1
|
Zeng Z, Zhang Q, Liang T, Xiong Y, Liu Z, Zhang J, Yang P, Yang J, Lu Q, Shen D, Tian H, Zhou Z, Fang W, Zhang M, Liu Q, Gao B, Wei Y, Zhou D. Hsp70 incompletely disaggregates misfolded K488X-menin to promote tumourigenesis in a family with multiple endocrine neoplasia type 1. Cell Signal 2025; 130:111681. [PMID: 39978610 DOI: 10.1016/j.cellsig.2025.111681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/31/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is caused by germline mutations in the MEN1 gene, including nonsense mutations and missense variants, which result in the formation of truncated inactive menin protein and some of which cause degradation of mutant menin proteins. Here, we describe a c.1462 A > T (p.K488X) mutation in exon 10 of MEN1 as a potential pathogenic mutation in an extended Chinese family with MEN1. We observed that K488X-menin was degraded by ubiquitination modification resulting from the combined actions of carboxy-terminus of Hsc70-interacting protein (CHIP) and Heat Shock Protein Family 70 (Hsp70) in vitro. K488X-menin is a misfolded truncated protein that results in amyloid aggregation in live cells and affected tissues, which is promoted by Hsp70 and/or CHIP. Although Hsp70 can inhibit the aggregation of K488X-menin in vitro, it is not upregulated in the affected tissues in patients with MEN1, and thus cannot completely disaggregate the aggregated K488X-menin. Further, we found that K488X-menin triggers early tumourigenesis in a MEN1 mutant zebrafish model. Moreover, K488X-menin disaggregation was induced by Hsp70 activator and Hsp70 was upregulated in homozygous mutant zebrafish. Our findings provide a novel biophysical mechanism involving Hsp70 underlying MEN1 tumourigenesis in a Chinese family with MEN1.
Collapse
Affiliation(s)
- Zhen Zeng
- Clinical Research Center, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China; Department of Clinical Biochemistry, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China; Shanghai Children's Medical Center GuiZhou Hospital, Shanghai Jiao Tong University School of Medicine, PR China
| | - Qianqian Zhang
- Gastroenterology Department, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Tingting Liang
- Endocrine Metabolism Department, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Yu Xiong
- Clinical Research Center, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China; Department of Clinical Biochemistry, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Zhi Liu
- Department of Dermatovenereology, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Jing Zhang
- Department of Clinical Biochemistry, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Pingping Yang
- Clinical Research Center, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China; Department of Clinical Biochemistry, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Jingye Yang
- Clinical Research Center, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China; Department of Clinical Biochemistry, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Qingxiang Lu
- Clinical Research Center, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China; Department of Clinical Biochemistry, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Di Shen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, PR China
| | - Hongxia Tian
- Clinical Research Center, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China; Department of Clinical Biochemistry, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Zhongxue Zhou
- Clinical Research Center, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China; Department of Clinical Biochemistry, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Wen Fang
- Clinical Research Center, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Miao Zhang
- Endocrine Metabolism Department, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Qi Liu
- Gastroenterology Department, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Bo Gao
- Department of Radiology, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Yonghui Wei
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, PR China
| | - Ding'an Zhou
- Clinical Research Center, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China; Department of Clinical Biochemistry, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China; Key Laboratory of Medical Molecular Biology, Guizhou province; Key Laboratory of Endemic and Ethnic Disease, Ministry of Education; Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou 550004, PR China.
| |
Collapse
|
2
|
Vitale E, Rizzo A, Halemani K, Shetty AP, Cauli O, Massari F, Santoni M. Normal Weight, Overweight and Obesity Conditions Associated to Prostate Neoplasm Stages-A Systematic Review and Meta-Analysis. Biomedicines 2025; 13:1182. [PMID: 40427009 PMCID: PMC12108943 DOI: 10.3390/biomedicines13051182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/07/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objective: Prostate cancer (PCa) represents the second-most common cancer among men worldwide. Obesity is generally considered as a risk factor for cancer and it has been associated with a 20-30% increased risk of PCa death. The present systematic review and meta-analyses aimed to highlight any existing trends between prostate neoplasm stages according to normal weight, overweight and obesity conditions. Methods: All interventional records such as randomized clinical trials, quasi-experimental studies and observational studies were included in the present systematic review and meta-analysis which reported PCa stages according to Gleason (GS) or TNM scores according to the BMI-related incidence, as normal weight, overweight and obesity groups. Results: Twenty-nine studies were included in the present study. As regards the GS scoring system, 1.09% of high grade in GS was reported among PCa normal weights. Among PCa overweights, 0.98% of low grade was registered in GS. The same trend was recorded among obese PCa patients, since 0.79% of low grade in GS was also registered. As regards TNM scores, both normal weight, overweight and obese PCa patients registered a significant incidence in non-advanced TNM score, without any significant differences considering higher TNM assessments. Conclusions: Although the literature seemed to be more in favor of associations between BMI and GS, no specific mechanisms were highlighted between obesity and PCa progression. In this regard, the low androgen microenvironment in obese men could play an important role, but further studies will be necessary in this direction.
