnosis and treatment. It aims to broaden the research perspective and accelerate the clinical adoption of these technologies.
Collapse
Affiliation(s)
- Ruming Li
- Department of Immunology, School of Medicine, Nantong University, Nantong, China; The Second Affiliated Hospital, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Jialu Qian
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Xiao Zhu
- The Second Affiliated Hospital, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Tao Tao
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China.
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, China.
| |
Collapse
|
12
|
Silvia BJ, Shetty S, Behera R, Khandelwal A, Gore M, Bairy M, Ajjanagadde A, Shaheeda A, Bhat GK, Kabekkodu SP. A comprehensive review on the role of PIWI-interacting RNA (piRNA) in gynecological cancers. Life Sci 2024; 357:123065. [PMID: 39299387 DOI: 10.1016/j.lfs.2024.123065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Gynecological cancers are currently a major public health concern due to increase in incidence and mortality globally. PIWI-interacting RNA (piRNA) are small non-coding RNA consisting of 24-32 nucleotides that plays regulatory role by interacting with piwi family of protein. Recent studies have revealed that piRNAs are expressed in various kinds of human tissues and influences key signalling pathways at transcriptional and post transcriptional levels. Studies have also that suggested piRNA and PIWI proteins display frequently altered expression in several cancers. Recent research has indicated that abnormal expression of piRNA may play a significant role in development and progression of gynecological cancers. Clinical studies suggested that, abnormally expressed piRNAs may serve as diagnostic and prognostic marker, and as potential therapeutic targets in these cancers. In the present review article, we discussed the emerging role of piRNA and their utility as diagnostic and prognostic marker in gynecological cancers.
Collapse
Affiliation(s)
- Bobby J Silvia
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India
| | - Sachin Shetty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India
| | - Roopal Behera
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India
| | - Ayush Khandelwal
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India
| | - Mrudula Gore
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India
| | - Medha Bairy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India
| | - Anagha Ajjanagadde
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India
| | - Aishath Shaheeda
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India
| | - Gahan Krishna Bhat
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India.
| |
Collapse
|
13
|
Tong W, Han Y, Wang T, Wan J, Ma F, Zhang CY. Bidirectional Polymerization-Transcription Amplification-Encoded Dual-Color Fluorescent Biosensor for Label-Free and Primer-Free Detection of Multiple piRNAs. Anal Chem 2024. [PMID: 39250656 DOI: 10.1021/acs.analchem.4c03773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
PIWI-interacting RNAs (piRNAs) are a type of endogenous noncoding RNAs with a length of 24-31 nucleotides, and they can specifically bind with PIWI proteins to form the piRNA/PIWI complexes for regulating multiple physiological and pathological processes. Herein, we develop a bidirectional polymerization-transcription amplification-encoded dual-color fluorescent biosensor for label-free and primer-free measurements of multiple piRNAs. The designed hairpin probe contains a palindromic tail, and it can serve as the target recognition unit, polymerization primer, and transcription template. In the presence of target piRNAs, the hairpin probes are opened to expose a palindromic sequence that can trigger bidirectional polymerization and transcription reaction with the assistance of KF polymerase and T7 RNA polymerase for the production of numerous RNA aptamers. The aptamers subsequently bind with the corresponding fluorophores (DFHBI-1T/MG) to form the RNA aptamer-fluorophore complexes for the generation of enhanced fluorescence signals. This biosensor can sensitively detect piR-36026 with a limit of detection (LOD) of 82.08 aM and piR-36743 with a LOD of 44.44 aM. Moreover, it can quantify cellular piRNAs with single-cell sensitivity and distinguish cancer cells from normal cells. Furthermore, it has the capability of distinguishing the expression of piRNAs in the tissues of breast cancer patients and healthy individuals. By simply altering the target recognition site of the hairpin probe, this biosensor can be extended to detect various piRNAs, offering a powerful platform for piRNA-related clinical diagnostics and therapeutics.
Collapse
Affiliation(s)
- Weijie Tong
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Yun Han
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Tao Wang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210000, China
| | - Jiayi Wan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Fei Ma
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
14
|
Kazimierczyk M, Fedoruk-Wyszomirska A, Gurda-Woźna D, Wyszko E, Swiatkowska A, Wrzesinski J. The expression profiles of piRNAs and their interacting Piwi proteins in cellular model of renal development: Focus on Piwil1 in mitosis. Eur J Cell Biol 2024; 103:151444. [PMID: 39024988 DOI: 10.1016/j.ejcb.2024.151444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024] Open
Abstract
Piwi proteins and Piwi interacting RNAs, piRNAs, presented in germline cells play a role in transposon silencing during germline development. In contrast, the role of somatic Piwi proteins and piRNAs still remains obscure. Here, we characterize the expression pattern and distribution of piRNAs in human renal cells in terms of their potential role in kidney development. Further, we show that all PIWI genes are expressed at the RNA level, however, only PIWIL1 gene is detected at the protein level by western blotting in healthy and cancerous renal cells. So far, the expression of human Piwil1 protein has only been shown in testes and cancer cells, but not in healthy somatic cell lines. Since we observe only Piwil1 protein, the regulation of other PIWI genes is probably more intricated, and depends on environmental conditions. Next, we demonstrate that downregulation of Piwil1 protein results in a decrease in the rate of cell proliferation, while no change in the level of apoptotic cells is observed. Confocal microscopy analysis reveals that Piwil1 protein is located in both cellular compartments, cytoplasm and nucleus in renal cells. Interestingly, in nucleus region Piwil1 is observed close to the spindle during all phases of mitosis in all tested cell lines. It strongly indicates that Piwil1 protein plays an essential role in proliferation of somatic cells. Moreover, involvement of Piwil1 in cell division could, at least partly, explain invasion and metastasis of many types of cancer cells with upregulation of PIWIL1 gene expression. It also makes Piwil1 protein as a potential target in the anticancer therapy.
Collapse
Affiliation(s)
- Marek Kazimierczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan 61-704, Poland
| | | | - Dorota Gurda-Woźna
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan 61-704, Poland
| | - Eliza Wyszko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan 61-704, Poland
| | - Agata Swiatkowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan 61-704, Poland.
| | - Jan Wrzesinski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan 61-704, Poland.
| |
Collapse
|
15
|
Li L, Jin T, Hu L, Ding J. Alternative splicing regulation and its therapeutic potential in bladder cancer. Front Oncol 2024; 14:1402350. [PMID: 39132499 PMCID: PMC11310127 DOI: 10.3389/fonc.2024.1402350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024] Open
Abstract
Bladder cancer is one of the leading causes of mortality globally. The development of bladder cancer is closely associated with alternative splicing, which regulates human gene expression and enhances the diversity of functional proteins. Alternative splicing is a distinctive feature of bladder cancer, and as such, it may hold promise as a therapeutic target. This review aims to comprehensively discuss the current knowledge of alternative splicing in the context of bladder cancer. We review the process of alternative splicing and its regulation in bladder cancer. Moreover, we emphasize the significance of abnormal alternative splicing and splicing factor irregularities during bladder cancer progression. Finally, we explore the impact of alternative splicing on bladder cancer drug resistance and the potential of alternative splicing as a therapeutic target.
Collapse
Affiliation(s)
- Lina Li
- College of Medicine, Jinhua University of Vocational Technology, Jinhua, Zhejiang, China
| | - Ting Jin
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Liang Hu
- Department of Urology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Jin Ding
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| |
Collapse
|
16
|
Ahmadi Asouri S, Aghadavood E, Mirzaei H, Abaspour A, Esmaeil Shahaboddin M. PIWI-interacting RNAs (PiRNAs) as emerging biomarkers and therapeutic targets in biliary tract cancers: A comprehensive review. Heliyon 2024; 10:e33767. [PMID: 39040379 PMCID: PMC11261894 DOI: 10.1016/j.heliyon.2024.e33767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 06/09/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
Cancers affecting the biliary tract, such as gallbladder cancer and cholangiocarcinoma, make up a small percentage of adult gastrointestinal malignancies, but their incidence is on the rise. Due to the lack of dependable molecular biomarkers for diagnosis and prognosis, these cancers are often not detected until later stages and have limited treatment options. Piwi-interacting RNAs (piRNAs) are a type of small noncoding RNA that interacts with Piwi proteins and has been linked to various diseases, especially cancer. Manipulation of piRNA expression has the potential to serve as an important biomarker and target for therapy. This review uncovers the relationship between PIWI-interacting RNA (piRNA) and a variety of gastrointestinal cancers, including biliary tract cancer (BTC). It is evident that piRNAs have the ability to impact gene expression and regulate key genes and pathways related to the advancement of digestive cancers. Abnormal expression of piRNAs plays a significant role in the development and progression of digestive-related malignancies. The potential of piRNAs as potential biomarkers for diagnosis and prognosis, as well as therapeutic targets in BTC, is noteworthy. Nevertheless, there are obstacles and limitations that require further exploration to fully comprehend piRNAs' role in BTC and to devise effective diagnostic and therapeutic approaches using piRNAs. In summary, this review underscores the value of piRNAs as valuable biomarkers and promising targets for treating BTC, as we delve into the association between piRNAs and various gastrointestinal cancers, including BTC, and how piRNAs can impact gene expression and control essential pathways for digestive cancer advancement. The present research consists of a thorough evaluation presented in a storytelling style. The databases utilized to locate original sources were PubMed, MEDLINE, and Google Scholar, and the search was conducted using the designated keywords.
