1
|
Arafa SS, Elnoury HA, Badr El-Din S, Sakr MA, Hendawi FF, Masoud RAE, Barghash SS, Elbehairy DS, Hemeda AA, Farrag IM, Abdelrahman DS, Elsadek AM, Ghanem SK, AboShabaan HS, Atwa AM, Nour El Din M, Radwan AF, Al-Zahrani M, Alhomodi AF, Abdulfattah AM, Abdelkader A. Acetamiprid-induced pulmonary toxicity via oxidative stress, epithelial-mesenchymal transition, apoptosis, and extracellular matrix accumulation in human lung epithelial cells and fibroblasts: Protective role of heat-killed Lactobacilli. Food Chem Toxicol 2025; 198:115322. [PMID: 39961414 DOI: 10.1016/j.fct.2025.115322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
Acetamiprid (ACE) is a neonicotinoid insecticide with widespread global application, resulting in persistent human exposure. The current research examined the toxicological implications of ACE exposure on human lung fibroblasts (MRC-5 cells) and bronchial epithelial cells (BEAS-2B cells). The following implications were explored: oxidative stress, epithelial-mesenchymal transition, apoptosis, cellular proliferation, and extracellular matrix accumulation. The prospective protective properties of heat-killed Lactobacillus fermentum and Lactobacillus delbrueckii (HKL) were further studied. The 14-day exposure to ACE at 4 μM triggered oxidative stress and inflammation. ACE promoted epithelial-mesenchymal transition, as evidenced by the decline of protein and mRNA abundances of E-cadherin alongside increased protein and mRNA quantities of α-SMA and N-cadherin in BEAS-2B cells. Additionally, it elicited apoptosis in BEAS-2B cells and stimulated the cellular growth of MRC-5 cells. The TGF-β1/Smad pathway was activated upon ACE exposure, leading to the accumulation of extracellular matrix. HKL demonstrated antioxidant, anti-apoptotic, anti-proliferative, and anti-fibrotic properties, mitigating ACE-induced toxicity. Our findings delineate the molecular mechanisms underlying epithelial-mesenchymal transition, inflammation, oxidative stress, and extracellular matrix accumulation in ACE-induced pulmonary fibrosis, which provides new insights into pulmonary injury. Additionally, this investigation would offer us an approach to mitigate lung deterioration induced by ACE through utilizing heat-killed probiotic supplementation.
Collapse
Affiliation(s)
- Samah S Arafa
- Department of Pesticides, Faculty of Agriculture, Menoufia University, Shibin Elkom, Egypt.
| | - Heba A Elnoury
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Sahar Badr El-Din
- Department of Pharmacology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Mohamed A Sakr
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Suez University, Suez, Egypt
| | - Fatma Fawzi Hendawi
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Rehab Ali Elsayed Masoud
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Samia Soliman Barghash
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt; Department of Pharmacology and Toxicology, Pharmacy College, Qassim University, Saudi Arabia
| | - Doaa Sabry Elbehairy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Ayat Abdelaty Hemeda
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Islam Mostafa Farrag
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Doaa Sayed Abdelrahman
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Amira Mohammad Elsadek
- Department of Chest Diseases, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Sahar K Ghanem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Hind S AboShabaan
- Department of Clinical Pathology, National Liver Institute Hospital, Menoufia University, Shibin Elkom, Egypt
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt; Department of Pharmacology and Toxicology, College of Pharmacy, Al-Ayen Iraqi University, Thi-Qar, Iraq
| | - Mahmoud Nour El Din
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Sadat City, Cairo, Egypt
| | - Abdullah F Radwan
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt; Department of Pharmacy, Kut University College, Al Kut, Wasit, Iraq
| | - Majid Al-Zahrani
- Department of Biological Sciences, College of Sciences and Art, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Ahmad F Alhomodi
- Department of Biology, College of Science and Arts, Najran University, Saudi Arabia
| | - Ahmed M Abdulfattah
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Embryonic Stem Cell Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha, Egypt
| |
Collapse
|
2
|
Guo Y, Dong W, Sun D, Zhao X, Huang Z, Liu C, Sheng Y. Bacterial metabolites: Effects on the development of breast cancer and therapeutic efficacy (Review). Oncol Lett 2025; 29:210. [PMID: 40070782 PMCID: PMC11894516 DOI: 10.3892/ol.2025.14956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025] Open
Abstract
Evidence suggests that various gut metabolites significantly impact breast cancer (BC) and its treatment. However, the underlying mechanisms remain poorly understood and require further investigation. In the present study, the current literature was reviewed to evaluate the roles of microbial metabolites in the development of BC and its response to treatment. Microbial metabolites, including secondary bile acids, short-chain fatty acids, amino acid metabolites, lipopolysaccharide, nisin and pyocyanin, serve crucial roles in the BC microenvironment. Microbial metabolites promote BC invasion, metastasis and recurrence by facilitating cellular movement, epithelial-mesenchymal transition, cancer stem cell function and diapedesis. Furthermore, certain metabolites, such as trimethylamine N-oxide and L-norvaline, can alter the pharmacokinetics of chemotherapeutic drugs. The present review highlights the possible involvement of microbial metabolites and bacteriocins in BC carcinogenesis, development and metastasis. These metabolites could provide new insights for BC treatment strategies and are considered potential therapeutic targets.
Collapse
Affiliation(s)
- Yan Guo
- Department of Endocrinology, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Wenyan Dong
- Department of Thyroid and Breast Surgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Dezheng Sun
- Department of Thyroid and Breast Surgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Xiang Zhao
- Department of Thyroid and Breast Surgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Zhiping Huang
- Department of Hepatobiliary Surgery and Organ Transplantation, General Hospital of Southern Theater Command of People's Liberation Army, Guangzhou, Guangdong 51000, P.R. China
| | - Chaoqian Liu
- Department of Thyroid and Breast Surgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Yuan Sheng
- Department of Thyroid and Breast Surgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
3
|
Pérez Escriva P, Correia Tavares Bernardino C, Letellier E. De-coding the complex role of microbial metabolites in cancer. Cell Rep 2025; 44:115358. [PMID: 40023841 DOI: 10.1016/j.celrep.2025.115358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/11/2024] [Accepted: 02/06/2025] [Indexed: 03/04/2025] Open
Abstract
The human microbiome, an intricate ecosystem of trillions of microbes residing across various body sites, significantly influences cancer, a leading cause of morbidity and mortality worldwide. Recent studies have illuminated the microbiome's pivotal role in cancer development, either through direct cellular interactions or by secreting bioactive compounds such as metabolites. Microbial metabolites contribute to cancer initiation through mechanisms such as DNA damage, epithelial barrier dysfunction, and chronic inflammation. Furthermore, microbial metabolites exert dual roles on cancer progression and response to therapy by modulating cellular metabolism, gene expression, and signaling pathways. Understanding these complex interactions is vital for devising new therapeutic strategies. This review highlights microbial metabolites as promising targets for cancer prevention and treatment, emphasizing their impact on therapy responses and underscoring the need for further research into their roles in metastasis and therapy resistance.