Collapse
Affiliation(s)
- Elsa Vitale
- Medical Thoracic Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy;
| | - Alessandro Rizzo
- S.S.D. C.O.r.O. Bed Management Presa in Carico, TDM, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Kurvatteppa Halemani
- College of Nursing, All India Institute of Medical Sciences (AIIMS), Raebareli 229405, Uttar Pradesh, India;
| | - Asha P. Shetty
- College of Nursing, All India Institute of Medical Sciences (AIIMS), Bhubaneshwar 751019, Odhisa, India;
| | - Omar Cauli
- Nursing Department, Faculty of Nursing and Podiatrics & Frailty and Cognitive Impairment Organized Group (FROG), University of Valencia, 46010 Valencia, Spain
| | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Matteo Santoni
- Oncology Unit, Macerata Hospital, 62100 Macerata, Italy;
| |
Collapse
|
3
|
Zeng Y. Impact of distinct insulin index on neoadjuvant treatment of breast cancer: A clinical retrospective study. Medicine (Baltimore) 2025; 104:e42356. [PMID: 40355227 PMCID: PMC12073909 DOI: 10.1097/md.0000000000042356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/18/2025] [Indexed: 05/14/2025] Open
Abstract
A combination of glucose and lipid metabolism, insulin resistance (IR) is correlated with the outcome of neoadjuvant treatment (NAT) for breast cancer. The purpose of this research sought to explore how IR affects breast cancer patients' reactions after NAT. We gathered 132 individuals with breast cancer who had surgery after NAT. Continuous values were analyzed using the Wilcoxon (Mann-Whitney) test and independent samples t test; pathological complete response (PCR)-related independent influencing factors were investigated using the binary logistic regression model; and the predictive value of each index on the effectiveness of NAT was assessed using subject work characteristics (receiver operating characteristic) curves. Compared with the non-PCR group, the PCR group's IR levels were lower. Baseline IR levels and NAT effectiveness did not significantly correlate, according to multifactorial logistic analysis (P > .05). Nevertheless, there was a negative correlation (P < .05) between PCR and total cholesterol (TC)/high-density lipoprotein (HDL) and MetS-IR levels following NAT. According to the receiver operating characteristic curve prediction model, TC/HDL had a greater predictive value than MetS-IR. Dynamic IR indicators (ΔTC/HDL and ΔMetS-IR) demonstrate predictive value for NAT response in breast cancer, mechanistically linked to lipid metabolism reprogramming and immunosuppressive tumor microenvironment. Future multicenter studies should validate optimal thresholds and investigate combined metabolic-immune targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yi Zeng
- Department of Breast Surgery, The Affiliated Huizhou Hospital, Guangzhou Medical University, Huizhou, Guangdong, China
| |
Collapse
|
4
|
Iannuzzi V, Narboux-Nême N, Lehoczki A, Levi G, Giuliani C. Stay social, stay young: a bioanthropological outlook on the processes linking sociality and ageing. GeroScience 2025; 47:721-744. [PMID: 39527178 PMCID: PMC11872968 DOI: 10.1007/s11357-024-01416-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
In modern human societies, social interactions and pro-social behaviours are associated with better individual and collective health, reduced mortality, and increased longevity. Conversely, social isolation is a predictor of shorter lifespan. The biological processes through which sociality affects the ageing process, as well as healthspan and lifespan, are still poorly understood. Unveiling the physiological, neurological, genomic, epigenomic, and evolutionary mechanisms underlying the association between sociality and longevity may open new perspectives to understand how lifespan is determined in a broader socio/evolutionary outlook. Here we summarize evidence showing how social dynamics can shape the evolution of life history traits through physiological and genetic processes directly or indirectly related to ageing and lifespan. We start by reviewing theories of ageing that incorporate social interactions into their model. Then, we address the link between sociality and lifespan from two separate points of view: (i) considering evidences from comparative evolutionary biology and bioanthropology that demonstrates how sociality contributes to natural variation in lifespan over the course of human evolution and among different human groups in both pre-industrial and post-industrial society, and (ii) discussing the main physiological, neurological, genetic, and epigenetic molecular processes at the interface between sociality and ageing. We highlight that the exposure to chronic social stressors deregulates neurophysiological and immunological pathways and promotes accelerated ageing and thereby reducing lifespan. In conclusion, we describe how sociality and social dynamics are intimately embedded in human biology, influencing healthy ageing and lifespan, and we highlight the need to foster interdisciplinary approaches including social sciences, biological anthropology, human ecology, physiology, and genetics.
Collapse
Affiliation(s)
- Vincenzo Iannuzzi
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Nicolas Narboux-Nême
- Physiologie Moléculaire Et Adaptation, CNRS UMR7221, Département AVIV, Muséum National d'Histoire Naturelle, Paris, France
| | - Andrea Lehoczki
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Giovanni Levi
- Physiologie Moléculaire Et Adaptation, CNRS UMR7221, Département AVIV, Muséum National d'Histoire Naturelle, Paris, France.
| | - Cristina Giuliani
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
5
|
Miao S, Dong Q, Liu L, Xuan Q, An Y, Qi H, Wang Q, Liu Z, Wang R. Dual biomarkers CT-based deep learning model incorporating intrathoracic fat for discriminating benign and malignant pulmonary nodules in multi-center cohorts. Phys Med 2025; 129:104877. [PMID: 39689571 DOI: 10.1016/j.ejmp.2024.104877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Recent studies in the field of lung cancer have emphasized the important role of body composition, particularly fatty tissue, as a prognostic factor. However, there is still a lack of practice in combining fatty tissue to discriminate benign and malignant pulmonary nodules. PURPOSE This study proposes a deep learning (DL) approach to explore the potential predictive value of dual imaging markers, including intrathoracic fat (ITF), in patients with pulmonary nodules. METHODS We enrolled 1321 patients with pulmonary nodules from three centers. Image feature extraction was performed on computed tomography (CT) images of pulmonary nodules and ITF by DL, multimodal information was used to discriminate benign and malignant in patients with pulmonary nodules. RESULTS Here, the areas under the receiver operating characteristic curve (AUC) of the model for ITF combined with pulmonary nodules were 0.910(95 % confidence interval [CI]: 0.870-0.950, P = 0.016), 0.922(95 % CI: 0.883-0.960, P = 0.037) and 0.899(95 % CI: 0.849-0.949, P = 0.033) in the internal test cohort, external test cohort1 and external test cohort2, respectively, which were significantly better than the model for pulmonary nodules. Intrathoracic fat index (ITFI) emerged as an independent influencing factor for benign and malignant in patients with pulmonary nodules, correlating with a 9.4 % decrease in the risk of malignancy for each additional unit. CONCLUSION This study demonstrates the potential auxiliary predictive value of ITF as a noninvasive imaging biomarker in assessing pulmonary nodules.