Collapse
Affiliation(s)
- Sahar Ahmadi Asouri
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Esmat Aghadavood
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Institute for Basic Sciences, Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Abaspour
- Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Esmaeil Shahaboddin
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Institute for Basic Sciences, Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
17
|
Liu Z, Zhao X. piRNAs as emerging biomarkers and physiological regulatory molecules in cardiovascular disease. Biochem Biophys Res Commun 2024; 711:149906. [PMID: 38640879 DOI: 10.1016/j.bbrc.2024.149906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/21/2024]
Abstract
Cardiovascular diseases (CVD) represent one of the most considerable global health threats, owing to their high incidence and mortality rates. Despite the ongoing advancements in detection, prevention, treatment, and prognosis of CVD, which have resulted in a decline in both incidence and mortality rates, CVD remains a major public health concern. Therefore, novel diagnostic biomarkers and therapeutic interventions are imperative to minimise the risk of CVD. Non-coding RNAs (ncRNAs) have recently gained increasing attention, with PIWI-interacting RNAs (piRNAs) emerging as a class of small ncRNAs traditionally recognised for their role in silencing transposons within cells. Although the functional roles of PIWI proteins and piRNAs in human cells remain unclear, growing evidence suggests that these molecules are gradually becoming valuable biomarkers for the diagnosis and treatment of CVD. This review provides a comprehensive summary of the latest studies on piRNAs in CVD. This review discusses the roles of piRNAs in various cardiovascular subtypes, including myocardial hypertrophy, heart failure, myocardial infarction, and cardiac regeneration. The perceived insights may contribute novel perspectives for the diagnosis and treatment of CVD.
Collapse
Affiliation(s)
- Zhihua Liu
- School of Basic Medical Sciences, Center for Precision Medicine, Kunming YanAn Hospital & Kunming University of Science and Technology, Kunming, China; Department of Biostatistics and Computational Biology, Bayer HealthCare, Harvard University, Boston, MA, USA.
| | - Xi Zhao
- School of Basic Medical Sciences, Center for Precision Medicine, Kunming YanAn Hospital & Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
18
|
Zhang H, Li Y. Potential roles of PIWI-interacting RNAs in breast cancer, a new therapeutic strategy. Pathol Res Pract 2024; 257:155318. [PMID: 38688203 DOI: 10.1016/j.prp.2024.155318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
Breast cancer (BC) has been the focus of numerous studies aimed at identifying novel biological markers for its early detection. PIWI-interacting RNAs (piRNAs), a subset of small non-coding RNAs, have emerged as potential markers due to their aberrant expression in various cancers. PiRNAs have recently gained attention due to their aberrant expression in various cancers, including BC. PiRNAs, exhibit diverse biological activities, such as epigenetic regulation of gene and protein expression and their association with cell proliferation and metastasis has been well-established. As the field of non-coding RNAs rapidly evolves, there is great anticipation that therapies targeting piRNAs will advance swiftly. This review will delve into the various biological functions of piRNAs, such as gene suppression, transposon silencing, and epigenetic regulation of genes. The review will also highlight the role of piRNAs as either progenitors or suppressors in cancers, with a particular focus on BC. Lastly, it will touch upon the potential of piRNAs as biomarkers and therapeutic targets for BC.
Collapse
Affiliation(s)
- Hongpeng Zhang
- The Second Clinical College, China Medical University, Shenyang 110122, China
| | - Yanshu Li
- School of Life Sciences, China Medical University, Shenyang 110122, China.
| |
Collapse
|
19
|
Giulietti M, Piva F, Cecati M, Maggio S, Guescini M, Saladino T, Scortichini L, Crocetti S, Caramanti M, Battelli N, Romagnoli E. Effects of Eribulin on the RNA Content of Extracellular Vesicles Released by Metastatic Breast Cancer Cells. Cells 2024; 13:479. [PMID: 38534323 PMCID: PMC10969587 DOI: 10.3390/cells13060479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
Extracellular vesicles (EVs) are small lipid particles secreted by almost all human cells into the extracellular space. They perform the essential function of cell-to-cell communication, and their role in promoting breast cancer progression has been well demonstrated. It is known that EVs released by triple-negative and highly aggressive MDA-MB-231 breast cancer cells treated with paclitaxel, a microtubule-targeting agent (MTA), promoted chemoresistance in EV-recipient cells. Here, we studied the RNA content of EVs produced by the same MDA-MB-231 breast cancer cells treated with another MTA, eribulin mesylate. In particular, we analyzed the expression of different RNA species, including mRNAs, lncRNAs, miRNAs, snoRNAs, piRNAs and tRNA fragments by RNA-seq. Then, we performed differential expression analysis, weighted gene co-expression network analysis (WGCNA), functional enrichment analysis, and miRNA-target identification. Our findings demonstrate the possible involvement of EVs from eribulin-treated cells in the spread of chemoresistance, prompting the design of strategies that selectively target tumor EVs.
Collapse
Affiliation(s)
- Matteo Giulietti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Monia Cecati
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Serena Maggio
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Michele Guescini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Tiziana Saladino
- Oncology Unit AST3, Macerata Hospital, Via Santa Lucia 2, 62100 Macerata, Italy
| | - Laura Scortichini
- Oncology Unit AST3, Macerata Hospital, Via Santa Lucia 2, 62100 Macerata, Italy
| | - Sonia Crocetti
- Oncology Unit AST3, Macerata Hospital, Via Santa Lucia 2, 62100 Macerata, Italy
| | - Miriam Caramanti
- Oncology Unit AST3, Macerata Hospital, Via Santa Lucia 2, 62100 Macerata, Italy
| | - Nicola Battelli
- Oncology Unit AST3, Macerata Hospital, Via Santa Lucia 2, 62100 Macerata, Italy
| | - Emanuela Romagnoli
- Oncology Unit AST3, Macerata Hospital, Via Santa Lucia 2, 62100 Macerata, Italy
| |
Collapse
|
20
|
Hashemi M, Daneii P, Zandieh MA, Raesi R, Zahmatkesh N, Bayat M, Abuelrub A, Khazaei Koohpar Z, Aref AR, Zarrabi A, Rashidi M, Salimimoghadam S, Entezari M, Taheriazam A, Khorrami R. Non-coding RNA-Mediated N6-Methyladenosine (m 6A) deposition: A pivotal regulator of cancer, impacting key signaling pathways in carcinogenesis and therapy response. Noncoding RNA Res 2024; 9:84-104. [PMID: 38075202 PMCID: PMC10700483 DOI: 10.1016/j.ncrna.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 06/20/2024] Open
Abstract
The emergence of RNA modifications has recently been considered as critical post-transcriptional regulations which governed gene expression. N6-methyladenosine (m6A) modification is the most abundant type of RNA modification which is mediated by three distinct classes of proteins called m6A writers, readers, and erasers. Accumulating evidence has been made in understanding the role of m6A modification of non-coding RNAs (ncRNAs) in cancer. Importantly, aberrant expression of ncRNAs and m6A regulators has been elucidated in various cancers. As the key role of ncRNAs in regulation of cancer hallmarks is well accepted now, it could be accepted that m6A modification of ncRNAs could affect cancer progression. The present review intended to discuss the latest knowledge and importance of m6A epigenetic regulation of ncRNAs including mircoRNAs, long non-coding RNAs, and circular RNAs, and their interaction in the context of cancer. Moreover, the current insight into the underlying mechanisms of therapy resistance and also immune response and escape mediated by m6A regulators and ncRNAs are discussed.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Zahmatkesh
- Department of Genetics, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Mehrsa Bayat
- Department of Health Sciences, Bahcesehir University, Istanbul, Turkey
| | - Anwar Abuelrub
- Neuroscience Laboratory, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
21
|
Ajam-Hosseini M, Akhoondi F, Parvini F, Fahimi H. Gram-negative bacterial sRNAs encapsulated in OMVs: an emerging class of therapeutic targets in diseases. Front Cell Infect Microbiol 2024; 13:1305510. [PMID: 38983695 PMCID: PMC11232669 DOI: 10.3389/fcimb.2023.1305510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/26/2023] [Indexed: 07/11/2024] Open
Abstract
Small regulatory RNAs (sRNAs) encapsulated in outer membrane vesicles (OMVs) are critical post-transcriptional regulators of gene expression in prokaryotic and eukaryotic organisms. OMVs are small spherical structures released by Gram-negative bacteria that serve as important vehicles for intercellular communication and can also play an important role in bacterial virulence and host-pathogen interactions. These molecules can interact with mRNAs or proteins and affect various cellular functions and physiological processes in the producing bacteria. This review aims to provide insight into the current understanding of sRNA localization to OMVs in Gram-negative bacteria and highlights the identification, characterization and functional implications of these encapsulated sRNAs. By examining the research gaps in this field, we aim to inspire further exploration and progress in investigating the potential therapeutic applications of OMV-encapsulated sRNAs in various diseases.