Collapse
Affiliation(s)
- Pau Pérez Escriva
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Catarina Correia Tavares Bernardino
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elisabeth Letellier
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
4
|
Dandeu LNR, Lachovsky J, Sidlik S, Marenco P, Orschanski D, Aguilera P, Vázquez M, Carballo MDP, Fernández E, Penas-Steinhardt A, Chasseing NA, Labovsky V. Relevance of oncobiome in breast cancer evolution in an Argentine cohort. mSphere 2025; 10:e0059724. [PMID: 39927763 PMCID: PMC11934308 DOI: 10.1128/msphere.00597-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 01/12/2025] [Indexed: 02/11/2025] Open
Abstract
Breast cancer is the leading cause of cancer deaths in women worldwide, with about 20,000 cases annually in Argentina. While age, diet, and genetics are known risk factors, most breast cancer cases have unknown causes, necessitating the discovery of new risk factors. The aim of this study was the analysis of the prognostic relevance of the oncobiome in Argentinean breast cancer patients. Sequencing of the V4 region 16S rRNA gene was performed on 34 primary breast tumor samples, using bioinformatic and statistical analyses to identify bacteria and hypothetical pathways. Each sample presented a unique microbial profile, with Proteobacteria being the most abundant phylum. Tumors >2 cm showed greater alpha diversity with increased nucleotide biosynthesis. Moreover, progesterone-receptor tumors showed differences in beta diversity, being progesterone receptor-positive tumors that had the highest expression of Acinetobacter and Moraxella. In disease progression, the phylum Chloroflexi was prevalent in tumors of surviving patients. Acinetobacter and Cloacibacterium genera were significantly higher in patients without events and those without metastasis. We found that nucleotide and cell-structure biosynthesis, and lipid metabolism pathways were enriched in tumors with poor progression, whereas amino-acid degradation was increased in tumors of surviving patients. This finding is an indication that tumor cells are taking advantage of this effect of the microbiome during tumor progression. We conclude that oncobiome is dysbiotic in these patients, with distinct patterns in those with poor progression. Suggesting a link between the oncobiome and cancer progression, paving the way for new therapies to improve patient quality of life and survival. IMPORTANCE This is the first study to investigate the relevance of the oncobiome in the evolution of breast cancer in a cohort of Argentine patients. It also highlights the need for further research in this area to improve our understanding of the role of the microbiome in this disease and potentially identify new therapeutic targets or prognostic indicators. Understanding the complex interaction between the microbiome, the tumor microenvironment, and the pathogenesis of breast cancer holds the promise of more personalized and effective treatment approaches in the future.
Collapse
Affiliation(s)
- Leonardo Néstor Rubén Dandeu
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME), Fundación IBYME, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Joel Lachovsky
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME), Fundación IBYME, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Sofía Sidlik
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME), Fundación IBYME, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Pablo Marenco
- Instituto de Oncología Ángel H Roffo, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | | | - Pablo Aguilera
- Departamento de Ciencias Aplicadas y Tecnología, Universidad Nacional de Moreno, Moreno, Argentina
| | | | | | - Elmer Fernández
- Fundación para el Progreso de la Medicina, Córdoba, Argentina
| | - Alberto Penas-Steinhardt
- Departamento de Ciencias Básicas, Laboratorio de Genómica Computacional (GEC-UNLu), Universidad Nacional de Luján, Luján, Argentina
| | - Norma Alejandra Chasseing
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME), Fundación IBYME, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Vivian Labovsky
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME), Fundación IBYME, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
5
|
Geng S, Xiang T, Shi Y, Cao M, Wang D, Wang J, Li X, Song H, Zhang Z, Shi J, Liu J, Li A, Sun K. Locally producing antibacterial peptide to deplete intratumoral pathogen for preventing metastatic breast cancer. Acta Pharm Sin B 2025; 15:1084-1097. [PMID: 40177570 PMCID: PMC11959924 DOI: 10.1016/j.apsb.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/30/2024] [Accepted: 12/18/2024] [Indexed: 04/05/2025] Open
Abstract
Metastatic dissemination is the major cause of death from breast-cancer (BC). Fusobacterium nucleatum (F.n) is widely enriched in BC and has recently been identified as one of the high-risk factors for promoting BC metastasis. Here, with an experimental model, we demonstrated that intratumoral F.n induced BC aggressiveness by transcriptionally activating Epithelial-mesenchymal transition-associated genes. Therefore, the F.n may be a potential target to prevent metastasis. Given the fact that cancer-associated fibroblasts (CAFs) are abundant in BC and located near blood vessels, we report an optogenetic system that drives CAF to in situ produce human antibacterial peptide LL37, with the characteristics of biosafety and freely intercellular trafficking, for depleting intratumoral F.n, leading to a 72.1% reduction in lung metastatic nodules number without affecting the balance of the systemic flora. Notably, mild photothermal treatment was found that could normalize CAF, contributing to synergistically inhibiting BC metastasis. In addition, the system can also simultaneously encode a gene of TNF-related apoptosis-inducing ligand to suppress the primary tumor. Together, our study highlights the potential of local elimination of tumor pathogenic bacteria to prevent BC metastasis.
Collapse
Affiliation(s)
- Shizhen Geng
- Department of Urinary Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tingting Xiang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yaru Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mengnian Cao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Danyu Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xinling Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Haiwei Song
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Airong Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ke Sun
- Department of Urinary Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
6
|
Hou T, Huang X, Lai J, Zhou D. Intra-tumoral bacteria in breast cancer and intervention strategies. Adv Drug Deliv Rev 2025; 217:115516. [PMID: 39828126 DOI: 10.1016/j.addr.2025.115516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/09/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
The microbiome, consisting of a wide range of both beneficial and harmful microorganisms, is vital to various physiological and pathological processes in the human body, including cancer pathogenesis. Tumor progression is often accompanied by the destruction of the vascular system, allowing bacteria to circulate into the tumor area and flourish in an immunosuppressive environment. Microbes are recognized as significant components of the tumor microenvironment. Recent research has increasingly focused on the role of intra-tumoral bacteria in the onset, progression, and treatment of breast cancer-the most prevalent cancer among women. This review elucidates the potential mechanisms by which intra-tumoral bacteria impact breast cancer and discusses different therapeutic approaches aimed at targeting these bacteria. It provides essential insights for enhancing existing treatment paradigms while paving the way for novel anticancer interventions. As our understanding of the microbiome's intricate relationship with cancer deepens, it opens avenues for groundbreaking strategies that could redefine oncology.
Collapse
Affiliation(s)
- Ting Hou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaoling Huang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiahui Lai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Dongfang Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
7
|
Arnone AA, Tsai YT, Cline JM, Wilson AS, Westwood B, Seger ME, Chiba A, Howard-McNatt M, Levine EA, Thomas A, Soto-Pantoja DR, Cook KL. Endocrine-targeting therapies shift the breast microbiome to reduce estrogen receptor-α breast cancer risk. Cell Rep Med 2025; 6:101880. [PMID: 39742868 PMCID: PMC11866439 DOI: 10.1016/j.xcrm.2024.101880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 05/14/2024] [Accepted: 11/26/2024] [Indexed: 01/04/2025]
Abstract
Studies indicate that breast tissue has a distinct modifiable microbiome population. We demonstrate that endocrine-targeting therapies, such as tamoxifen, reshape the non-cancerous breast microbiome to influence tissue metabolism and reduce tumorigenesis. Using 16S sequencing, we found that tamoxifen alters β-diversity and increases Firmicutes abundance, including Lactobacillus spp., in mammary glands (MGs) of mice and non-human primates. Immunohistochemistry showed that lipoteichoic acid (LTA)-positive bacteria were elevated in tamoxifen-treated breast tissue. In B6.MMTV-PyMT mice, intra-nipple probiotic bacteria injections reduced tumorigenesis, altered metabolic gene expression, and decreased tumor proliferation. Probiotic-conditioned media selectively reduced viability in estrogen receptor-positive (ER+) breast cancer cells and altered mitochondrial metabolism in non-cancerous epithelial cells. Human tumor samples revealed that LTA-positive bacteria negatively correlated with Ki67, suggesting that endocrine therapies influence tumor-associated microbiota to regulate proliferation. Our data indicate that endocrine-targeting therapies modify the breast microbiome, corresponding with a shift in tissue metabolism to potentially reduce ER+ breast cancer risk.