Collapse
Affiliation(s)
- Shidi Miao
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, China
| | - Qi Dong
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, China
| | - Le Liu
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Qifan Xuan
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, China
| | - Yunfei An
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, China
| | - Hongzhuo Qi
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, China
| | - Qiujun Wang
- Department of General Practice, the Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zengyao Liu
- Department of Interventional Medicine, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ruitao Wang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China.
| |
Collapse
|
6
|
Stanisławowski M. Effect of adipose tissue on the development of multiple myeloma. Mol Biol Rep 2024; 52:74. [PMID: 39708277 DOI: 10.1007/s11033-024-10174-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
Multiple myeloma (MM), also referred to as Kahler's disease, is a cancer characterized by the uncontrolled growth of abnormal plasma cells and is associated with alterations in the bone tissue microenvironment. Bone marrow adipose tissue (BMAT), which comprises approximately ten percent of total body fat, can influence the progression, survival, and drug resistance of MM cells through paracrine, hormonal, and metabolic pathways. Obesity can lead to an increase in BMAT mass, which not only disrupts bone metabolism but also reduces bone density, potentially progressing from monoclonal gammopathy of undetermined significance, a benign condition, to MM. A range of factors, including impaired fatty acid metabolism, increased production of adipokines that support myeloma, and heightened expression of oncogenic microRNAs in multiple myeloma, contribute to the progression of this incurable blood cancer. To better understand the relationship between excess adipose tissue accumulation and the risk of developing multiple myeloma, a comprehensive review of published data was conducted.
Collapse
Affiliation(s)
- Marcin Stanisławowski
- Department of Histology, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland.
| |
Collapse
|
7
|
Nicolas E, Kosmider B, Cukierman E, Borghaei H, Golemis EA, Borriello L. Cancer treatments as paradoxical catalysts of tumor awakening in the lung. Cancer Metastasis Rev 2024; 43:1165-1183. [PMID: 38963567 PMCID: PMC11554904 DOI: 10.1007/s10555-024-10196-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
Much of the fatality of tumors is linked to the growth of metastases, which can emerge months to years after apparently successful treatment of primary tumors. Metastases arise from disseminated tumor cells (DTCs), which disperse through the body in a dormant state to seed distant sites. While some DTCs lodge in pre-metastatic niches (PMNs) and rapidly develop into metastases, other DTCs settle in distinct microenvironments that maintain them in a dormant state. Subsequent awakening, induced by changes in the microenvironment of the DTC, causes outgrowth of metastases. Hence, there has been extensive investigation of the factors causing survival and subsequent awakening of DTCs, with the goal of disrupting these processes to decrease cancer lethality. We here provide a detailed overview of recent developments in understanding of the factors controlling dormancy and awakening in the lung, a common site of metastasis for many solid tumors. These factors include dynamic interactions between DTCs and diverse epithelial, mesenchymal, and immune cell populations resident in the lung. Paradoxically, among key triggers for metastatic outgrowth, lung tissue remodeling arising from damage induced by the treatment of primary tumors play a significant role. In addition, growing evidence emphasizes roles for inflammation and aging in opposing the factors that maintain dormancy. Finally, we discuss strategies being developed or employed to reduce the risk of metastatic recurrence.
Collapse
Affiliation(s)
- Emmanuelle Nicolas
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Beata Kosmider
- Center for Inflammation and Lung Research, Lewis Katz School of Medicine, Temple University, 3500 N Broad St., Philadelphia, PA, 19140, USA
- Department of Microbiology, Immunology, and Inflammation, Lewis Katz School of Medicine, Temple University, 3500 N Broad St., Philadelphia, PA, 19140, USA
| | - Edna Cukierman
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Hossein Borghaei
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Erica A Golemis
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, 3500 N Broad St., Philadelphia, PA, 19140, USA
| | - Lucia Borriello
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, 3500 N Broad St., Philadelphia, PA, 19140, USA.