Collapse
Affiliation(s)
- Mobarakeh Ajam-Hosseini
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Akhoondi
- Department of Molecular Biology of The Cell, Faculty of Bioscience, University of Milan, Milan, Italy
| | - Farshid Parvini
- Department of Biology, Faculty of Basic Sciences, Semnan University, Semnan, Iran
| | - Hossein Fahimi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
22
|
Dong J, Tao T, Yu J, Shan H, Liu Z, Zheng G, Li Z, Situ W, Zhu X, Li Z. A ferroptosis-related LncRNAs signature for predicting prognoses and screening potential therapeutic drugs in patients with lung adenocarcinoma: A retrospective study. Cancer Rep (Hoboken) 2024; 7:e1925. [PMID: 38043920 PMCID: PMC10809199 DOI: 10.1002/cnr2.1925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/22/2023] [Accepted: 10/16/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) has a high mortality rate. Ferroptosis is linked to tumor initiation and progression. AIMS This study aims to develop prognostic models of ferroptosis-related lncRNAs, evaluate the correlation between differentially expressed genes and tumor microenvironment, and identify prospective drugs for managing LUAD. METHODS AND RESULTS In this study, transcriptomic and clinical data were downloaded from the TCGA database, and ferroptosis-related genes were obtained from the FerrDb database. Through correlation analysis, Cox analysis, and the LASSO algorithm for constructing a prognostic model, we found that ferroptosis-related lncRNA-based gene signatures (FLncSig) had a strong prognostic predicting ability in the LUAD patients. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichments reconfirmed that ferroptosis is related to receptor-ligand activity, enzyme inhibitor activity, and the IL-17 signaling pathway. Next, tumor mutation burden (TMB), tumor immune dysfunction and exclusion (TIDE) algorithms, and pRRophetic were used to predict immunotherapy response and chemotherapy sensitivity. The IMvigor210 cohort was also used to validate the prognostic model. In the tumor microenvironment, Type_II_IFN_Response and HLA were found to be a group of low-risk pathways, while MHC_class_I was a group of high-risk pathways. Patients in the high-risk subgroup had lower TIDE scores. Exclusion, MDSC, CAF, and TAMM2 were significantly and positively correlated with risk scores. In addition, we found 15 potential therapeutic drugs for LUAD. Finally, differential analysis of stemness index based on mRNA expression (mRNAsi) indicated that mRNAsi was correlated with gender, primary tumor (T), distant metastasis (M), and the tumor, node, and metastasis (TNM) stage in LUAD patients. CONCLUSIONS In conclusion, the prognostic model based on FLncSig can alleviate the difficulty in predicting the prognosis and immunotherapy of LUAD patients. The identified FLncSig and the screened drugs exhibit potential for clinical application and provide references for the treatment of LUAD.
Collapse
Affiliation(s)
- Jiaxin Dong
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research InstituteGuangdong Medical UniversityZhanjiangChina
| | - Tao Tao
- Medical Research Center, Department of GastroenterologyZibo Central HospitalZiboChina
| | - Jiaao Yu
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research InstituteGuangdong Medical UniversityZhanjiangChina
| | - Huisi Shan
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research InstituteGuangdong Medical UniversityZhanjiangChina
| | - Ziyu Liu
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research InstituteGuangdong Medical UniversityZhanjiangChina
| | - Guangzhao Zheng
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research InstituteGuangdong Medical UniversityZhanjiangChina
| | - Zhihong Li
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research InstituteGuangdong Medical UniversityZhanjiangChina
| | - Wanyi Situ
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research InstituteGuangdong Medical UniversityZhanjiangChina
| | - Xiao Zhu
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research InstituteGuangdong Medical UniversityZhanjiangChina
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of UrologyThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine)ShenzhenChina
| |
Collapse
|
23
|
Cheng D, Wang J, Wang Y, Xue Y, Yang Q, Yang Q, Zhao H, Huang J, Peng X. Chemokines: Function and therapeutic potential in bone metastasis of lung cancer. Cytokine 2023; 172:156403. [PMID: 37871366 DOI: 10.1016/j.cyto.2023.156403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Lung cancer is a rapidly progressing disease with a poor prognosis. Bone metastasis is commonly found in 40.6% of advanced-stage patients. The mortality rate of lung cancer patients with bone metastasis can be significantly decreased by implementing novel diagnostic techniques, improved staging and classification systems, precise surgical interventions, and advanced treatment modalities. However, it is important to note that there is currently a lack of radical procedures available for these patients due to the development of drug resistance. Consequently, palliative care approaches are commonly employed in clinical practice. Therefore, new understandings of the process of bone metastasis of lung cancer are critical for developing better treatment strategies to improve patient's clinical cure rate and quality of life. Chemokines are cell-secreted small signaling proteins in cancer occurrence, proliferation, invasion, and metastasis. In this study, we review the development of bone metastasis in lung cancer and discuss the mechanisms of specific chemokine families (CC, CXC, CX3C, and XC) in regulating the biological activities of tumors and promoting bone metastasis. We also highlight some preclinical studies and clinical trials on chemokines for lung cancer and bone metastasis.
Collapse
Affiliation(s)
- Dezhou Cheng
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Jiancheng Wang
- Department of Radiology, The Second People's Hospital of Jingzhou, China
| | - Yiling Wang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yanfang Xue
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Qing Yang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Qun Yang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Huichuan Zhao
- Department of Pathology of the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Jinbai Huang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China; Department of Medical Imaging, the First Affiliated Hospital of Yangtze University, and School of Medicine of Yangtze University, Jingzhou, Hubei, China.
| | - Xiaochun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China.
| |
Collapse
|
24
|
Beňačka R, Szabóová D, Guľašová Z, Hertelyová Z, Radoňak J. Non-Coding RNAs in Human Cancer and Other Diseases: Overview of the Diagnostic Potential. Int J Mol Sci 2023; 24:16213. [PMID: 38003403 PMCID: PMC10671391 DOI: 10.3390/ijms242216213] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are abundant single-stranded RNA molecules in human cells, involved in various cellular processes ranging from DNA replication and mRNA translation regulation to genome stability defense. MicroRNAs are multifunctional ncRNA molecules of 18-24 nt in length, involved in gene silencing through base-pair complementary binding to target mRNA transcripts. piwi-interacting RNAs are an animal-specific class of small ncRNAs sized 26-31 nt, responsible for the defense of genome stability via the epigenetic and post-transcriptional silencing of transposable elements. Long non-coding RNAs are ncRNA molecules defined as transcripts of more than 200 nucleotides, their function depending on localization, and varying from the regulation of cell differentiation and development to the regulation of telomere-specific heterochromatin modifications. The current review provides recent data on the several forms of small and long non-coding RNA's potential to act as diagnostic, prognostic or therapeutic target for various human diseases.
Collapse
Affiliation(s)
- Roman Beňačka
- Department of Pathophysiology, Medical Faculty, Pavol Jozef Šafarik University, 04011 Košice, Slovakia; (R.B.); (D.S.)
| | - Daniela Szabóová
- Department of Pathophysiology, Medical Faculty, Pavol Jozef Šafarik University, 04011 Košice, Slovakia; (R.B.); (D.S.)
| | - Zuzana Guľašová
- Center of Clinical and Preclinical Research MEDIPARK, Pavol Jozef Šafarik University, 04011 Košice, Slovakia; (Z.G.); (Z.H.)
| | - Zdenka Hertelyová
- Center of Clinical and Preclinical Research MEDIPARK, Pavol Jozef Šafarik University, 04011 Košice, Slovakia; (Z.G.); (Z.H.)
| | - Jozef Radoňak
- 1st Department of Surgery, Faculty of Medicine, Louis Pasteur University Hospital (UNLP) and Pavol Jozef Šafarik University, 04011 Košice, Slovakia
| |
Collapse
|
25
|
Mi T, Tan X, Wang Z, Zhang Z, Jin L, Wang J, Li M, Wu X, He D. Activation of the p53 signaling pathway by piRNA-MW557525 overexpression induces a G0/G1 phase arrest thus inhibiting neuroblastoma growth. Eur J Med Res 2023; 28:503. [PMID: 37941038 PMCID: PMC10631185 DOI: 10.1186/s40001-023-01493-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Neuroblastoma (NB) is the most common extracranial malignant solid tumor in children. Due to drug resistance to radiotherapy and chemotherapy, mainly due to the existence of cancer stem cells (CSCs), some children still have a poor prognosis. Therefore, researchers have focused their attention on CSCs. Our research group successfully constructed cancer stem cell-like cells named Piwil2-iCSCs by reprogramming human preputial fibroblasts (FBs) with the PIWIL2 gene in the early stage, and Piwil2-iCSCs were confirmed to induce the formation of embryonic tumors. PiRNAs, noncoding small RNAs that interact with PIWI proteins, play important roles in a variety of tumors. Therefore, our study aimed to explore the role of differentially expressed (DE) piRNAs derived from sequencing of Piwil2-iCSCs in NB. METHODS The DE piRNAs in Piwil2-iCSCs were screened using high-throughput sequencing and further verified in NB tissues and cells. An unknown piRNA, named piRNA-MW557525, showed obvious downregulation in NB. Thus we studied the effect of piRNA-MW557525 on the biological behavior of NB through in vitro and in vivo experiments. On this basis, we successfully constructed a stably transfected NB cell line overexpressing piRNA-MW557525 and performed transcriptome sequencing to further explore the mechanism of piRNA-MW557525 in NB. RESULTS In vitro, piRNA-MW557525 inhibited NB cell proliferation, migration and invasion and induced apoptosis; in vivo, piRNA-MW557525 significantly reduced the volume and weight of tumors and inhibited their proliferation, migration and invasion. piRNA-MW557525 overexpression induced G0/G1 phase arrest in NB cells via activation of the P53-P21-CDK2-Cyclin E signaling pathway thus inhibiting NB growth. CONCLUSIONS Our findings show that piRNA-MW557525 functions as a tumor suppressor gene in NB and may serve as an innovative biomarker and possible therapeutic target for NB.