Collapse
Affiliation(s)
- Alana A Arnone
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Yu-Ting Tsai
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - J Mark Cline
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Adam S Wilson
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Brian Westwood
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Meghan E Seger
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Akiko Chiba
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Durham VA Medical Center, Department of Surgery, Durham, NC 27705, USA; Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Marissa Howard-McNatt
- Department of General Surgery, Section of Surgical Oncology, Wake Forest University School of Medicine, Winston-Salem NC, 27157, USA
| | - Edward A Levine
- Department of General Surgery, Section of Surgical Oncology, Wake Forest University School of Medicine, Winston-Salem NC, 27157, USA
| | - Alexandra Thomas
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - David R Soto-Pantoja
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Katherine L Cook
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
8
|
Kovács P, Schwarcz S, Nyerges P, Bíró TI, Ujlaki G, Bai P, Mikó E. Anticarcinogenic effects of ursodeoxycholic acid in pancreatic adenocarcinoma cell models. Front Cell Dev Biol 2024; 12:1487685. [PMID: 39723238 PMCID: PMC11668698 DOI: 10.3389/fcell.2024.1487685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Changes to the composition of the microbiome in neoplasia, is termed oncobiosis, may affect tumor behavior through the changes to the secretion of bacterial metabolites. In this study we show, that ursodeoxycholic acid (UDCA), a bacterial metabolite, has cytostatic properties in pancreatic adenocarcinoma cell (PDAC) models. UDCA in concentrations corresponding to the human serum reference range suppressed PDAC cell proliferation. UDCA inhibited the expression of epithelial mesenchymal transition (EMT)-related markers and invasion capacity of PDAC cells. UDCA treatment increased oxidative/nitrosative stress by reducing the expression of nuclear factor, erythroid 2-like 2 (NRF2), inducing inducible nitric oxide synthase (iNOS) and nitrotyrosine levels and enhancing lipid peroxidation. Furthermore, UDCA reduced the expression of cancer stem cell markers and the proportion of cancer stem cells. Suppression of oxidative stress by antioxidants, blunted the UDCA-induced reduction in cancer stemness. Finally, we showed that UDCA induced mitochondrial oxidative metabolism. UDCA did not modulate the effectiveness of chemotherapy agents used in the chemotherapy treatment of pancreatic adenocarcinoma. The antineoplastic effects of UDCA, observed here, may contribute to the induction of cytostasis in PDAC cell models by providing a more oxidative/nitrosative environment.
Collapse
Affiliation(s)
- Patrik Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szandra Schwarcz
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Petra Nyerges
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tímea Ingrid Bíró
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gyula Ujlaki
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, University of Debrecen, Debrecen, Hungary
- HUN-REN-UD Cell Biology and Signaling Research Group, Debrecen, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
9
|
Mir R, Albarqi SA, Albalawi W, Alatwi HE, Alatawy M, Bedaiwi RI, Almotairi R, Husain E, Zubair M, Alanazi G, Alsubaie SS, Alghabban RI, Alfifi KA, Bashir S. Emerging Role of Gut Microbiota in Breast Cancer Development and Its Implications in Treatment. Metabolites 2024; 14:683. [PMID: 39728464 DOI: 10.3390/metabo14120683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/14/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Background: The human digestive system contains approximately 100 trillion bacteria. The gut microbiota is an emerging field of research that is associated with specific biological processes in many diseases, including cardiovascular disease, obesity, diabetes, brain disease, rheumatoid arthritis, and cancer. Emerging evidence indicates that the gut microbiota affects the response to anticancer therapies by modulating the host immune system. Recent studies have explained a high correlation between the gut microbiota and breast cancer: dysbiosis in breast cancer may regulate the systemic inflammatory response, hormone metabolism, immune response, and the tumor microenvironment. Some of the gut bacteria are related to estrogen metabolism, which may increase or decrease the risk of breast cancer by changing the number of hormones. Further, the gut microbiota has been seen to modulate the immune system in respect of its ability to protect against and treat cancers, with a specific focus on hormone receptor-positive breast cancer. Probiotics and other therapies claiming to control the gut microbiome by bacterial means might be useful in the prevention, or even in the treatment, of breast cancer. Conclusions: The present review underlines the various aspects of gut microbiota in breast cancer risk and its clinical application, warranting research on individualized microbiome-modulated therapeutic approaches to breast cancer treatment.
Collapse
Affiliation(s)
- Rashid Mir
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, Prince Fahd Bin Sultan Research Chair for Biomedical Research, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Shrooq A Albarqi
- Molecular Medicine, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Wed Albalawi
- Molecular Medicine, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Hanan E Alatwi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Marfat Alatawy
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Ruqaiah I Bedaiwi
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, Prince Fahd Bin Sultan Research Chair for Biomedical Research, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Reema Almotairi
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, Prince Fahd Bin Sultan Research Chair for Biomedical Research, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Eram Husain
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, Prince Fahd Bin Sultan Research Chair for Biomedical Research, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Mohammad Zubair
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Ghaida Alanazi
- Molecular Medicine, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Shouq S Alsubaie
- Molecular Medicine, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Razan I Alghabban
- Molecular Medicine, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47713, Saudi Arabia
| | - Khalid A Alfifi
- Department of Laboratory and Blood Bank, King Fahd Special Hospital, Tabuk 47717, Saudi Arabia
| | - Shabnam Bashir
- Mubarak Hospital, Srinagar 190002, Jammu and Kashmir, India
| |
Collapse
|
10
|
Mikó E, Sipos A, Tóth E, Lehoczki A, Fekete M, Sebő É, Kardos G, Bai P. Guideline for designing microbiome studies in neoplastic diseases. GeroScience 2024; 46:4037-4057. [PMID: 38922379 PMCID: PMC11336004 DOI: 10.1007/s11357-024-01255-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Oncobiosis has emerged as a key contributor to the development, and modulator of the treatment efficacy of cancer. Hereby, we review the modalities through which the oncobiome can support the progression of tumors, and the emerging therapeutic opportunities they present. The review highlights the inherent challenges and limitations faced in sampling and accurately characterizing oncobiome. Additionally, the review underscores the critical need for the standardization of microbial analysis techniques and the consistent reporting of microbiome data. We provide a suggested metadata set that should accompany microbiome datasets from oncological settings so that studies remain comparable and decipherable.
Collapse
Affiliation(s)
- Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., 4032, Debrecen, Hungary
| | - Adrienn Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., 4032, Debrecen, Hungary
| | - Emese Tóth
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., 4032, Debrecen, Hungary
- HUN-REN-DE Cell Biology and Signaling Research Group, 4032, Debrecen, Hungary
| | - Andrea Lehoczki
- Department of Hematology and Stem Cell Transplantation, South Pest Central Hospital-National Institute for Hematology and Infectious Diseases, Budapest, Hungary
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Monika Fekete
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Éva Sebő
- Breast Center, Kenézy Gyula Hospital, University of Debrecen, 4032, Debrecen, Hungary
| | - Gábor Kardos
- Department of Metagenomics, University of Debrecen, 4032, Debrecen, Hungary
- Faculty of Health Sciences, One Health Institute, University of Debrecen, 4032, Debrecen, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., 4032, Debrecen, Hungary.
- HUN-REN-DE Cell Biology and Signaling Research Group, 4032, Debrecen, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, 4032, Debrecen, Hungary.
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary.