| |
Collapse
|
8
|
Miao S, Xuan Q, Xie H, Jiang Y, Sun M, Huang W, Li J, Qi H, Li A, Wang Q, Liu Z, Wang R. An Integrated Nomogram Combining Deep Learning and Radiomics for Predicting Malignancy of Pulmonary Nodules Using CT-Derived Nodules and Adipose Tissue: A Multicenter Study. Cancer Med 2024; 13:e70372. [PMID: 39494854 PMCID: PMC11533136 DOI: 10.1002/cam4.70372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Correctly distinguishing between benign and malignant pulmonary nodules can avoid unnecessary invasive procedures. This study aimed to construct a deep learning radiomics clinical nomogram (DLRCN) for predicting malignancy of pulmonary nodules. METHODS One thousand and ninety-eight patients with 6-30 mm pulmonary nodules who received histopathologic diagnosis at 3 centers were included and divided into a primary cohort (PC), an internal test cohort (I-T), and two external test cohorts (E-T1, E-T2). The DLRCN was built by integrating adipose tissue radiomics features, intranodular and perinodular deep learning features, and clinical characteristics for diagnosing malignancy of pulmonary nodules. The least absolute shrinkage and selection operator (LASSO) was used for feature selection. The performance of DLRCN was assessed with respect to its calibration curve, area under the curve (AUC), and decision curve analysis (DCA). Furthermore, we compared it with three radiologists. The net reclassification improvement (NRI), integrated discrimination improvement (IDI), and subgroup analysis were also taken into account. RESULTS The incorporation of adipose tissue radiomics features led to significant NRI and IDI (NRI = 1.028, p < 0.05, IDI = 0.137, p < 0.05). In the I-T, E-T1, and E-T2, the AUCs of DLRCN were 0.946 (95% CI: 0.936, 0.955), 0.948 (95% CI: 0.933, 0.963) and 0.962 (95% CI: 0.945, 0.979), The calibration curve revealed good predictive accuracy between the actual probability and predicted probability (p > 0.05). DCA showed that the DLRCN was clinically useful. Under equal specificity, the sensitivity of DLRCN increased by 8.6% compared to radiologist assessments. The subgroup analysis conducted on adipose tissue radiomics features further demonstrated their supplementary value in determining the malignancy of pulmonary nodules. CONCLUSION The DLRCN demonstrated good performance in predicting the malignancy of pulmonary nodules, which was comparable to radiologist assessments. The adipose tissue radiomics features have notably enhanced the performance of DLRCN.
Collapse
Affiliation(s)
- Shidi Miao
- School of Computer Science and TechnologyHarbin University of Science and TechnologyHarbinChina
| | - Qifan Xuan
- School of Computer Science and TechnologyHarbin University of Science and TechnologyHarbinChina
| | - Hanbing Xie
- Department of Internal MedicineHarbin Medical University Cancer Hospital, Harbin Medical UniversityHarbinChina
| | - Yuyang Jiang
- School of Computer Science and TechnologyHarbin University of Science and TechnologyHarbinChina
| | - Mengzhuo Sun
- School of Computer Science and TechnologyHarbin University of Science and TechnologyHarbinChina
| | - Wenjuan Huang
- Department of Internal MedicineHarbin Medical University Cancer Hospital, Harbin Medical UniversityHarbinChina
| | - Jing Li
- Department of GeriatricsThe Second Affiliated Hospital, Harbin Medical UniversityHarbinChina
| | - Hongzhuo Qi
- School of Computer Science and TechnologyHarbin University of Science and TechnologyHarbinChina
| | - Ao Li
- School of Computer Science and TechnologyHarbin University of Science and TechnologyHarbinChina
| | - Qiujun Wang
- Department of General PracticeThe Second Affiliated Hospital, Harbin Medical UniversityHarbinChina
| | - Zengyao Liu
- Department of Interventional MedicineThe First Affiliated Hospital, Harbin Medical UniversityHarbinChina
| | - Ruitao Wang
- Department of Internal MedicineHarbin Medical University Cancer Hospital, Harbin Medical UniversityHarbinChina
| |
Collapse
|
9
|
Muscogiuri G, Barrea L, Bettini S, El Ghoch M, Katsiki N, Tolvanen L, Verde L, Colao A, Busetto L, Yumuk VD, Hassapidou M, on behalf of EASO Nutrition Working Group. European Association for the Study of Obesity (EASO) Position Statement on Medical Nutrition Therapy for the Management of Individuals with Overweight or Obesity and Cancer. Obes Facts 2024; 18:86-105. [PMID: 39433024 PMCID: PMC12017763 DOI: 10.1159/000542155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024] Open
Abstract
Obesity, a prevalent and multifactorial disease, is linked to a range of metabolic abnormalities, including insulin resistance, dyslipidemia, and chronic inflammation. These imbalances not only contribute to cardiometabolic diseases but also play a significant role in cancer pathogenesis. The rising prevalence of obesity underscores the need to investigate dietary strategies for effective weight management for individuals with overweight or obesity and cancer. This European Society for the Study of Obesity (EASO) position statement aimed to summarize current evidence on the role of obesity in cancer and to provide insights on the major nutritional interventions, including the Mediterranean diet (MedDiet), the ketogenic diet (KD), and the intermittent fasting (IF), that should be adopted to manage individuals with overweight or obesity and cancer. The MedDiet, characterized by high consumption of plant-based foods and moderate intake of olive oil, fish, and nuts, has been associated with a reduced cancer risk. The KD and the IF are emerging dietary interventions with potential benefits for weight loss and metabolic health. KD, by inducing ketosis, and IF, through periodic fasting cycles, may offer anticancer effects by modifying tumor metabolism and improving insulin sensitivity. Despite the promising results, current evidence on these dietary approaches in cancer management in individuals with overweight or obesity is limited and inconsistent, with challenges including variability in adherence and the need for personalized dietary plans.