Collapse
Affiliation(s)
- Tao Mi
- Department of Urology; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders; Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Xiaojun Tan
- Department of Urology; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders; Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China
- Department of Urology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Zhang Wang
- Department of Urology; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders; Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Zhaoxia Zhang
- Department of Urology; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders; Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China
| | | | - Jinkui Wang
- Department of Urology; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders; Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Mujie Li
- Department of Urology; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders; Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Xin Wu
- Department of Urology; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders; Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Dawei He
- Department of Urology; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders; Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China.
| |
Collapse
|
26
|
Liu Q, Chen Q, Zhou Z, Tian Z, Zheng X, Wang K. piRNA-18 Inhibition Cell Proliferation, Migration and Invasion in Colorectal Cancer. Biochem Genet 2023; 61:1881-1897. [PMID: 36879083 DOI: 10.1007/s10528-023-10348-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023]
Abstract
Colorectal cancer is one of the most prevalent malignancies worldwide. Evidences indicate that piRNA-18 are closely involved and contributed to tumorigenesis and cancer progression. Therefore, it is very necessary to investigate the effects of piRNA-18 on the proliferation, migration, and invasiveness of colorectal cancer cells, so as to provide theoretical basis for finding new biomarkers and accurate diagnosis and treatment of colorectal cancer. Here, Five pairs of colorectal cancer tissue samples and their corresponding adjacent samples were analyzed by real-time immunofluorescence quantitative PCR and the difference in piRNA-18 expression among colorectal cancer cell lines was further verified. MTT assay were used to study the changes in the proliferation of colorectal cancer cell lines after piRNA-18 overexpression. Wound-healing assay and Transwell assay were used to study the changes in migration and invasion. Flow cytometry were used to study the changes in apoptosis and cycle. SC inoculation of colorectal cancer cell lines into nude mice were used to observe the effect in the proliferation. piRNA-18 was lowlier expressed than adjacent tissues and normal intestinal mucosal epithelial cells in colorectal cancer and colorectal cancer cell line. After overexpression of piRNA-18, cell proliferation and migration as well as invasiveness in SW480 and LOVO cells decreased. The cell lines with piRNA-18 overexpression had obvious G1/S phase arrest in cell cycle, and the weight and volume of subcutaneously transplanted tumors are decreased. Our findings highlighted that piRNA-18 may play an inhibitory role in colorectal cancer.
Collapse
Affiliation(s)
- Qi Liu
- Department of Comprehensive Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province, People's Republic of China.
- Hunan Emergency Center, No. 90 Pingchuan Road, Changsha, 410000, Hunan, China.
| | - Qian Chen
- Department of Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province, People's Republic of China
| | - Zheng Zhou
- Department of Comprehensive Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province, People's Republic of China
| | - Zeyu Tian
- Department of Comprehensive Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province, People's Republic of China
| | - Ximin Zheng
- Department of Comprehensive Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province, People's Republic of China
| | - Kaixuan Wang
- Department of Comprehensive Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan Province, People's Republic of China
| |
Collapse
|
27
|
Gou LT, Zhu Q, Liu MF. Small RNAs: An expanding world with therapeutic promises. FUNDAMENTAL RESEARCH 2023; 3:676-682. [PMID: 38933305 PMCID: PMC11197668 DOI: 10.1016/j.fmre.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 04/09/2023] Open
Abstract
Small non-coding RNAs (sncRNAs), such as microRNAs (miRNAs), small interfering RNAs (siRNAs), PIWI-interacting RNAs (piRNAs), and transfer RNA (tRNA)-derived small RNAs (tsRNAs), play essential roles in regulating various cellular and developmental processes. Over the past three decades, researchers have identified novel sncRNA species from various organisms. These molecules demonstrate dynamic expression and diverse functions, and they are subject to intricate regulation through RNA modifications in both healthy and diseased states. Notably, certain sncRNAs in gametes, particularly sperm, respond to environmental stimuli and facilitate epigenetic inheritance. Collectively, the in-depth understanding of sncRNA functions and mechanisms has accelerated the development of small RNA-based therapeutics. In this review, we present the recent advances in the field, including new sncRNA species and the regulatory influences of RNA modifications. We also discuss the current limitations and challenges associated with using small RNAs as either biomarkers or therapeutic drugs.
Collapse
Affiliation(s)
- Lan-Tao Gou
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qifan Zhu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mo-Fang Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| |
Collapse
|
28
|
Zhang K, Li Y, Huang Y, Sun K. PiRNA in Cardiovascular Disease: Focus on Cardiac Remodeling and Cardiac Protection. J Cardiovasc Transl Res 2023; 16:768-777. [PMID: 37407865 DOI: 10.1007/s12265-023-10353-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/08/2023] [Indexed: 07/07/2023]
Abstract
Cardiovascular diseases (CVDs) are common causes of death, which take about 18.6 million lives worldwide every year. Currently, exploring strategies that delay ventricular remodeling, reduce cardiomyocyte death, and promote cardiomyocyte regeneration has been the hotspot and difficulty of the ischemic heart disease (IHD) research field. Previous studies indicate that piwi-interacting RNA (piRNA) plays a vital role in the occurrence and development of cardiac remodeling and may offer novel therapeutic strategies for cardiac repair. The best-known biological function of piRNA is to silence transposons in cells. In the cardiovascular system, piRNA is known to participate in cardiac progenitor cell proliferation, AKT pathway regulation, and cardiac remodeling and decompensation. In this review, we systematically discuss the research progress on piRNA in CVDs, especially the mechanism of cardiac remodeling and the potential functions in cardiac protection, which provides new insights for the progress and treatment of cardiovascular diseases. Piwi-interacting RNA (piRNA) is one of the noncoding RNAs, with the best -known biological function to silence transposons in cells. Now piRNA is found to participate in cardiac progenitor cell proliferation, AKT pathway regulation, cardiac remodeling and decompensation, which implies the potential of piRNA in the diagnosis and treatment of cardiovascular diseases. Over expression of piRNA could promote cardiac apoptosis and cardiac hypertrophy, thus targeted therapy which inhibits expression of associated piRNA may reduce cardiac remodeling and reduce inflammation caused by necrotic cardiomyocytes. PiRNA is also speculated to participate in the proliferation of cardiac progenitor cells, implying the potential to induce cardiac regeneration th erapy, which provides new insights for treatment of cardiovascular diseases. At present, the treatment strategy of cardiac remodeling emphasizes the control of risk factors, prevention of disease progression and individualized treatment. With further studies in mechanism of piRNA, potential therapies above may come true and more therapies in cardiovascular diseases may be found.
Collapse
Affiliation(s)
- Kaiyu Zhang
- Department of Cardiology, Gusu School, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, 215000, Jiangsu Province, China
| | - Yafei Li
- Department of Cardiology, Gusu School, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, 215000, Jiangsu Province, China
| | - Ying Huang
- Central Laboratory, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Kangyun Sun
- Department of Cardiology, Gusu School, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, 215000, Jiangsu Province, China.
| |
Collapse
|
29
|
Mir SA, Dar A, Alshehri SA, Wahab S, Hamid L, Almoyad MAA, Ali T, Bader GN. Exploring the mTOR Signalling Pathway and Its Inhibitory Scope in Cancer. Pharmaceuticals (Basel) 2023; 16:1004. [PMID: 37513916 PMCID: PMC10384750 DOI: 10.3390/ph16071004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Mechanistic target of rapamycin (mTOR) is a protein kinase that regulates cellular growth, development, survival, and metabolism through integration of diverse extracellular and intracellular stimuli. Additionally, mTOR is involved in interplay of signalling pathways that regulate apoptosis and autophagy. In cells, mTOR is assembled into two complexes, mTORC1 and mTORC2. While mTORC1 is regulated by energy consumption, protein intake, mechanical stimuli, and growth factors, mTORC2 is regulated by insulin-like growth factor-1 receptor (IGF-1R), and epidermal growth factor receptor (EGFR). mTOR signalling pathways are considered the hallmark in cancer due to their dysregulation in approximately 70% of cancers. Through downstream regulators, ribosomal protein S6 kinase β-1 (S6K1) and eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), mTORC1 influences various anabolic and catabolic processes in the cell. In recent years, several mTOR inhibitors have been developed with the aim of treating different cancers. In this review, we will explore the current developments in the mTOR signalling pathway and its importance for being targeted by various inhibitors in anti-cancer therapeutics.