- Center of Excellence, The Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
11
|
Lin W, Gu C, Chen Z, Xue S, Wu H, Zeng L. Exploring the relationship between gut microbiota and breast cancer risk in European and East Asian populations using Mendelian randomization. BMC Cancer 2024; 24:970. [PMID: 39118079 PMCID: PMC11308141 DOI: 10.1186/s12885-024-12721-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Several studies have explored the potential link between gut microbiota and breast cancer; nevertheless, the causal relationship between gut microbiota and breast cancer remains unclear. METHODS We utilized summary statistics from genome-wide association studies (GWAS) of the gut microbiome from the MiBioGen project with summary data from GWAS on breast cancer from the FinnGen consortium and the IEU database, with the IEU data sourced from the Biobank Japan. Preliminary statistical analyses were conducted using inverse variance weighting (IVW), supplemented by various sensitivity analysis methods, including MR-Egger regression, weighted median, weighted mode, simple median, and simple mode, to ensure the robustness of our findings. Heterogeneity and pleiotropy were assessed to avoid misleading conclusions caused by unconsidered confounders or non-specific effects of genetic variants, ensuring that the results reflect a genuine causal relationship. RESULTS In European populations, four types of gut microbiota were associated with breast cancer. The genus Erysipelatoclostridium was positively associated with the risk of breast cancer, with an odds ratio (OR) of 1.21 (95% confidence interval [CI] 1.083-1.358), false discovery rate (FDR) = 0.0039. The class Coriobacteriia, order Coriobacteriales, and family Coriobacteriaceae, which belong to the same phylogenetic system, showed a consistent inversely association with breast cancer risk, with an OR of 0.757 (95% CI 0.616-0.930), FDR = 0.0281. In East Asian populations, three types of gut microbiota were related to breast cancer. The Eubacterium ruminantium group was positively associated with breast cancer risk, with an OR of 1.259 (95% CI 1.056-1.499), FDR = 0.0497. The families Porphyromonadaceae and Ruminococcaceae were inversely associated with breast cancer risk, with ORs of 0.304 (95% CI 0.155-0.596), FDR = 0.0005, and 0.674 (95% CI 0.508-0.895), FDR = 0.03173, respectively. However, these two taxa had limited instrumental variables, restricting the statistical power and potentially affecting the interpretation of the results. CONCLUSION This MR analysis demonstrated a probable causal link between specific gut microbiota and breast cancer. This study, through Mendelian randomization analysis comparing European and East Asian populations, reveals that gut microbiota may influence breast cancer risk differently across populations, providing potential directions for developing targeted prevention and treatment methods.
Collapse
Affiliation(s)
- Wei Lin
- Xiangshan First People's Hospital Medical and Health Group, Ningbo, Zhejiang Province, 315700, China
| | - Chenghao Gu
- Xiangshan First People's Hospital Medical and Health Group, Ningbo, Zhejiang Province, 315700, China
| | - Zheyin Chen
- Xiangshan First People's Hospital Medical and Health Group, Ningbo, Zhejiang Province, 315700, China
| | - Shihang Xue
- Xiangshan First People's Hospital Medical and Health Group, Ningbo, Zhejiang Province, 315700, China
| | - Haiyan Wu
- Xiangshan First People's Hospital Medical and Health Group, Ningbo, Zhejiang Province, 315700, China
| | - Liuhai Zeng
- Xiangshan First People's Hospital Medical and Health Group, Ningbo, Zhejiang Province, 315700, China.
| |
Collapse
|
12
|
Schwarcz S, Nyerges P, Bíró TI, Janka E, Bai P, Mikó E. Cytostatic Bacterial Metabolites Interfere with 5-Fluorouracil, Doxorubicin and Paclitaxel Efficiency in 4T1 Breast Cancer Cells. Molecules 2024; 29:3073. [PMID: 38999024 PMCID: PMC11243325 DOI: 10.3390/molecules29133073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
The microbiome is capable of modulating the bioavailability of chemotherapy drugs, mainly due to metabolizing these agents. Multiple cytostatic bacterial metabolites were recently identified that have cytostatic effects on cancer cells. In this study, we addressed the question of whether a set of cytostatic bacterial metabolites (cadaverine, indolepropionic acid and indoxylsulfate) can interfere with the cytostatic effects of the chemotherapy agents used in the management of breast cancer (doxorubicin, gemcitabine, irinotecan, methotrexate, rucaparib, 5-fluorouracil and paclitaxel). The chemotherapy drugs were applied in a wide concentration range to which a bacterial metabolite was added in a concentration within its serum reference range, and the effects on cell proliferation were assessed. There was no interference between gemcitabine, irinotecan, methotrexate or rucaparib and the bacterial metabolites. Nevertheless, cadaverine and indolepropionic acid modulated the Hill coefficient of the inhibitory curve of doxorubicin and 5-fluorouracil. Changes to the Hill coefficient implicate alterations to the kinetics of the binding of the chemotherapy agents to their targets. These effects have an unpredictable significance from the clinical or pharmacological perspective. Importantly, indolepropionic acid decreased the IC50 value of paclitaxel, which is a potentially advantageous combination.
Collapse
Affiliation(s)
- Szandra Schwarcz
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Petra Nyerges
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tímea Ingrid Bíró
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Eszter Janka
- Department of Dermatology, MTA Centre of Excellence, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- HUN-REN-UD Allergology Research Group, University of Debrecen, 4032 Debrecen, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- HUN-REN-UD Cell Biology and Signaling Research Group, University of Debrecen, 4032 Debrecen, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, 4032 Debrecen, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, 4032 Debrecen, Hungary
| |
Collapse
|
13
|
Chen C, Han P, Qing Y. Metabolic heterogeneity in tumor microenvironment - A novel landmark for immunotherapy. Autoimmun Rev 2024; 23:103579. [PMID: 39004158 DOI: 10.1016/j.autrev.2024.103579] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The surrounding non-cancer cells and tumor cells that make up the tumor microenvironment (TME) have various metabolic rhythms. TME metabolic heterogeneity is influenced by the intricate network of metabolic control within and between cells. DNA, protein, transport, and microbial levels are important regulators of TME metabolic homeostasis. The effectiveness of immunotherapy is also closely correlated with alterations in TME metabolism. The response of a tumor patient to immunotherapy is influenced by a variety of variables, including intracellular metabolic reprogramming, metabolic interaction between cells, ecological changes within and between tumors, and general dietary preferences. Although immunotherapy and targeted therapy have made great strides, their use in the accurate identification and treatment of tumors still has several limitations. The function of TME metabolic heterogeneity in tumor immunotherapy is summarized in this article. It focuses on how metabolic heterogeneity develops and is regulated as a tumor progresses, the precise molecular mechanisms and potential clinical significance of imbalances in intracellular metabolic homeostasis and intercellular metabolic coupling and interaction, as well as the benefits and drawbacks of targeted metabolism used in conjunction with immunotherapy. This offers insightful knowledge and important implications for individualized tumor patient diagnosis and treatment plans in the future.
Collapse
Affiliation(s)
- Chen Chen
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China
| | - Peng Han
- Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, China.
| | - Yanping Qing
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
14
|
Sayed ZS, Khattap MG, Madkour MA, Yasen NS, Elbary HA, Elsayed RA, Abdelkawy DA, Wadan AHS, Omar I, Nafady MH. Circulating tumor cells clusters and their role in Breast cancer metastasis; a review of literature. Discov Oncol 2024; 15:94. [PMID: 38557916 PMCID: PMC10984915 DOI: 10.1007/s12672-024-00949-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Breast cancer is a significant and deadly threat to women globally. Moreover, Breast cancer metastasis is a complicated process involving multiple biological stages, which is considered a substantial cause of death, where cancer cells spread from the original tumor to other organs in the body-representing the primary mortality factor. Circulating tumor cells (CTCs) are cancer cells detached from the primary or metastatic tumor and enter the bloodstream, allowing them to establish new metastatic sites. CTCs can travel alone or in groups called CTC clusters. Studies have shown that CTC clusters have more potential for metastasis and a poorer prognosis than individual CTCs in breast cancer patients. However, our understanding of CTC clusters' formation, structure, function, and detection is still limited. This review summarizes the current knowledge of CTC clusters' biological properties, isolation, and prognostic significance in breast cancer. It also highlights the challenges and future directions for research and clinical application of CTC clusters.