Collapse
Affiliation(s)
- Giovanna Muscogiuri
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Naples, Italy
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Naples, Italy
- Cattedra Unesco “Educazione Alla Salute E Allo Sviluppo Sostenibile”, University Federico II, Naples, Italy
| | - Luigi Barrea
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Naples, Italy
- Department of Wellbeing, Nutrition and Sport, Pegaso Telematic University, Centro Direzionale Isola F2, Naples, Italy
| | - Silvia Bettini
- Center for the Study and Integrated Treatment of Obesity (CeSTIO), Internal Medicine 3, Department of Medicine, University Hospital of Padova, Padova, Italy
| | - Marwan El Ghoch
- Center for the Study of Metabolism, Body Composition and Lifestyle, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Niki Katsiki
- School of Medicine, European University Cyprus, Nicosia, Cyprus
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
| | - Liisa Tolvanen
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Obesity, Academic Specialist Center, Stockholm Health Care Services, Stockholm, Sweden
- ESDN Obesity of EFAD, Naarden, The Netherlands
| | - Ludovica Verde
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Naples, Italy
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Annamaria Colao
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Naples, Italy
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Naples, Italy
- Cattedra Unesco “Educazione Alla Salute E Allo Sviluppo Sostenibile”, University Federico II, Naples, Italy
| | - Luca Busetto
- Center for the Study and Integrated Treatment of Obesity (CeSTIO), Internal Medicine 3, Department of Medicine, University Hospital of Padova, Padova, Italy
| | - Volkan Demirhan Yumuk
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Fatih, Istanbul, Turkey
- European Association for the Study of Obesity-Collaborating Center for Obesity Management, Istanbul, Turkey
| | - Maria Hassapidou
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
- ESDN Obesity of EFAD, Naarden, The Netherlands
| | - on behalf of EASO Nutrition Working Group
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Naples, Italy
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Naples, Italy
- Cattedra Unesco “Educazione Alla Salute E Allo Sviluppo Sostenibile”, University Federico II, Naples, Italy
- Department of Wellbeing, Nutrition and Sport, Pegaso Telematic University, Centro Direzionale Isola F2, Naples, Italy
- Center for the Study and Integrated Treatment of Obesity (CeSTIO), Internal Medicine 3, Department of Medicine, University Hospital of Padova, Padova, Italy
- Center for the Study of Metabolism, Body Composition and Lifestyle, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- School of Medicine, European University Cyprus, Nicosia, Cyprus
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Obesity, Academic Specialist Center, Stockholm Health Care Services, Stockholm, Sweden
- ESDN Obesity of EFAD, Naarden, The Netherlands
- Department of Public Health, University of Naples Federico II, Naples, Italy
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Fatih, Istanbul, Turkey
- European Association for the Study of Obesity-Collaborating Center for Obesity Management, Istanbul, Turkey
| |
Collapse
|
10
|
Ungvari Z, Fekete M, Varga P, Lehoczki A, Fekete JT, Ungvari A, Győrffy B. Overweight and obesity significantly increase colorectal cancer risk: a meta-analysis of 66 studies revealing a 25-57% elevation in risk. GeroScience 2024:10.1007/s11357-024-01375-x. [PMID: 39379738 DOI: 10.1007/s11357-024-01375-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024] Open
Abstract
The incidence of colorectal cancer (CRC) has been steadily rising, and obesity has been identified as a significant risk factor. Numerous studies suggest a strong correlation between excess body weight and increased risk of CRC, but comprehensive quantification through pooled analysis remains limited. This study aims to systematically review and meta-analyze the existing literature to evaluate the association between obesity and CRC risk, considering variations across sex and study designs. A systematic literature search was conducted in PubMed, Cochrane Central Register of Controlled Trials (CENTRAL), and Web of Science to identify randomized controlled trials and human clinical trials from 1992 to 2024. Statistical analysis was performed using the https://metaanalysisonline.com web application using a random effects model to estimate the pooled hazard rates (HR). Forest plots, funnel plots, and Z-score plots were utilized to visualize results. We identified 52 clinical trials and 14 case-control studies, encompassing a total of 83,251,050 and 236,877 subjects, respectively. The pooled analysis indicated that obesity significantly increased the prevalence of CRC (HR = 1.36, 95% CI = 1.24-1.48, p < 0.01). This effect was consistent across sexes, with HRs of 1.57 (95% CI = 1.38-1.78, p = 0.01) for males and 1.25 (95% CI = 1.14-1.38, p < 0.01) for females. Case-control studies specifically showed an effect, but with marginal significance only (HR = 1.27, 95% CI = 0.98-1.65, p = 0.07). The Z-score plot indicated the need for additional analysis in the case-control group. A significant heterogeneity was observed across studies in all four settings. This meta-analysis provides robust evidence that obesity is a significant risk factor for colorectal cancer, with an overall hazard rate indicating a 36% increased risk. The effect is pronounced across both sexes, with males showing a slightly higher risk compared to females. Although case-control studies showed a weaker association, the overall trend supports the link between obesity and CRC. These results underscore the importance of public health interventions aimed at reducing obesity to potentially lower the risk of colorectal cancer.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Mónika Fekete
- Institute of Preventive Medicine and Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
| | - Peter Varga
- Institute of Preventive Medicine and Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
| | - Andrea Lehoczki
- Institute of Preventive Medicine and Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
| | - János Tibor Fekete
- Dept. of Bioinformatics, Semmelweis University, 1094, Budapest, Hungary
- Cancer Biomarker Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Anna Ungvari
- Institute of Preventive Medicine and Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary.
| | - Balázs Győrffy
- Dept. of Bioinformatics, Semmelweis University, 1094, Budapest, Hungary
- Cancer Biomarker Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117, Budapest, Hungary
- Dept. of Biophysics, Medical School, University of Pecs, 7624, Pecs, Hungary
| |
Collapse
|
11
|
Qi H, Xuan Q, Liu P, An Y, Huang W, Miao S, Wang Q, Liu Z, Wang R. Deep Learning Radiomics Features of Mediastinal Fat and Pulmonary Nodules on Lung CT Images Distinguish Benignancy and Malignancy. Biomedicines 2024; 12:1865. [PMID: 39200329 PMCID: PMC11352131 DOI: 10.3390/biomedicines12081865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
This study investigated the relationship between mediastinal fat and pulmonary nodule status, aiming to develop a deep learning-based radiomics model for diagnosing benign and malignant pulmonary nodules. We proposed a combined model using CT images of both pulmonary nodules and the fat around the chest (mediastinal fat). Patients from three centers were divided into training, validation, internal testing, and external testing sets. Quantitative radiomics and deep learning features from CT images served as predictive factors. A logistic regression model was used to combine data from both pulmonary nodules and mediastinal adipose regions, and personalized nomograms were created to evaluate the predictive performance. The model incorporating mediastinal fat outperformed the nodule-only model, with C-indexes of 0.917 (training), 0.903 (internal testing), 0.942 (external testing set 1), and 0.880 (external testing set 2). The inclusion of mediastinal fat significantly improved predictive performance (NRI = 0.243, p < 0.05). A decision curve analysis indicated that incorporating mediastinal fat features provided greater patient benefits. Mediastinal fat offered complementary information for distinguishing benign from malignant nodules, enhancing the diagnostic capability of this deep learning-based radiomics model. This model demonstrated strong diagnostic ability for benign and malignant pulmonary nodules, providing a more accurate and beneficial approach for patient care.