Collapse
Affiliation(s)
- Suhail Ahmad Mir
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Ashraf Dar
- Department of Biochemistry, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Saad Ali Alshehri
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Laraibah Hamid
- Department of Zoology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Mohammad Ali Abdullah Almoyad
- Department of Basic Medical Sciences, College of Applied Medical Sciences in Khamis Mushyt, King Khalid University, Abha 61412, Saudi Arabia
| | - Tabasum Ali
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Ghulam Nabi Bader
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| |
Collapse
|
30
|
Wu YJ, Wang J, Zhang P, Yuan LX, Ju LL, Wang HX, Chen L, Cao YL, Cai WH, Ni Y, Li M. PIWIL1 interacting RNA piR-017724 inhibits proliferation, invasion, and migration, and inhibits the development of HCC by silencing PLIN3. Front Oncol 2023; 13:1203821. [PMID: 37503320 PMCID: PMC10369847 DOI: 10.3389/fonc.2023.1203821] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) accounts for the majority of primary liver cancers. Worldwide, liver cancer is the fourth most common cause of cancer-related death. Recent studies have found that PIWI-interacting RNAs (piRNAs) participate in the occurrence and development of various tumors and are closely related to the growth, invasion, metastasis and prognosis of malignant tumors. Studies on the role and functional mechanism of piRNAs in HCC development and progression are limited. Methods Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) were used to detect the expression of piR-017724 in both HCC tissues and cells. Based on the clinical data of HCC patients, the clinical and prognostic value of piR-017724 was further analyzed. Then, targeted silencing and overexpressing of piR-017724 in HCC cells was further used to examine the biological functions of piR-017724. In addition, the downstream target protein of piR-017724 was predicted and validated through high-throughput sequencing and public databases. Results The piR-017724 was significantly downregulated in HCC tissues and cells, and the downregulation of piR-017724 was associated with tumor stage and poor prognosis in HCC. The piR-017724 inhibitor promoted the proliferation, migration and invasion of HCC cells, while the piR-017724 mimic had the opposite effect. However, the piR-017724 did not affect apoptosis of HCC cells. High-throughput sequencing and qRT-PCR confirmed a reciprocal relationship between piR-017724 and PLIN3. Therefore, we speculate that piR-017724 may inhibit the development and progression of HCC by affecting the downstream protein PLIN3. Conclusions Our study shows that piR-017724, which is lowly expressed in HCC, inhibits the proliferation, migration and invasion of HCC cells and may affect the development of hepatocellular liver cancer through PLIN3, which provides new insights into the clinical application of piR-017724 in the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yi-Jing Wu
- Medical School of Nantong University, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Jie Wang
- Medical School of Nantong University, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Peng Zhang
- Nantong Institute of Liver Disease, Department of Hepatobiliary Surgery, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Liu-Xia Yuan
- Nantong Institute of Liver Disease, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Lin-Ling Ju
- Nantong Institute of Liver Disease, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Hui-Xuan Wang
- Nantong Institute of Liver Disease, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Lin Chen
- Nantong Institute of Liver Disease, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Ya-Li Cao
- Preventive Health Department, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Wei-Hua Cai
- Department of Hepatobiliary Surgery, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Yi Ni
- Thyroid and Breast Surgery, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Min Li
- Integrating Traditional Chinese Medicine with Hepatology, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| |
Collapse
|
31
|
Xue R, Zhou J, Wu J, Meng Q, Gong J, Shen L. P-element-Induced Wimpy-Testis-Like Protein 1 Regulates the Activation of Pancreatic Stellate Cells Through the PI3K/AKT/mTOR Signaling Pathway. Dig Dis Sci 2023; 68:1339-1350. [PMID: 36002675 DOI: 10.1007/s10620-022-07605-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/21/2022] [Indexed: 12/09/2022]
Abstract
AIM Pancreatic fibrosis is the main pathological characteristic of chronic pancreatitis (CP) and pancreatic cancer. Pancreatic stellate cells (PSCs) play a critical role in pancreatic fibrosis. Any targets that may have an impact on the activation of PSCs could become potential treatment candidates for CP and pancreatic cancer. Our goal was to investigate the effect of P-element-induced wimpy-testis (PIWI) protein 1 (PIWIL1) on PSC activation. METHODS Lentivirus-based RNA interference (RNAi) and overexpression vector construction were used to knock down and over-express the PIWIL1 protein. Immunocytofluorescent staining, western blotting, wound healing assay, transwell assay, and phalloidin staining were used to investigate the effects of PIWIL1 on the secretion of extracellular matrix components (EMC), actin cytoskeleton, and on the invasion and migration abilities of primary PSCs isolated from C57BL/6 mice. Moreover, pancreatic fibrosis was induced by L-arginine in C57BL/6 mice. The expression of PIWIL1 and collagen deposition in vivo were tested by western blotting and Sirius red staining. RESULTS Expression levels of collagen I, collagen III, and α-smooth muscle actin were significantly decreased in the LV-PIWIL1 group. Compared with the si-PIWIL1 group, significant differences were observed in the expression of desmin, p-PI3K, p-AKT, and p-mTOR in the LV-PIWIL1 group. Furthermore, PIWIL1 suppressed the PSCs' invasion and migration abilities. In a rescue experiment, the PI3K/AKT/mTOR signaling pathway was found to be the underlying mechanism in PSCs activation mediated by PIWIL1. CONCLUSIONS Our findings suggest that PIWIL1 inhibits the activation of PSCs via the PI3K/AKT/mTOR signaling pathway. PIWIL1 is a potential therapeutic target for pancreatic fibrosis.
Collapse
Affiliation(s)
- Ran Xue
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Early Drug Development Center, Peking University Cancer Hospital & Institute, Fucheng Road 52, Haidian District, 100142, Beijing, China.
| | - Jun Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Fucheng Road 52, Haidian District, Beijing, 100142, China
| | - Jing Wu
- Department of Medical Oncology, Beijing You-An Hospital, Capital Medical University, Beijing, 100069, China
| | - Qinghua Meng
- Department of Medical Oncology, Beijing You-An Hospital, Capital Medical University, Beijing, 100069, China
| | - Jifang Gong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Early Drug Development Center, Peking University Cancer Hospital & Institute, Fucheng Road 52, Haidian District, 100142, Beijing, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Fucheng Road 52, Haidian District, Beijing, 100142, China
| | - Lin Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Early Drug Development Center, Peking University Cancer Hospital & Institute, Fucheng Road 52, Haidian District, 100142, Beijing, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Fucheng Road 52, Haidian District, Beijing, 100142, China
| |
Collapse
|
32
|
Circular RNAs and Untranslated Regions in Acute Myeloid Leukemia. Int J Mol Sci 2023; 24:ijms24043215. [PMID: 36834627 PMCID: PMC9967498 DOI: 10.3390/ijms24043215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/05/2023] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
Before the advent of next-generation sequencing, research on acute myeloid leukemia (AML) mostly centered on protein-coding genes. In recent years, breakthroughs in RNA sequencing technologies and whole transcriptome analysis have led to the discovery that approximately 97.5% of the human genome is transcribed into non-coding RNAs (ncRNAs). This paradigm shift has led to an explosion of research interest in different classes of non-coding RNAs, such as circular RNAs (circRNAs) as well as non-coding untranslated regions (UTRs) of protein-coding messenger RNAs. The critical roles of circRNAs and UTRs in AML pathogenesis have become increasingly apparent. In this review, we discuss the cellular mechanisms of circRNAs and summarize recent studies that reveal their biological roles in AML. Furthermore, we also review the contribution of 3'UTRs to disease progression. Finally, we discuss the potential of circRNAs and 3'UTRs as new biomarkers for disease stratification and/or the prediction of treatment response and targets for the development of RNA-directed therapeutic applications.
Collapse
|
33
|
Wang X, Ramat A, Simonelig M, Liu MF. Emerging roles and functional mechanisms of PIWI-interacting RNAs. Nat Rev Mol Cell Biol 2023; 24:123-141. [PMID: 36104626 DOI: 10.1038/s41580-022-00528-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2022] [Indexed: 02/02/2023]
Abstract
PIWI-interacting RNAs (piRNAs) are a class of small non-coding RNAs that associate with proteins of the PIWI clade of the Argonaute family. First identified in animal germ line cells, piRNAs have essential roles in germ line development. The first function of PIWI-piRNA complexes to be described was the silencing of transposable elements, which is crucial for maintaining the integrity of the germ line genome. Later studies provided new insights into the functions of PIWI-piRNA complexes by demonstrating that they regulate protein-coding genes. Recent studies of piRNA biology, including in new model organisms such as golden hamsters, have deepened our understanding of both piRNA biogenesis and piRNA function. In this Review, we discuss the most recent advances in our understanding of piRNA biogenesis, the molecular mechanisms of piRNA function and the emerging roles of piRNAs in germ line development mainly in flies and mice, and in infertility, cancer and neurological diseases in humans.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Anne Ramat
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France
| | - Martine Simonelig
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France.
| | - Mo-Fang Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China. .,Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China. .,School of Life Science and Technology, Shanghai Tech University, Shanghai, China.
| |
Collapse
|
34
|
Guo S, Zhu X, Huang Z, Wei C, Yu J, Zhang L, Feng J, Li M, Li Z. Genomic instability drives tumorigenesis and metastasis and its implications for cancer therapy. Biomed Pharmacother 2023; 157:114036. [PMID: 36436493 DOI: 10.1016/j.biopha.2022.114036] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022] Open
Abstract
Genetic instability can be caused by external factors and may also be associated with intracellular damage. At the same time, there is a large body of research investigating the mechanisms by which genetic instability occurs and demonstrating the relationship between genomic stability and tumors. Nowadays, tumorigenesis development is one of the hottest research areas. It is a vital factor affecting tumor treatment. Mechanisms of genomic stability and tumorigenesis development are relatively complex. Researchers have been working on these aspects of research. To explore the research progress of genomic stability and tumorigenesis, development, and treatment, the authors searched PubMed with the keywords "genome instability" "chromosome instability" "DNA damage" "tumor spread" and "cancer treatment". This extracts the information relevant to this study. Results: This review introduces genomic stability, drivers of tumor development, tumor cell characteristics, tumor metastasis, and tumor treatment. Among them, immunotherapy is more important in tumor treatment, which can effectively inhibit tumor metastasis and kill tumor cells. Breakthroughs in tumorigenesis development studies and discoveries in tumor metastasis will provide new therapeutic techniques. New tumor treatment methods can effectively prevent tumor metastasis and improve the cure rate of tumors.
Collapse
Affiliation(s)
- Shihui Guo
- Computational Oncology Lab, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Xiao Zhu
- Computational Oncology Lab, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Ziyuan Huang
- Computational Oncology Lab, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Chuzhong Wei
- Computational Oncology Lab, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Jiaao Yu
- Computational Oncology Lab, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Lin Zhang
- Computational Oncology Lab, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Jinghua Feng
- Computational Oncology Lab, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Mingdong Li
- Department of Gastroenterology, Zibo Central Hospital, Zibo 255000, China.