Collapse
Affiliation(s)
- Zeinab S Sayed
- Faculty of Applied Medical Science, Misr University for Science and Technology, 26Th of July Corridor, 6Th of October, Giza Governorate, Postal Code: 77, Egypt
| | - Mohamed G Khattap
- Technology of Radiology and Medical Imaging Program, Faculty of Applied Health Sciences Technology, Galala University, Suez, 435611, Egypt
| | | | - Noha S Yasen
- Radiology and Imaging Technology Department, Faculty of Applied Health Science Technology, Delta University for Science and Technology, Gamasa, Al Mansurah, Egypt
| | - Hanan A Elbary
- Faculty of Applied Medical Science, Misr University for Science and Technology, 26Th of July Corridor, 6Th of October, Giza Governorate, Postal Code: 77, Egypt
| | - Reem A Elsayed
- Faculty of Applied Medical Science, Misr University for Science and Technology, 26Th of July Corridor, 6Th of October, Giza Governorate, Postal Code: 77, Egypt
| | - Dalia A Abdelkawy
- Faculty of Applied Medical Science, Misr University for Science and Technology, 26Th of July Corridor, 6Th of October, Giza Governorate, Postal Code: 77, Egypt
| | | | - Islam Omar
- Faculty of Pharmacy, South Valley University, Qena, Egypt
| | - Mohamed H Nafady
- Radiation Sciences Department, Medical Research Institute, Alexandria University, Alexandria, Egypt.
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, 6th of october, Egypt.
| |
Collapse
|
15
|
Tzemah-Shahar R, Turjeman S, Sharon E, Gamliel G, Hochner H, Koren O, Agmon M. Signs of aging in midlife: physical function and sex differences in microbiota. GeroScience 2024; 46:1477-1488. [PMID: 37610596 PMCID: PMC10828485 DOI: 10.1007/s11357-023-00905-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/04/2023] [Indexed: 08/24/2023] Open
Abstract
Microbiota composition has been linked to physical activity, health measures, and biological age, but a shared profile has yet to be shown. The aim of this study was to examine the associations between microbiota composition and measures of function, such as a composite measure of physical capacity, and biological age in midlife, prior to onset of age-related diseases. Seventy healthy midlife individuals (age 44.58 ± 0.18) were examined cross-sectionally, and their gut-microbiota profile was characterized from stool samples using 16SrRNA gene sequencing. Biological age was measured using the Klemera-Doubal method and a composition of blood and physiological biomarkers. Physical capacity was calculated based on sex-standardized functional tests. We demonstrate that the women had significantly richer microbiota, p = 0.025; however, microbiota diversity was not linked with chronological age, biological age, or physical capacity for either women or men. Men had slightly greater β-diversity; however, β-diversity was positively associated with biological age and with physical capacity for women only (p = 0.01 and p = 0.04; respectively). For women, an increase in abundance of Roseburia faecis and Collinsella aerofaciens, as well as genus Ruminococcus and Dorea, was significantly associated with higher biological age and lower physical capacity; an increase in abundance of Akkermansia muciniphila and genera Bacteroides and Alistipes was associated with younger biological age and increased physical capacity. Differentially abundant taxa were also associated with non-communicable diseases. These findings suggest that microbiota composition is a potential mechanism linking physical capacity and health status; personalized probiotics may serve as a new means to support health-promoting interventions in midlife. Investigating additional factors underlying this link may facilitate the development of a more accurate method to estimate the rate of aging.
Collapse
Affiliation(s)
- Roy Tzemah-Shahar
- Faculty of Social Welfare and Health Sciences, University of Haifa, Abba Khoushy Ave 199, 3498838, Haifa, Israel
| | - Sondra Turjeman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Efrat Sharon
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Gila Gamliel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Hagit Hochner
- Epidemiology Unit, Hebrew University School of Public Health, Jerusalem, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Maayan Agmon
- Faculty of Social Welfare and Health Sciences, University of Haifa, Abba Khoushy Ave 199, 3498838, Haifa, Israel.
| |
Collapse
|
16
|
Sevcikova A, Mladosievicova B, Mego M, Ciernikova S. Exploring the Role of the Gut and Intratumoral Microbiomes in Tumor Progression and Metastasis. Int J Mol Sci 2023; 24:17199. [PMID: 38139030 PMCID: PMC10742837 DOI: 10.3390/ijms242417199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer cell dissemination involves invasion, migration, resistance to stressors in the circulation, extravasation, colonization, and other functions responsible for macroscopic metastases. By enhancing invasiveness, motility, and intravasation, the epithelial-to-mesenchymal transition (EMT) process promotes the generation of circulating tumor cells and their collective migration. Preclinical and clinical studies have documented intensive crosstalk between the gut microbiome, host organism, and immune system. According to the findings, polymorphic microbes might play diverse roles in tumorigenesis, cancer progression, and therapy response. Microbial imbalances and changes in the levels of bacterial metabolites and toxins promote cancer progression via EMT and angiogenesis. In contrast, a favorable microbial composition, together with microbiota-derived metabolites, such as short-chain fatty acids (SCFAs), can attenuate the processes of tumor initiation, disease progression, and the formation of distant metastases. In this review, we highlight the role of the intratumoral and gut microbiomes in cancer cell invasion, migration, and metastatic ability and outline the potential options for microbiota modulation. As shown in murine models, probiotics inhibited tumor development, reduced tumor volume, and suppressed angiogenesis and metastasis. Moreover, modulation of an unfavorable microbiome might improve efficacy and reduce treatment-related toxicities, bringing clinical benefit to patients with metastatic cancer.
Collapse
Affiliation(s)
- Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia;
| | - Beata Mladosievicova
- Institute of Pathological Physiology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia;
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia;
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia;
| |
Collapse
|
17
|
Nguyen MR, Ma E, Wyatt D, Knight KL, Osipo C. The effect of an exopolysaccharide probiotic molecule from Bacillus subtilis on breast cancer cells. Front Oncol 2023; 13:1292635. [PMID: 38074643 PMCID: PMC10702531 DOI: 10.3389/fonc.2023.1292635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/27/2023] [Indexed: 02/12/2024] Open
Abstract
Introduction Many well-known risk factors for breast cancer are associated with dysbiosis (an aberrant microbiome). However, how bacterial products modulate cancer are poorly understood. In this study, we investigated the effect of an exopolysaccharide (EPS) produced by the commensal bacterium Bacillus subtilis on breast cancer phenotypes. Although B. subtilis is commonly included in probiotic preparations and its EPS protects against inflammatory diseases, it was virtually unknown whether B. subtilis-derived EPS affects cancer. Methods This work investigated effects of EPS on phenotypes of breast cancer cells as a cancer model. The phenotypes included proliferation, mammosphere formation, cell migration, and tumor growth in two immune compromised mouse models. RNA sequencing was performed on RNA from four breast cancer cells treated with PBS or EPS. IKKβ or STAT1 signaling was assessed using pharmacologic or RNAi-mediated knock down approaches. Results Short-term treatment with EPS inhibited proliferation of certain breast cancer cells (T47D, MDA-MB-468, HCC1428, MDA-MB-453) while having little effect on others (MCF-7, MDA-MB-231, BT549, ZR-75-30). EPS induced G1/G0 cell cycle arrest of T47D cells while increasing apoptosis of MDA-MB-468 cells. EPS also enhanced aggressive phenotypes in T47D cells including cell migration and cancer stem cell survival. Long-term treatment with EPS (months) led to resistance in vitro and promoted tumor growth in immunocompromised mice. RNA-sequence analysis showed that EPS increased expression of pro-inflammatory pathways including STAT1 and NF-κB. IKKβ and/or STAT1 signaling was necessary for EPS to modulate phenotypes of EPS sensitive breast cancer cells. Discussion These results demonstrate a multifaceted role for an EPS molecule secreted by the probiotic bacterium B. subtilis on breast cancer cell phenotypes. These results warrant future studies in immune competent mice and different cancer models to fully understand potential benefits and/or side effects of long-term use of probiotics.