Collapse
Affiliation(s)
- Hongzhuo Qi
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China; (H.Q.); (Y.A.); (S.M.)
| | - Qifan Xuan
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China; (H.Q.); (Y.A.); (S.M.)
| | - Pingping Liu
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin 150081, China; (P.L.); (W.H.); (R.W.)
| | - Yunfei An
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China; (H.Q.); (Y.A.); (S.M.)
| | - Wenjuan Huang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin 150081, China; (P.L.); (W.H.); (R.W.)
| | - Shidi Miao
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China; (H.Q.); (Y.A.); (S.M.)
| | - Qiujun Wang
- Department of General Practice, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China;
| | - Zengyao Liu
- Department of Interventional Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin 150086, China;
| | - Ruitao Wang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin 150081, China; (P.L.); (W.H.); (R.W.)
| |
Collapse
|
12
|
Foti R, Storti G, Palmesano M, Scioli MG, Fiorelli E, Terriaca S, Cervelli G, Kim BS, Orlandi A, Cervelli V. Senescence in Adipose-Derived Stem Cells: Biological Mechanisms and Therapeutic Challenges. Int J Mol Sci 2024; 25:8390. [PMID: 39125960 PMCID: PMC11312747 DOI: 10.3390/ijms25158390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Adipose tissue-derived stem cells (ADSCs) represent a subset of the mesenchymal stem cells in every adipose compartment throughout the body. ADSCs can differentiate into various cell types, including chondrocytes, osteocytes, myocytes, and adipocytes. Moreover, they exhibit a notable potential to differentiate in vitro into cells from other germinal lineages, including endothelial cells and neurons. ADSCs have a wide range of clinical applications, from breast surgery to chronic wounds. Furthermore, they are a promising cell population for future tissue-engineering uses. Accumulating evidence indicates a decreased proliferation and differentiation potential of ADSCs with an increasing age, increasing body mass index, diabetes mellitus, metabolic syndrome, or exposure to radiotherapy. Therefore, the recent literature thoroughly investigates this cell population's senescence mechanisms and how they can hinder its possible therapeutic applications. This review will discuss the biological mechanisms and the physio-pathological causes behind ADSC senescence and how they can impact cellular functionality. Moreover, we will examine the possible strategies to invert these processes, re-establishing the full regenerative potential of this progenitor population.
Collapse
Affiliation(s)
- Riccardo Foti
- Plastic Surgery, Department of Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.F.); (M.P.); (V.C.)
| | - Gabriele Storti
- Plastic Surgery, Department of Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.F.); (M.P.); (V.C.)
| | - Marco Palmesano
- Plastic Surgery, Department of Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.F.); (M.P.); (V.C.)
| | - Maria Giovanna Scioli
- Anatomy Pathology Institute, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.G.S.); (E.F.); (S.T.); (A.O.)
| | - Elena Fiorelli
- Anatomy Pathology Institute, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.G.S.); (E.F.); (S.T.); (A.O.)
| | - Sonia Terriaca
- Anatomy Pathology Institute, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.G.S.); (E.F.); (S.T.); (A.O.)
| | - Giulio Cervelli
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Bong Sung Kim
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8006 Zurich, Switzerland;
| | - Augusto Orlandi
- Anatomy Pathology Institute, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.G.S.); (E.F.); (S.T.); (A.O.)
| | - Valerio Cervelli
- Plastic Surgery, Department of Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.F.); (M.P.); (V.C.)
| |
Collapse
|
13
|
Shimizu Y, Ntege EH, Takahara E, Matsuura N, Matsuura R, Kamizato K, Inoue Y, Sowa Y, Sunami H. Adipose-derived stem cell therapy for spinal cord injuries: Advances, challenges, and future directions. Regen Ther 2024; 26:508-519. [PMID: 39161365 PMCID: PMC11331855 DOI: 10.1016/j.reth.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/18/2024] [Indexed: 08/21/2024] Open
Abstract
Spinal cord injury (SCI) has limited treatment options for regaining function. Adipose-derived stem cells (ADSCs) show promise owing to their ability to differentiate into multiple cell types, promote nerve cell survival, and modulate inflammation. This review explores ADSC therapy for SCI, focusing on its potential for improving function, preclinical and early clinical trial progress, challenges, and future directions. Preclinical studies have demonstrated ADSC transplantation's effectiveness in promoting functional recovery, reducing cavity formation, and enhancing nerve regrowth and myelin repair. To improve ADSC efficacy, strategies including genetic modification and combination with rehabilitation are being explored. Early clinical trials have shown safety and feasibility, with some suggesting motor and sensory function improvements. Challenges remain for clinical translation, including optimizing cell survival and delivery, determining dosing, addressing tumor formation risks, and establishing standardized protocols. Future research should focus on overcoming these challenges and exploring the potential for combining ADSC therapy with other treatments, including rehabilitation and medication.