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China.
| |
Collapse
|
35
|
Akimniyazova AN, Niyazova TK, Yurikova OY, Pyrkova AY, Zhanuzakov MA, Ivashchenko AT. piRNAs may regulate expression of candidate genes of esophageal adenocarcinoma. Front Genet 2022; 13:1069637. [PMID: 36531220 PMCID: PMC9747755 DOI: 10.3389/fgene.2022.1069637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/18/2022] [Indexed: 07/29/2023] Open
Abstract
Elucidation of ways to regulate the expression of candidate cancer genes will contribute to the development of methods for cancer diagnosis and therapy. The aim of the present study was to show the role of piRNAs as efficient regulators of mRNA translation of esophageal adenocarcinoma (EAC) candidate genes. We used bioinformatic methods to study the interaction characteristics of up to 200 thousand piRNAs with mRNAs of 38 candidate EAC genes. The piRNAs capable of binding to mRNA of AR, BTG3, CD55, ERBB3, FKBP5, FOXP1, LEP, SEPP1, SMAD4, and TP53 genes with high free energy by the formation of hydrogen bonds between canonical (G-C, A-U) and noncanonical (G-U, A-C) piRNA and mRNA nucleotide pairs were revealed. The organization of piRNA binding sites (BSs) in the mRNA of candidate genes was found to overlap nucleotide sequences to form clusters. Clusters of piRNA BSs were detected in the 5'-untranslated region, coding domain sequence, and 3'-untranslated region of mRNA. Due to the formation of piRNA binding site clusters, compaction of BSs occurs and competition between piRNAs for binding to mRNA of candidate EAC genes occurs. Associations of piRNA and candidate genes were selected for use as markers for the diagnosis of EAC.
Collapse
Affiliation(s)
- A. N. Akimniyazova
- Higher School of Medicine, Faculty of Medicine and Healthcare, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - T. K. Niyazova
- Department of Biotechnology, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - O. Yu. Yurikova
- Department of Biotechnology, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - A. Yu. Pyrkova
- Department of Biotechnology, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
- Center for Bioinformatics and Nanomedicine, Almaty, Kazakhstan
| | - M. A. Zhanuzakov
- Higher School of Medicine, Faculty of Medicine and Healthcare, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | | |
Collapse
|
36
|
Dabi Y, Bendifallah S, Suisse S, Haury J, Touboul C, Puchar A, Favier A, Daraï E. Overview of non-coding RNAs in breast cancers. Transl Oncol 2022; 25:101512. [PMID: 35961269 PMCID: PMC9382556 DOI: 10.1016/j.tranon.2022.101512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/18/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer in women is the second most common cancer and the fifth leading cause of cancer death worldwide. Although earlier diagnosis and detection of breast cancer has resulted in lower mortality rates, further advances in prevention, detection, and treatment are needed to improve outcomes and survival for women with breast cancer as well as to offer a personalized therapeutic approach. It is now well-established that non-coding RNAs (ncRNAs) represent 98% of the transcriptome but in-depth knowledge about their involvement in the regulation of gene expression is lacking. A growing body of research indicates that ncRNAs are essential for tumorigenesis by regulating the expression of tumour-related genes. In this review, we focus on their implication in breast cancer genesis but also report the latest knowledge of their theragnostic and therapeutic role. We highlight the need for accurate quantification of circulating ncRNAs which is determinant to develop reliable biomarkers. Further studies are mandatory to finally enter the era of personalized medicine for women with breast cancer.
Collapse
Affiliation(s)
- Yohann Dabi
- Sorbonne University - Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 rue de la Chine, 75020 Paris; Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU); INSERM UMR_S_938, Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, Paris 75020, France.
| | - Sofiane Bendifallah
- Sorbonne University - Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 rue de la Chine, 75020 Paris; Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU); INSERM UMR_S_938, Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, Paris 75020, France
| | | | - Julie Haury
- Sorbonne University - Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 rue de la Chine, 75020 Paris
| | - Cyril Touboul
- Sorbonne University - Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 rue de la Chine, 75020 Paris; Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU); INSERM UMR_S_938, Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, Paris 75020, France
| | - Anne Puchar
- Sorbonne University - Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 rue de la Chine, 75020 Paris
| | - Amélia Favier
- Sorbonne University - Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 rue de la Chine, 75020 Paris
| | - Emile Daraï
- Sorbonne University - Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, 4 rue de la Chine, 75020 Paris; Clinical Research Group (GRC) Paris 6: Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU); INSERM UMR_S_938, Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, Paris 75020, France
| |
Collapse
|
37
|
Viegas JSR, Bentley MVLB, Vicentini FTMDC. Challenges to perform an efficiently gene therapy adopting non-viral vectors: Melanoma landscape. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
AmeliMojarad M, Amelimojarad M. piRNAs and PIWI proteins as potential biomarkers in Breast cancer. Mol Biol Rep 2022; 49:9855-9862. [PMID: 35612777 DOI: 10.1007/s11033-022-07506-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/22/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND PIWI interacting RNAs (piRNAs) are another subgroup of small non-coding RNAs, that can play different biological activity further to their capabilities in the germline such as regulating the gene and protein expression, epigenetic silencing of transposable elements, and regulating the spermatogenesis by interacting with PIWI proteins. METHODS We search online academic data bases including (Google Scholar, Web of Science and Pub Med), the relevant literature was extracted from the databases by using search terms of piRNAs and breast cancer as free-text words and also with the combination with OR /AND by may 2022. RESULTS Recently, with the help of next-generation sequencing abnormal piRNA expression has been observed to associate with the occurrence and development of human cancers, such as breast cancer (BC). Recent investigation proposing piRNA as a prognostic and diagnostic biomarker based on their cancer-related interaction in the treatment of BC. CONCLUSION This review aims to focus on the role of piRNAs in the initiation, progression, and the occurrence of breast cancer in order to understand its function and provide a better therapeutic strategy.
Collapse
|
39
|
Ye W, Wu Z, Gao P, Kang J, Xu Y, Wei C, Zhang M, Zhu X. Identified Gefitinib Metabolism-Related lncRNAs can be Applied to Predict Prognosis, Tumor Microenvironment, and Drug Sensitivity in Non-Small Cell Lung Cancer. Front Oncol 2022; 12:939021. [PMID: 35978819 PMCID: PMC9376789 DOI: 10.3389/fonc.2022.939021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/06/2022] [Indexed: 12/15/2022] Open
Abstract
Gefitinib has shown promising efficacy in the treatment of patients with locally advanced or metastatic EGFR-mutated non-small cell lung cancer (NSCLC). Molecular biomarkers for gefitinib metabolism-related lncRNAs have not yet been elucidated. Here, we downloaded relevant genes and matched them to relevant lncRNAs. We then used univariate, LASSO, and multivariate regression to screen for significant genes to construct prognostic models. We investigated TME and drug sensitivity by risk score data. All lncRNAs with differential expression were selected for GO/KEGG analysis. Imvigor210 cohort was used to validate the value of the prognostic model. Finally, we performed a stemness indices difference analysis. lncRNA-constructed prognostic models were significant in the high-risk and low-risk subgroups. Immune pathways were identified in both groups at low risk. The higher the risk score the greater the value of exclusion, MDSC, and CAF. PRRophetic algorithm screened a total of 58 compounds. In conclusion, the prognostic model we constructed can accurately predict OS in NSCLC patients. Two groups of low-risk immune pathways are beneficial to patients. Gefitinib metabolism was again validated to be related to cytochrome P450 and lipid metabolism. Finally, drugs that might be used to treat NSCLC patients were screened.
Collapse
Affiliation(s)
- Weilong Ye
- School of Laboratory Medicine and Biological Engineering, Hangzhou Medical College, Hangzhou, China
- Computational Oncology Laboratory, Guangdong Medical University, Zhanjiang, China
| | - Zhengguo Wu
- Department of Thoracic Surgery, Yantian District People’s Hospital, Shenzhen, China
| | - Pengbo Gao
- Computational Oncology Laboratory, Guangdong Medical University, Zhanjiang, China
| | - Jianhao Kang
- Computational Oncology Laboratory, Guangdong Medical University, Zhanjiang, China
| | - Yue Xu
- Computational Oncology Laboratory, Guangdong Medical University, Zhanjiang, China
| | - Chuzhong Wei
- Computational Oncology Laboratory, Guangdong Medical University, Zhanjiang, China
| | - Ming Zhang
- Department of Physical Medicine and Rehabilitation, Zibo Central Hospital, Zibo, China
- *Correspondence: Ming Zhang, ; Xiao Zhu,
| | - Xiao Zhu
- School of Laboratory Medicine and Biological Engineering, Hangzhou Medical College, Hangzhou, China
- Computational Oncology Laboratory, Guangdong Medical University, Zhanjiang, China
- *Correspondence: Ming Zhang, ; Xiao Zhu,
| |
Collapse
|
40
|
Zhou W, Yan LD, Yu ZQ, Li N, Yang YH, Wang M, Chen YY, Mao MX, Peng XC, Cai J. Role of STK11 in ALK-positive non-small cell lung cancer. Oncol Lett 2022; 23:181. [PMID: 35527776 PMCID: PMC9073580 DOI: 10.3892/ol.2022.13301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/01/2022] [Indexed: 11/10/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) inhibitors have been shown to be effective in treating patients with ALK-positive non-small cell lung cancer (NSCLC), and crizotinib, ceritinib and alectinib have been approved as clinical first-line therapeutic agents. The availability of these inhibitors has also largely changed the treatment strategy for advanced ALK-positive NSCLC. However, patients still inevitably develop resistance to ALK inhibitors, leading to tumor recurrence or metastasis. The most critical issues that need to be addressed in the current treatment of ALK-positive NSCLC include the high cost of targeted inhibitors and the potential for increased toxicity and resistance to combination therapy. Recently, it has been suggested that the serine/threonine kinase 11 (STK11) mutation may serve as one of the biomarkers for immunotherapy in NSCLC. Therefore, the main purpose of this review was to summarize the role of STK11 in ALK-positive NSCLC. The present review also summarizes the treatment and drug resistance studies in ALK-positive NSCLC and the current status of STK11 research in NSCLC.