Collapse
Affiliation(s)
- Mai R. Nguyen
- M.D./Ph.D. Program, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Emily Ma
- M.D./Ph.D. Program, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
- Integrated Cell Biology Program, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Debra Wyatt
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Katherine L. Knight
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Clodia Osipo
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
18
|
Shi Q, Wang J, Zhou M, Zheng R, Zhang X, Liu B. Gut Lactobacillus contribute to the progression of breast cancer by affecting the anti-tumor activities of immune cells in the TME of tumor-bearing mice. Int Immunopharmacol 2023; 124:111039. [PMID: 37862739 DOI: 10.1016/j.intimp.2023.111039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/22/2023]
Abstract
Studies have proven that gut microbiota dysbiosis may influence the carcinogenesis and outcomes of multiple cancers. However, it is still unclear whether gut microbiota dysbiosis affect the progression of breast cancer, especially triple-negative breast cancer. In the present study, by using gut microbiota dysbiosis murine model established by treatment of mice with streptomycin, we found Lactobacillus and the metabolite-lactic acid are the pivotal factors for 4T1 tumor progression. In fact, streptomycin-treated mice exhibited slower tumor growth, in parallel with less abundance of Lactobacillus in the gut. Supplementation with Lactobacillus resulted in a rapid tumor growth, following a decrease in the expression of mRNAs for anti-tumor-related factors but an increase in the M2 polarization. The elevated percentages of IFN-γ-producing CD4+T cells and CD8+T cells in the tumor microenvironment of streptomycin-treated tumor-bearing mice may be vanished by supplementation of Lactobacillus. It seems likely that lactobacillus-mediated pro-tumor effect is related to the production of lactic acid. A decrease in the levels of lactic acid in the cecal feces and tumor tissues were observed in streptomycin-treated tumor bearing mice. However, supplementation of Lactobacillus can restore streptomycin-reduced concentration of lactic acid in the tumor tissues, suggesting that gut Lactobacillus are the source of lactic acid. Bioinformatics analysis result suggests high concentration of lactic acid in tumor sites may be related to the diminished anti-tumor immunity in the TME. This study reveals a correlation between gut Lactobacillus and tumor progression in a murine 4T1 tumor model, providing experimental evidence for clinical treatment of breast cancer.
Collapse
Affiliation(s)
- Qi Shi
- Department of Pathogenic Microbiology, School of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Jia Wang
- Department of Pathogenic Microbiology, School of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Mengnan Zhou
- Department of Pathogenic Microbiology, School of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Rui Zheng
- Department of Pathogenic Microbiology, School of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Xiaoli Zhang
- Department of Pathogenic Microbiology, School of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Beixing Liu
- Department of Pathogenic Microbiology, School of Basic Medical Science, China Medical University, Shenyang 110122, China.
| |
Collapse
|
19
|
Zhang S, Zhang W, Ren H, Xue R, Wang Z, Wang Z, Lv Q. Mendelian randomization analysis revealed a gut microbiota-mammary axis in breast cancer. Front Microbiol 2023; 14:1193725. [PMID: 37680534 PMCID: PMC10482102 DOI: 10.3389/fmicb.2023.1193725] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
Background Observational epidemiological studies suggested an association between the gut microbiota and breast cancer, but it remains unclear whether the gut microbiota causally influences the risk of breast cancer. We employed two-sample Mendelian randomization (MR) analysis to investigate this association. Methods We used summary statistics of the gut microbiome from a genome-wide association study (GWAS) of 18,340 individuals in the MiBioGen study. GWAS summary statistics for overall breast cancer risk and hormone receptor subtype-specific analyses were obtained from the UK Biobank and FinnGen databases, totaling 400,000 individuals. The inverse variance-weighted (IVW) MR method was used to examine the causal relationship between the gut microbiome and breast cancer and its subtypes. Sensitivity analyses were conducted using maximum likelihood, MR-Egger, and MR pleiotropic residual sums and outliers methods. Results The IVW estimates indicated that an increased abundance of Genus_Sellimonas is causally associated with an increased risk of ER+ breast cancer [odds ratio (OR) = 1.09, p = 1.72E-04, false discovery rate (FDR) = 0.02], whereas an increased abundance of Genus_Adlercreutzia was protective against ER+ breast cancer (OR = 0.88, p = 6.62E-04, FDR = 0.04). For Her2+ breast cancer, an increased abundance of Genus_Ruminococcus2 was associated with a decreased risk (OR = 0.77, p = 4.91E-04, FDR = 0.04), whereas an increased abundance of Genus_Erysipelatoclostridium was associated with an increased risk (OR = 1.25, p = 6.58E-04, FDR = 0.04). No evidence of heterogeneity or horizontal pleiotropy was found. Conclusion Our study revealed a gut microbiota-mammary axis, providing important data supporting the potential use of the gut microbiome as a candidate target for breast cancer prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Shuwan Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Intelligent and Precision Pathology Diagnosis in Oncology, China Medical University, Shenyang, Liaoning, China
| | - Wenchuan Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Haiyue Ren
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Rui Xue
- School of Medicine, Chongqing University, Chongqing, China
| | - Zitong Wang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhe Wang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Intelligent and Precision Pathology Diagnosis in Oncology, China Medical University, Shenyang, Liaoning, China
| | - Qingjie Lv
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Intelligent and Precision Pathology Diagnosis in Oncology, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
20
|
Ujlaki G, Kovács T, Vida A, Kókai E, Rauch B, Schwarcz S, Mikó E, Janka E, Sipos A, Hegedűs C, Uray K, Nagy P, Bai P. Identification of Bacterial Metabolites Modulating Breast Cancer Cell Proliferation and Epithelial-Mesenchymal Transition. Molecules 2023; 28:5898. [PMID: 37570868 PMCID: PMC10420980 DOI: 10.3390/molecules28155898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Breast cancer patients are characterized by the oncobiotic transformation of multiple microbiome communities, including the gut microbiome. Oncobiotic transformation of the gut microbiome impairs the production of antineoplastic bacterial metabolites. The goal of this study was to identify bacterial metabolites with antineoplastic properties. We constructed a 30-member bacterial metabolite library and screened the library compounds for effects on cell proliferation and epithelial-mesenchymal transition. The metabolites were applied to 4T1 murine breast cancer cells in concentrations corresponding to the reference serum concentrations. However, yric acid, glycolic acid, d-mannitol, 2,3-butanediol, and trans-ferulic acid exerted cytostatic effects, and 3-hydroxyphenylacetic acid, 4-hydroxybenzoic acid, and vanillic acid exerted hyperproliferative effects. Furthermore, 3-hydroxyphenylacetic acid, 4-hydroxybenzoic acid, 2,3-butanediol, and hydrocinnamic acid inhibited epithelial-to-mesenchymal (EMT) transition. We identified redox sets among the metabolites (d-mannitol-d-mannose, 1-butanol-butyric acid, ethylene glycol-glycolic acid-oxalic acid), wherein only one partner within the set (d-mannitol, butyric acid, glycolic acid) possessed bioactivity in our system, suggesting that changes to the local redox potential may affect the bacterial secretome. Of the nine bioactive metabolites, 2,3-butanediol was the only compound with both cytostatic and anti-EMT properties.