Collapse
Affiliation(s)
- Yusuke Shimizu
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Edward Hosea Ntege
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Eisaku Takahara
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Naoki Matsuura
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Rikako Matsuura
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Kota Kamizato
- Department of Anesthesiology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Yoshikazu Inoue
- Department of Plastic and Reconstructive Surgery, School of Medicine, Fujita Health University, 1-98, Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
| | - Yoshihiro Sowa
- Department of Plastic Surgery, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, 329-0498, Tochigi, Japan
| | - Hiroshi Sunami
- Center for Advanced Medical Research, School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| |
Collapse
|
14
|
Ding Z, Han J, Huang Q, Liu X, Sun D, Sui X, Zhuang Q, Wu G. Phosphatidylethanolamine (18:2e/18:2) may inhibit adipose tissue wasting in patients with cancer cachexia by increasing lysophosphatidic acid receptor 6. Nutrition 2024; 120:112356. [PMID: 38354460 DOI: 10.1016/j.nut.2024.112356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/17/2023] [Accepted: 01/05/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Cancer associated cachexia is characterized by the significant loss of adipose tissue, leading to devastating weight loss and muscle wasting in the majority of cancer patients. The effects and underlying mechanisms of degradation metabolites on adipocytes in cachectic patients remain poorly understood. To address this knowledge gap, we conducted a comprehensive study combining lipidomic analysis of subcutaneous and visceral adipose tissue with transcriptomics data from the database to investigate the mechanisms of lipid regulation in adipocytes. METHODS We collected subcutaneous and visceral adipose tissue samples from cachectic and noncachectic cancer patients. Lipidomic analysis was performed to identify differentially expressed lipids in both types of adipose tissue. Additionally, transcriptomics data from the GEO database were analyzed to explore gene expression patterns in adipocytes. Bioinformatics analysis was employed to determine the enrichment of differentially expressed genes in specific pathways. Furthermore, molecular docking studies were conducted to predict potential protein targets of specific lipids, with a focus on the PI3K-Akt signaling pathway. Western blot analysis was used to validate protein levels of the identified target gene, lysophosphatidic acid receptor 6 (LPAR6), in subcutaneous and visceral adipose tissue from cachectic and noncachectic patients. RESULTS Significant lipid differences in subcutaneous and visceral adipose tissue between cachectic and noncachectic patients were identified by multivariate statistical analysis. Cachectic patients exhibited elevated Ceramides levels and reduced CerG2GNAc1 levels (P < 0.05). A total of 10 shared lipids correlated with weight loss and IL-6 levels, enriched in Sphingolipid metabolism, GPI-anchor biosynthesis, and Glyceropholipid metabolism pathways. LPAR6 expression was significantly elevated in both adipose tissues of cachectic patients (P < 0.05). Molecular docking analysis indicated strong binding of Phosphatidylethanolamine (PE) (18:2e/18:2) to LPAR6. CONCLUSIONS Our findings suggest that specific lipids, including PE(18:2e/18:2), may mitigate adipose tissue wasting in cachexia by modulating the expression of LPAR6 through the PI3K-Akt signaling pathway. The identification of these potential targets and mechanisms provides a foundation for future investigations and therapeutic strategies to combat cachexia. By understanding the underlying lipid regulation in adipocytes, we aim to develop targeted interventions to ameliorate the devastating impact of cachexia on patient outcomes and quality of life. Nevertheless, further studies and validation are warranted to fully elucidate the intricate mechanisms involved and translate these findings into effective clinical interventions.
Collapse
Affiliation(s)
- Zuoyou Ding
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Jun Han
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Qiuyue Huang
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Xiao Liu
- Department of Nursing, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Diya Sun
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Xiangyu Sui
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Qiulin Zhuang
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China.
| | - Guohao Wu
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| |
Collapse
|
15
|
Hosni S, Kilian V, Klümper N, Gabbia D, Sieckmann K, Corvino D, Winkler A, Saponaro M, Wörsdörfer K, Schmidt D, Hahn O, Zanotto I, Bertlich M, Toma M, Bald T, Eckstein M, Hölzel M, Geyer M, Ritter M, Wachten D, De Martin S, Alajati A. Adipocyte Precursor-Derived NRG1 Promotes Resistance to FGFR Inhibition in Urothelial Carcinoma. Cancer Res 2024; 84:725-740. [PMID: 38175774 PMCID: PMC10911805 DOI: 10.1158/0008-5472.can-23-1398] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/12/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
Aberrations of the fibroblast growth factor receptor (FGFR) family members are frequently observed in metastatic urothelial cancer (mUC), and blocking the FGF/FGFR signaling axis is used as a targeted therapeutic strategy for treating patients. Erdafitinib is a pan-FGFR inhibitor, which has recently been approved by the FDA for mUC with FGFR2/3 alterations. Although mUC patients show initial response to erdafitinib, acquired resistance rapidly develops. Here, we found that adipocyte precursors promoted resistance to erdafitinib in FGFR-dependent bladder and lung cancer in a paracrine manner. Moreover, neuregulin 1 (NRG1) secreted from adipocyte precursors was a mediator of erdafitinib resistance by activating human epidermal growth factor receptor 3 (ERBB3; also known as HER3) signaling, and knockdown of NRG1 in adipocyte precursors abrogated the conferred paracrine resistance. NRG1 expression was significantly downregulated in terminally differentiated adipocytes compared with their progenitors. Pharmacologic inhibition of the NRG1/HER3 axis using pertuzumab reversed erdafitinib resistance in tumor cells in vitro and prolonged survival of mice bearing bladder cancer xenografts in vivo. Remarkably, data from single-cell RNA sequencing revealed that NRG1 was enriched in platelet-derived growth factor receptor-A (PDGFRA) expressing inflammatory cancer-associated fibroblasts, which is also expressed on adipocyte precursors. Together, this work reveals a paracrine mechanism of anti-FGFR resistance in bladder cancer, and potentially other cancers, that is amenable to inhibition using available targeted therapies. SIGNIFICANCE Acquired resistance to FGFR inhibition can be rapidly promoted by paracrine activation of the NRG1/HER3 axis mediated by adipocyte precursors and can be overcome by the combination of pertuzumab and erdafitinib treatment. See related commentary by Kolonin and Anastassiou, p. 648.