Collapse
Affiliation(s)
- Wen Zhou
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Lu-Da Yan
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Zhi-Qiong Yu
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Na Li
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Yong-Hua Yang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Meng Wang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Yuan-Yuan Chen
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Meng-Xia Mao
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Xiao-Chun Peng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Jun Cai
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| |
Collapse
|
41
|
Li X, Li M, Huang M, Lin Q, Fang Q, Liu J, Chen X, Liu L, Zhan X, Shan H, Lu D, Li Q, Li Z, Zhu X. The multi-molecular mechanisms of tumor-targeted drug resistance in precision medicine. Biomed Pharmacother 2022; 150:113064. [PMID: 35658234 DOI: 10.1016/j.biopha.2022.113064] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 11/02/2022] Open
Abstract
Clinically, cancer drug therapy is still dominated by chemotherapy drugs. Although the emergence of targeted drugs has greatly improved the survival rate of patients with advanced cancer, drug resistance has always been a difficult problem in clinical cancer treatment. At the current level of medicine, most drugs cannot escape the fate of drug resistance. With the emergence and development of gene detection, liquid biopsy ctDNA technology, and single-cell sequencing technology, the molecular mechanism of tumor drug resistance has gradually emerged. Drugs can also be updated in response to drug resistance mechanisms and bring higher survival benefits. The use of new drugs often leads to new mechanisms of resistance. In this review, the multi-molecular mechanisms of drug resistance are introduced, and the overcoming of drug resistance is discussed from the perspective of the tumor microenvironment.
Collapse
Affiliation(s)
- Xinming Li
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China; Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Mingdong Li
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China
| | - Meiying Huang
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Qianyi Lin
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Qiuping Fang
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Jianjiang Liu
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Xiaohui Chen
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Lin Liu
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Xuliang Zhan
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Huisi Shan
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Deshuai Lu
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Qinlan Li
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors,Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China.
| | - Xiao Zhu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China; Cancer Research Center, Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
42
|
Pinho JD, Silva GEB, Teixeira-Júnior AAL, Rocha TMS, Batista LL, de Sousa AM, Calixto JDRR, Burbano RR, de Souza CRT, Khayat AS. Non-Coding RNA in Penile Cancer. Front Oncol 2022; 12:812008. [PMID: 35651809 PMCID: PMC9150447 DOI: 10.3389/fonc.2022.812008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/11/2022] [Indexed: 11/25/2022] Open
Abstract
Penile cancer (PC) still presents a health threat for developing countries, in particular Brazil. Despite this, little progress has been made on the study of markers, including molecular ones, that can aid in the correct management of the patient, especially concerning lymphadenectomy. As in other neoplasms, non-coding RNAs (ncRNAs) have been investigated for penile cancer, with emphasis on microRNAs, piRNAs (PIWI-interacting small RNAs), and long non-coding RNAs (LncRNAs). In this context, this review aims to assemble the available knowledge on non-coding RNA linked in PC, contributing to our understanding of the penile carcinogenesis process and addressing their clinical relevance. ncRNAs are part of the novel generation of biomarkers, with high potential for diagnosis and prognosis, orientating the type of treatment. Furthermore, its versatility regarding the use of paraffin samples makes it possible to carry out retrospective studies.
Collapse
Affiliation(s)
- Jaqueline Diniz Pinho
- Zé Doca Center for Higher Studies, State University of Maranhão, Zé Doca, Brazil
- Laboratory of Immunofluorescence and Electron Microscopy, University Hospital of the Federal University of Maranhão, São Luís, Brazil
- Oncology Research Center, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
- *Correspondence: Jaqueline Diniz Pinho,
| | - Gyl Eanes Barros Silva
- Laboratory of Immunofluorescence and Electron Microscopy, University Hospital of the Federal University of Maranhão, São Luís, Brazil
| | - Antonio Augusto Lima Teixeira-Júnior
- Laboratory of Immunofluorescence and Electron Microscopy, University Hospital of the Federal University of Maranhão, São Luís, Brazil
- Department of Genetics, University of Sao Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Thalita Moura Silva Rocha
- Laboratory of Immunofluorescence and Electron Microscopy, University Hospital of the Federal University of Maranhão, São Luís, Brazil
| | - Lecildo Lira Batista
- Oncology Research Center, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
- Coordination of Medicine, Federal University of Amapá, Macapá, Brazil
| | - Amanda Marques de Sousa
- Oncology Research Center, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
| | | | | | | | - André Salim Khayat
- Oncology Research Center, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
| |
Collapse
|
43
|
Sammallahti H, Sarhadi VK, Kokkola A, Ghanbari R, Rezasoltani S, Asadzadeh Aghdaei H, Puolakkainen P, Knuutila S. Oncogenomic Changes in Pancreatic Cancer and Their Detection in Stool. Biomolecules 2022; 12:652. [PMID: 35625579 PMCID: PMC9171580 DOI: 10.3390/biom12050652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Pancreatic cancer (PC) is an aggressive malignancy with a dismal prognosis. To improve patient survival, the development of screening methods for early diagnosis is pivotal. Oncogenomic alterations present in tumor tissue are a suitable target for non-invasive screening efforts, as they can be detected in tumor-derived cells, cell-free nucleic acids, and extracellular vesicles, which are present in several body fluids. Since stool is an easily accessible source, which enables convenient and cost-effective sampling, it could be utilized for the screening of these traces. Herein, we explore the various oncogenomic changes that have been detected in PC tissue, such as chromosomal aberrations, mutations in driver genes, epigenetic alterations, and differentially expressed non-coding RNA. In addition, we briefly look into the role of altered gut microbiota in PC and their possible associations with oncogenomic changes. We also review the findings of genomic alterations in stool of PC patients, and the potentials and challenges of their future use for the development of stool screening tools, including the possible combination of genomic and microbiota markers.
Collapse
Affiliation(s)
- Heidelinde Sammallahti
- Department of Pathology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
- Department of Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland; (A.K.); (P.P.)
| | - Virinder Kaur Sarhadi
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland;
| | - Arto Kokkola
- Department of Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland; (A.K.); (P.P.)
| | - Reza Ghanbari
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran P.O. Box 1411713135, Iran;
| | - Sama Rezasoltani
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 1985717411, Iran;
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 1985717411, Iran;
| | - Pauli Puolakkainen
- Department of Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland; (A.K.); (P.P.)
| | - Sakari Knuutila
- Department of Pathology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
44
|
Cerqueira de Araujo A, Huguet E, Herniou EA, Drezen JM, Josse T. Transposable element repression using piRNAs, and its relevance to endogenous viral elements (EVEs) and immunity in insects. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100876. [PMID: 35065285 DOI: 10.1016/j.cois.2022.100876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
The piRNA system controls transposable element (TE) mobility by transcriptional gene silencing and post-transcriptional gene silencing. Dispersed in insect genomes, piRNA clusters contain TE copies, from which they produce piRNAs (specific small RNAs). These piRNAs can both target the nascent transcripts produced by active TE copies and directly repress them by heterochromatinization. They can also target mature transcripts and cleave them following amplification by the so-called 'ping-pong' loop mechanism. Moreover, piRNA clusters contain endogenous viral elements (EVEs), from which they produce piRNAs. The current idea is that these piRNAs could participate in the antiviral response against exogenous viral infection. In this review, we show that among insects, to date, this antiviral response by the piRNA system appears mainly restricted to mosquitoes, but this could be due to the focus of most studies on arboviruses.
Collapse
Affiliation(s)
- Alexandra Cerqueira de Araujo
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, 37200 Tours, France
| | - Elisabeth Huguet
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, 37200 Tours, France
| | - Elisabeth A Herniou
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, 37200 Tours, France
| | - Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, 37200 Tours, France
| | - Thibaut Josse
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, 37200 Tours, France.
| |
Collapse
|
45
|
Donda K, Torres BA, Maheshwari A. Non-coding RNAs in Neonatal Necrotizing Enterocolitis. NEWBORN 2022; 1:120-130. [PMID: 35754997 PMCID: PMC9219563 DOI: 10.5005/jp-journals-11002-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Keyur Donda
- Department of Pediatrics, University of South Florida Health Morsani College of Medicine, Tampa, Florida, United States of America
| | - Benjamin A Torres
- Department of Pediatrics, University of South Florida Health Morsani College of Medicine, Tampa, Florida, United States of America
| | - Akhil Maheshwari
- Global Newborn Society, Clarksville, Maryland, United States of America
| |
Collapse
|
46
|
Olmedo-Suárez MÁ, Ramírez-Díaz I, Pérez-González A, Molina-Herrera A, Coral-García MÁ, Lobato S, Sarvari P, Barreto G, Rubio K. Epigenetic Regulation in Exposome-Induced Tumorigenesis: Emerging Roles of ncRNAs. Biomolecules 2022; 12:513. [PMID: 35454102 PMCID: PMC9032613 DOI: 10.3390/biom12040513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023] Open
Abstract
Environmental factors, including pollutants and lifestyle, constitute a significant role in severe, chronic pathologies with an essential societal, economic burden. The measurement of all environmental exposures and assessing their correlation with effects on individual health is defined as the exposome, which interacts with our unique characteristics such as genetics, physiology, and epigenetics. Epigenetics investigates modifications in the expression of genes that do not depend on the underlying DNA sequence. Some studies have confirmed that environmental factors may promote disease in individuals or subsequent progeny through epigenetic alterations. Variations in the epigenetic machinery cause a spectrum of different disorders since these mechanisms are more sensitive to the environment than the genome, due to the inherent reversible nature of the epigenetic landscape. Several epigenetic mechanisms, including modifications in DNA (e.g., methylation), histones, and noncoding RNAs can change genome expression under the exogenous influence. Notably, the role of long noncoding RNAs in epigenetic processes has not been well explored in the context of exposome-induced tumorigenesis. In the present review, our scope is to provide relevant evidence indicating that epigenetic alterations mediate those detrimental effects caused by exposure to environmental toxicants, focusing mainly on a multi-step regulation by diverse noncoding RNAs subtypes.