Collapse
Affiliation(s)
- Gyula Ujlaki
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.U.); (T.K.); (A.V.); (E.K.); (B.R.); (S.S.); (E.M.); (A.S.); (C.H.); (K.U.)
| | - Tünde Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.U.); (T.K.); (A.V.); (E.K.); (B.R.); (S.S.); (E.M.); (A.S.); (C.H.); (K.U.)
| | - András Vida
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.U.); (T.K.); (A.V.); (E.K.); (B.R.); (S.S.); (E.M.); (A.S.); (C.H.); (K.U.)
| | - Endre Kókai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.U.); (T.K.); (A.V.); (E.K.); (B.R.); (S.S.); (E.M.); (A.S.); (C.H.); (K.U.)
| | - Boglára Rauch
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.U.); (T.K.); (A.V.); (E.K.); (B.R.); (S.S.); (E.M.); (A.S.); (C.H.); (K.U.)
| | - Szandra Schwarcz
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.U.); (T.K.); (A.V.); (E.K.); (B.R.); (S.S.); (E.M.); (A.S.); (C.H.); (K.U.)
| | - Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.U.); (T.K.); (A.V.); (E.K.); (B.R.); (S.S.); (E.M.); (A.S.); (C.H.); (K.U.)
| | - Eszter Janka
- Department of Dermatology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Adrienn Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.U.); (T.K.); (A.V.); (E.K.); (B.R.); (S.S.); (E.M.); (A.S.); (C.H.); (K.U.)
| | - Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.U.); (T.K.); (A.V.); (E.K.); (B.R.); (S.S.); (E.M.); (A.S.); (C.H.); (K.U.)
| | - Karen Uray
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.U.); (T.K.); (A.V.); (E.K.); (B.R.); (S.S.); (E.M.); (A.S.); (C.H.); (K.U.)
| | - Péter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Peter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.U.); (T.K.); (A.V.); (E.K.); (B.R.); (S.S.); (E.M.); (A.S.); (C.H.); (K.U.)
- MTA-DE Lendület Laboratory of Cellular Metabolism, 4032 Debrecen, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Biology and Signaling Research Group ELKH, 4032 Debrecen, Hungary
| |
Collapse
|
21
|
Viana MC, Curty G, Furtado C, Singh B, Bendall ML, Viola JPB, de Melo AC, Soares MA, Moreira MAM. Naso-oropharyngeal microbiome from breast cancer patients diagnosed with COVID-19. Front Microbiol 2023; 13:1074382. [PMID: 36713167 PMCID: PMC9874304 DOI: 10.3389/fmicb.2022.1074382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Due to immunosuppressive cancer therapies, cancer patients diagnosed with COVID-19 have a higher chance of developing severe symptoms and present a higher mortality rate in comparison to the general population. Here we show a comparative analysis of the microbiome from naso-oropharyngeal samples of breast cancer patients with respect to SARS-CoV-2 status and identified bacteria associated with symptom severity. Total DNA of naso-oropharyngeal swabs from 74 women with or without breast cancer, positive or negative for SARS-CoV-2 were PCR-amplified for 16S-rDNA V3 and V4 regions and submitted to massive parallel sequencing. Sequencing data were analyzed with QIIME2 and taxonomic identification was performed using the q2-feature-classifier QIIME2 plugin, the Greengenes Database, and amplicon sequence variants (ASV) analysis. A total of 486 different bacteria were identified. No difference was found in taxa diversity between sample groups. Cluster analysis did not group the samples concerning SARS-CoV-2 status, breast cancer diagnosis, or symptom severity. Three taxa (Pseudomonas, Moraxella, and Klebsiella,) showed to be overrepresented in women with breast cancer and positive for SARS-CoV-2 when compared to the other women groups, and five bacterial groups were associated with COVID-19 severity among breast cancer patients: Staphylococcus, Staphylococcus epidermidis, Scardovia, Parasegitibacter luogiensis, and Thermomonas. The presence of Staphylococcus in COVID-19 breast cancer patients may possibly be a consequence of nosocomial infection.
Collapse
Affiliation(s)
- Maria Carolina Viana
- Tumor Genetics and Virology Program, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Gislaine Curty
- Tumor Genetics and Virology Program, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Carolina Furtado
- Tumor Genetics and Virology Program, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Bhavya Singh
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Matthew L. Bendall
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - João P. B. Viola
- Program of Immunology and Tumor Biology, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Andreia Cristina de Melo
- Division of Clinical Research and Technological Development, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Marcelo A. Soares
- Tumor Genetics and Virology Program, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Miguel A. M. Moreira
- Tumor Genetics and Virology Program, Instituto Nacional de Câncer, Rio de Janeiro, Brazil,*Correspondence: Miguel A. M. Moreira,
| |
Collapse
|
22
|
Nandi D, Parida S, Sharma D. The gut microbiota in breast cancer development and treatment: The good, the bad, and the useful! Gut Microbes 2023; 15:2221452. [PMID: 37305949 PMCID: PMC10262790 DOI: 10.1080/19490976.2023.2221452] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/26/2023] [Indexed: 06/13/2023] Open
Abstract
Regardless of the global progress in early diagnosis and novel therapeutic regimens, breast carcinoma poses a devastating threat, and the advances are somewhat marred by high mortality rates. Breast cancer risk prediction models based on the known risk factors are extremely useful, but a large number of breast cancers develop in women with no/low known risk. The gut microbiome exerts a profound impact on the host health and physiology and has emerged as a pivotal frontier in breast cancer pathogenesis. Progress in metagenomic analysis has enabled the identification of specific changes in the host microbial signature. In this review, we discuss the microbial and metabolomic changes associated with breast cancer initiation and metastatic progression. We summarize the bidirectional impact of various breast cancer-related therapies on gut microbiota and vice-versa. Finally, we discuss the strategies to modulate the gut microbiota toward a more favorable state that confers anticancer effects.
Collapse
Affiliation(s)
- Deeptashree Nandi
- Dept. of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Sheetal Parida
- Dept. of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Dipali Sharma
- Dept. of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| |
Collapse
|
23
|
Devoy C, Flores Bueso Y, Tangney M. Understanding and harnessing triple-negative breast cancer-related microbiota in oncology. Front Oncol 2022; 12:1020121. [PMID: 36505861 PMCID: PMC9730816 DOI: 10.3389/fonc.2022.1020121] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
Bacterial inhabitants of the body have the potential to play a role in various stages of cancer initiation, progression, and treatment. These bacteria may be distal to the primary tumour, such as gut microbiota, or local to the tissue, before or after tumour growth. Breast cancer is well studied in this context. Amongst breast cancer types, Triple Negative Breast Cancer (TNBC) is more aggressive, has fewer treatment options than receptor-positive breast cancers, has an overall worse prognosis and higher rates of reoccurrence. Thus, an in-depth understanding of the bacterial influence on TNBC progression and treatment is of high value. In this regard, the Gut Microbiota (GM) can be involved in various stages of tumour progression. It may suppress or promote carcinogenesis through the release of carcinogenic metabolites, sustenance of proinflammatory environments and/or the promotion of epigenetic changes in our genome. It can also mediate metastasis and reoccurrence through interactions with the immune system and has been recently shown to influence chemo-, radio-, and immune-therapies. Furthermore, bacteria have also been found to reside in normal and malignant breast tissue. Several studies have now described the breast and breast tumour microbiome, with the tumour microbiota of TNBC having the least taxonomic diversity among all breast cancer types. Here, specific conditions of the tumour microenvironment (TME) - low O2, leaky vasculature and immune suppression - are supportive of tumour selective bacterial growth. This innate bacterial ability could enable their use as delivery agents for various therapeutics or as diagnostics. This review aims to examine the current knowledge on bacterial relevance to TNBC and potential uses while examining some of the remaining unanswered questions regarding mechanisms underpinning observed effects.
Collapse
Affiliation(s)
- Ciaran Devoy
- Cancer Research@UCC, College of Medicine and Health, University College Cork, Cork, Ireland,SynBio Center, University College Cork, Cork, Ireland,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Yensi Flores Bueso
- Cancer Research@UCC, College of Medicine and Health, University College Cork, Cork, Ireland,SynBio Center, University College Cork, Cork, Ireland,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Mark Tangney
- Cancer Research@UCC, College of Medicine and Health, University College Cork, Cork, Ireland,SynBio Center, University College Cork, Cork, Ireland,APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Pharmacy, College of Medicine and Health, University College Cork, Cork, Ireland,*Correspondence: Mark Tangney,
| |
Collapse
|
24
|
Gao F, Yu B, Rao B, Sun Y, Yu J, Wang D, Cui G, Ren Z. The effect of the intratumoral microbiome on tumor occurrence, progression, prognosis and treatment. Front Immunol 2022; 13:1051987. [PMID: 36466871 PMCID: PMC9718533 DOI: 10.3389/fimmu.2022.1051987] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/03/2022] [Indexed: 10/26/2023] Open
Abstract
In the past few decades, great progress has been achieved in the understanding of microbiome-cancer interactions. However, most of the studies have focused on the gut microbiome, ignoring how other microbiomes interact with tumors. Emerging evidence suggests that in many types of cancers, such as lung cancer, pancreatic cancer, and colorectal cancer, the intratumoral microbiome plays a significant role. In addition, accumulating evidence suggests that intratumoral microbes have multiple effects on the biological behavior of tumors, for example, regulating tumor initiation and progression and altering the tumor response to chemotherapy and immunotherapy. However, to fully understand the role of the intratumoral microbiome in cancer, further investigation of the effects and mechanisms is still needed. This review discusses the role of intratumoral bacteria in tumorigenesis and tumor progression, recurrence and metastasis, as well as their effect on cancer prognosis and treatment outcome, and summarizes the relevant mechanisms.
Collapse
Affiliation(s)
- Feng Gao
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Yu
- Henan Key Laboratory of Ion-beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Benchen Rao
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jia Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Daming Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangying Cui
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
25
|
Ma Z, Qu M, Wang X. Analysis of Gut Microbiota in Patients with Breast Cancer and Benign Breast Lesions. Pol J Microbiol 2022; 71:217-226. [PMID: 35675827 PMCID: PMC9252143 DOI: 10.33073/pjm-2022-019] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/21/2022] [Indexed: 11/05/2022] Open
Abstract
Breast cancer (BC) and benign breast lesions (BBLs) are common diseases in women worldwide. The gut microbiota plays a vital role in regulating breast diseases' formation, progression, and therapy response. Hence, we explored the structure and function of gut microflora in patients with BC and BBLs. A cohort of 66 subjects was enrolled in the study. Twenty-six subjects had BC, 20 subjects had BBLs, and 20 matched healthy controls. High throughput 16S ribosomal RNA (16S rRNA) gene sequencing technology was used to determine the microbial community structure. Compared with healthy individuals, BC patients had significantly lower alpha diversity indices (Sobs index, p = 0.019; Chao1 index, p = 0.033). Sobs and Chao1 indices were also lower in patients with BBLs than healthy individuals, without statistical significance (p = 0.279, p = 0.314, respectively). Both unweighted and weighted UniFrac analysis showed that beta diversity differed significantly among the three groups (p = 3.376e-14, p < 0.001, respectively). Compared with healthy individuals, the levels of Porphyromonas and Peptoniphilus were higher in BC patients (p = 0.004, p = 0.007, respectively), whereas Escherichia and Lactobacillus were more enriched in the benign breast lesion group (p < 0.001, p = 0.011, respectively). Our study indicates that patients with BC and BBLs may undergo significant changes in intestinal microbiota. These findings can help elucidate the role of intestinal flora in BC and BBLs patients.
Collapse
Affiliation(s)
- Zhijun Ma
- Department of Surgical Oncology, The Affiliated Hospital of Qinghai University, Xining, China
| | - Manli Qu
- Graduate School of Qinghai University, Xining, China
| | - Xiaowu Wang
- Department of Surgical Oncology, The Affiliated Hospital of Qinghai University, Xining, China
| |
Collapse
|
26
|
Režen T, Rozman D, Kovács T, Kovács P, Sipos A, Bai P, Mikó E. The role of bile acids in carcinogenesis. Cell Mol Life Sci 2022; 79:243. [PMID: 35429253 PMCID: PMC9013344 DOI: 10.1007/s00018-022-04278-2] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022]
Abstract
AbstractBile acids are soluble derivatives of cholesterol produced in the liver that subsequently undergo bacterial transformation yielding a diverse array of metabolites. The bulk of bile acid synthesis takes place in the liver yielding primary bile acids; however, other tissues have also the capacity to generate bile acids (e.g. ovaries). Hepatic bile acids are then transported to bile and are subsequently released into the intestines. In the large intestine, a fraction of primary bile acids is converted to secondary bile acids by gut bacteria. The majority of the intestinal bile acids undergo reuptake and return to the liver. A small fraction of secondary and primary bile acids remains in the circulation and exert receptor-mediated and pure chemical effects (e.g. acidic bile in oesophageal cancer) on cancer cells. In this review, we assess how changes to bile acid biosynthesis, bile acid flux and local bile acid concentration modulate the behavior of different cancers. Here, we present in-depth the involvement of bile acids in oesophageal, gastric, hepatocellular, pancreatic, colorectal, breast, prostate, ovarian cancer. Previous studies often used bile acids in supraphysiological concentration, sometimes in concentrations 1000 times higher than the highest reported tissue or serum concentrations likely eliciting unspecific effects, a practice that we advocate against in this review. Furthermore, we show that, although bile acids were classically considered as pro-carcinogenic agents (e.g. oesophageal cancer), the dogma that switch, as lower concentrations of bile acids that correspond to their serum or tissue reference concentration possess anticancer activity in a subset of cancers. Differences in the response of cancers to bile acids lie in the differential expression of bile acid receptors between cancers (e.g. FXR vs. TGR5). UDCA, a bile acid that is sold as a generic medication against cholestasis or biliary surge, and its conjugates were identified with almost purely anticancer features suggesting a possibility for drug repurposing. Taken together, bile acids were considered as tumor inducers or tumor promoter molecules; nevertheless, in certain cancers, like breast cancer, bile acids in their reference concentrations may act as tumor suppressors suggesting a Janus-faced nature of bile acids in carcinogenesis.
Collapse
Affiliation(s)
- Tadeja Režen
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tünde Kovács
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
| | - Patrik Kovács
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary
| | - Adrienn Sipos
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary
| | - Péter Bai
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Edit Mikó
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary.
| |
Collapse
|
27
|
Increased Expression of QPRT in Breast Cancer Infers a Poor Prognosis and Is Correlated to Immunocytes Infiltration. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:6482878. [PMID: 35345651 PMCID: PMC8957413 DOI: 10.1155/2022/6482878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022]
Abstract
Breast cancer (BRCA) is a class of highly heterogeneous tumors. There is a positive correlation between the overall survival of BRCA and immune infiltration of the tumor microenvironment. QPRT is a rarely reported cancer gene, and the underlying mechanism is poorly understood. Based on TCGA data, the role that QPRT plays in BRCA is evaluated in this study. This study used GEPIA to analyze the expression of QPRT in BRCA and, based on the survival module, assessed the impact of QPRT on the survival of patients with BRCA. Furthermore, this study collected the BRCA data set from TCGA and, through utilizing logistic regression, discussed the relationship between QPRT expression and clinical information. Cox regression analysis was used to obtain clinicopathological features relating to the total survival rate of patients with TCGA. Besides, based on the “correlation” and CIBERSORT module, the relationship between cancer immune infiltration and QPRT was analyzed in GEPIA. Tumor status, pathological staging, and lymph nodes have an obvious correlation with the rise of QPRT expression according to the logistic regression univariate analysis. In this analysis, QPRT is expressed as a categorical-dependent variable (median expression value is 2.5). Furthermore, based on multivariate analysis, independent factors for favorable prognosis include negative pathological stage, increased QPRT expression, and remote metastasis. Among them, CIBERSORT analysis found that the increase in QPRT expression will increase with the growth of the level of immune infiltration of neutrophils, B cells, T cells, and mast cells. In addition, the “correlation” module using GEPIA was used to confirm. Taking all factors into consideration, the rise in QPRT expression is related to a good prognosis and a grown proportion of immune cells in BRCA, such as neutrophils, B cells, mast cells, and T cells. These results suggest that QPRT can be used to be a possible biological indicator to evaluate the immune infiltration level of BRCA and its prognosis.
Collapse
|