Collapse
Affiliation(s)
- Miguel Ángel Olmedo-Suárez
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Ivonne Ramírez-Díaz
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Facultad de Biotecnología, Campus Puebla, Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla 72410, Mexico
| | - Andrea Pérez-González
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Alejandro Molina-Herrera
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Miguel Ángel Coral-García
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Decanato de Ciencias de la Salud, Campus Puebla, Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla 72410, Mexico
| | - Sagrario Lobato
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
| | - Pouya Sarvari
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
| | - Guillermo Barreto
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Laboratoire IMoPA, CNRS, Université de Lorraine, UMR 73635 Nancy, France
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Karla Rubio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Puebla 72160, Mexico; (M.Á.O.-S.); (I.R.-D.); (A.P.-G.); (A.M.-H.); (M.Á.C.-G.); (S.L.); (P.S.); (G.B.)
- Licenciatura en Médico Cirujano, Universidad de la Salud del Estado de Puebla (USEP), Puebla 72000, Mexico
- Laboratoire IMoPA, CNRS, Université de Lorraine, UMR 73635 Nancy, France
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| |
Collapse
|
47
|
Xie Q, Li Z, Luo X, Wang D, Zhou Y, Zhao J, Gao S, Yang Y, Fu W, Kong L, Sun T. piRNA-14633 promotes cervical cancer cell malignancy in a METTL14-dependent m6A RNA methylation manner. J Transl Med 2022; 20:51. [PMID: 35093098 PMCID: PMC8802215 DOI: 10.1186/s12967-022-03257-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/17/2022] [Indexed: 12/28/2022] Open
Abstract
Background Cervical cancer (CC) is one of the most common gynecological tumors that threatens women's health and lives. Aberrant expression of PIWI-interacting RNA (piRNA) is closely related with a range of cancers and can serve as a tumor promoter or suppressor in proliferation, migration and invasion. In this study, the aim was not only to discover differential expression of piRNA in CC tissue (CC cells) and normal cervical tissue (normal cervical epithelium cells), but also to investigate the biological function and action mechanism of piRNA in CC. Methods The DESeq2 approach was used to estimate fold change in piRNA between CC tissue and normal cervical tissue. The relative expressions of piRNAs (piRNA-20657, piRNA-20497, piRNA-14633 and piRNA-13350) and RNA m6A methyltransferases/demethylases were detected using RT-qPCR. After intervention with piRNA-14633 and METTL14 expression, the viability of CaSki cells and SiHa cells was detected by CCK8. CC cell proliferation was detected by colony formation assay. Apoptosis rate and cell cycle were detected by flow cytometry. Transwell assay was performed to detect cell migration and invasion. EpiQuik m6A RNA Methylation Quantification Kit was used to evaluate m6A RNA methylation levels. Expression of methyltransferase-like protein 14 (METTL14), PIWIL-proteins and CYP1B1 were detected by RT-qPCR and western blot. The effect of piRNA-14633 on METTL14 was evaluated by a dual-luciferase reporter assay. The in vivo effects of piRNA-14633 on CC was assessed by nude mice experiments. Results piRNA-14633 showed high expression in CC tissues and cells, piRNA-14633 mimic (piRNA-14633 overexpression) promoted viability, proliferation, migration and invasion of CaSki cells and SiHa cells. Besides, piRNA-14633 mimic increased m6A RNA methylation levels and METTL14 mRNA stability. Results of dual luciferase reporter assays indicated that METTL14 was a directed target gene of piRNA-14633. Knockdown of METTL14 with siRNA attenuated proliferation, migration and invasion of CC cells. piRNA-14633 increased CYP1B1 expression, while silencing of METTL14 impaired its expression. The effect of piRNA overexpression on METTL14 expression has concentration-dependent characteristics. Results from in vivo experiment indicated that piRNA-14633 promoted cervical tumor growth. Conclusion piRNA-14633 promotes proliferation, migration and invasion of CC cells by METTL14/CYP1B1 signaling axis, highlighting the important role of piRNA-14633 in CC. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03257-2.
Collapse
|
48
|
Cai A, Hu Y, Zhou Z, Qi Q, Wu Y, Dong P, Chen L, Wang F. PIWI-Interacting RNAs (piRNAs): Promising Applications as Emerging Biomarkers for Digestive System Cancer. Front Mol Biosci 2022; 9:848105. [PMID: 35155584 PMCID: PMC8829394 DOI: 10.3389/fmolb.2022.848105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 12/24/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are a novel type of small non-coding RNAs (sncRNAs), which are 26–31 nucleotides in length and bind to PIWI proteins. Although piRNAs were originally discovered in germline cells and are thought to be essential regulators for germline preservation, they can also influence gene expression in somatic cells. An increasing amount of data has shown that the dysregulation of piRNAs can both promote and repress the emergence and progression of human cancers through DNA methylation, transcriptional silencing, mRNA turnover, and translational control. Digestive cancers are currently a major cause of cancer deaths worldwide. piRNAs control the expression of essential genes and pathways associated with digestive cancer progression and have been reported as possible biomarkers for the diagnosis and treatment of digestive cancer. Here, we highlight recent advances in understanding the involvement of piRNAs, as well as potential diagnostic and therapeutic applications of piRNAs in various digestive cancers.
Collapse
Affiliation(s)
- Aiting Cai
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuhao Hu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhou Zhou
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Qianyi Qi
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yixuan Wu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
- *Correspondence: Peixin Dong, ; Lin Chen, ; Feng Wang,
| | - Lin Chen
- Department of Gastroenterology and Laboratory Medicine, Nantong Third Hospital Affiliated to Nantong University, Nantong, China
- *Correspondence: Peixin Dong, ; Lin Chen, ; Feng Wang,
| | - Feng Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Peixin Dong, ; Lin Chen, ; Feng Wang,
| |
Collapse
|
49
|
Riquelme I, Pérez-Moreno P, Letelier P, Brebi P, Roa JC. The Emerging Role of PIWI-Interacting RNAs (piRNAs) in Gastrointestinal Cancers: An Updated Perspective. Cancers (Basel) 2021; 14:202. [PMID: 35008366 PMCID: PMC8750603 DOI: 10.3390/cancers14010202] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal (GI) cancers produce ~3.4 million related deaths worldwide, comprising 35% of all cancer-related deaths. The high mortality among GI cancers is due to late diagnosis, the presence of metastasis and drug resistance development. Additionally, current clinical markers do not adequately guide patient management, thereby new and more reliable biomarkers and therapeutic targets are still needed for these diseases. RNA-seq technology has allowed the discovery of new types of RNA transcripts including PIWI-interacting RNAs (piRNAs), which have particular characteristics that enable these molecules to act via diverse molecular mechanisms for regulating gene expression. Cumulative evidence has described the potential role of piRNAs in the development of several tumor types as a likely explanation for certain genomic abnormalities and signaling pathways' deregulations observed in cancer. In addition, these piRNAs might be also proposed as promising diagnostic or prognostic biomarkers or as potential therapeutic targets in malignancies. This review describes important topics about piRNAs including their molecular characteristics, biosynthesis processes, gene expression silencing mechanisms, and the manner in which these transcripts have been studied in samples and cell lines of GI cancers to elucidate their implications in these diseases. Moreover, this article discusses the potential clinical usefulness of piRNAs as biomarkers and therapeutic targets in GI cancers.
Collapse
Affiliation(s)
- Ismael Riquelme
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Temuco 4810101, Chile;
| | - Pablo Pérez-Moreno
- Millennium Institute on Immunology and Immunotherapy, Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8380000, Chile;
| | - Pablo Letelier
- Precision Health Research Laboratory, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Manuel Montt 56, Temuco 4813302, Chile;
| | - Priscilla Brebi
- Millennium Institute on Immunology and Immunotherapy, Laboratory of Integrative Biology (LIBi), Center for Excellence in Translational Medicine—Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile;
| | - Juan Carlos Roa
- Millennium Institute on Immunology and Immunotherapy, Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8380000, Chile;
| |
Collapse
|
50
|
Li X, Peng J, Yi C. The epitranscriptome of small non-coding RNAs. Noncoding RNA Res 2021; 6:167-173. [PMID: 34820590 PMCID: PMC8581453 DOI: 10.1016/j.ncrna.2021.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023] Open
Abstract
Small non-coding RNAs are short RNA molecules and involved in many biological processes, including cell proliferation and differentiation, immune response, cell death, epigenetic regulation, metabolic control. A diversity of RNA modifications have been identified in these small non-coding RNAs, including transfer RNAs (tRNAs), microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), small nuclear RNA (snRNA), small nucleolar RNAs (snoRNAs), and tRNA-derived small RNAs (tsRNAs). These post-transcriptional modifications are involved in the biogenesis and function of these small non-coding RNAs. In this review, we will summarize the existence of RNA modifications in the small non-coding RNAs and the emerging roles of these epitranscriptomic marks.
Collapse
Affiliation(s)
- Xiaoyu Li
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jinying Peng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.,Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|