Collapse
Affiliation(s)
- Sana Hosni
- Department of Urology and Pediatric Urology, University Hospital Bonn (UKB), Bonn, Germany
| | - Viola Kilian
- Department of Urology and Pediatric Urology, University Hospital Bonn (UKB), Bonn, Germany
| | - Niklas Klümper
- Department of Urology and Pediatric Urology, University Hospital Bonn (UKB), Bonn, Germany
- Institute of Experimental Oncology, University Hospital Bonn (UKB), Bonn, Germany
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Katharina Sieckmann
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Dillon Corvino
- Institute of Experimental Oncology, University Hospital Bonn (UKB), Bonn, Germany
| | - Anja Winkler
- Department of Urology and Pediatric Urology, University Hospital Bonn (UKB), Bonn, Germany
| | - Miriam Saponaro
- Department of Urology and Pediatric Urology, University Hospital Bonn (UKB), Bonn, Germany
| | - Karin Wörsdörfer
- Department of Urology and Pediatric Urology, University Hospital Bonn (UKB), Bonn, Germany
| | - Doris Schmidt
- Department of Urology and Pediatric Urology, University Hospital Bonn (UKB), Bonn, Germany
| | - Oliver Hahn
- Clinic of Urology, University Hospital Göttingen, Göttingen, Germany
- Clinic of Urology, University Hospital Würzburg, Würzburg, Germany
| | - Ilaria Zanotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Marina Bertlich
- Department of Urology and Pediatric Urology, University Hospital Bonn (UKB), Bonn, Germany
| | - Marieta Toma
- Institute of Pathology, University Hospital Bonn (UKB), Bonn, Germany
| | - Tobias Bald
- Institute of Experimental Oncology, University Hospital Bonn (UKB), Bonn, Germany
| | - Markus Eckstein
- Institute of Pathology, University Hospital Erlangen, Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology, University Hospital Bonn (UKB), Bonn, Germany
| | - Matthias Geyer
- Institute of Structural Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Manuel Ritter
- Department of Urology and Pediatric Urology, University Hospital Bonn (UKB), Bonn, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Abdullah Alajati
- Department of Urology and Pediatric Urology, University Hospital Bonn (UKB), Bonn, Germany
| |
Collapse
|
16
|
Hamel KM, Frazier TP, Williams C, Duplessis T, Rowan BG, Gimble JM, Sanchez CG. Adipose Tissue in Breast Cancer Microphysiological Models to Capture Human Diversity in Preclinical Models. Int J Mol Sci 2024; 25:2728. [PMID: 38473978 PMCID: PMC10931959 DOI: 10.3390/ijms25052728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Female breast cancer accounts for 15.2% of all new cancer cases in the United States, with a continuing increase in incidence despite efforts to discover new targeted therapies. With an approximate failure rate of 85% for therapies in the early phases of clinical trials, there is a need for more translatable, new preclinical in vitro models that include cellular heterogeneity, extracellular matrix, and human-derived biomaterials. Specifically, adipose tissue and its resident cell populations have been identified as necessary attributes for current preclinical models. Adipose-derived stromal/stem cells (ASCs) and mature adipocytes are a normal part of the breast tissue composition and not only contribute to normal breast physiology but also play a significant role in breast cancer pathophysiology. Given the recognized pro-tumorigenic role of adipocytes in tumor progression, there remains a need to enhance the complexity of current models and account for the contribution of the components that exist within the adipose stromal environment to breast tumorigenesis. This review article captures the current landscape of preclinical breast cancer models with a focus on breast cancer microphysiological system (MPS) models and their counterpart patient-derived xenograft (PDX) models to capture patient diversity as they relate to adipose tissue.
Collapse
Affiliation(s)
- Katie M. Hamel
- Obatala Sciences, Inc., New Orleans, LA 70148, USA; (K.M.H.); (T.P.F.); (J.M.G.)
| | - Trivia P. Frazier
- Obatala Sciences, Inc., New Orleans, LA 70148, USA; (K.M.H.); (T.P.F.); (J.M.G.)
| | - Christopher Williams
- Division of Basic Pharmaceutical Sciences, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| | | | - Brian G. Rowan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Jeffrey M. Gimble
- Obatala Sciences, Inc., New Orleans, LA 70148, USA; (K.M.H.); (T.P.F.); (J.M.G.)
| | - Cecilia G. Sanchez
- Obatala Sciences, Inc., New Orleans, LA 70148, USA; (K.M.H.); (T.P.F.); (J.M.G.)
| |
Collapse
|
17
|
Neagu M, Dobre EG. New Insights into the Link Between Melanoma and Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:851-867. [PMID: 39287874 DOI: 10.1007/978-3-031-63657-8_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The significant increase in the incidence of obesity represents a global health crisis. Obesity is actually a multi-organ disease affecting the entire organism; hence, skin is no exception. As the functional alterations in the adipose tissue are contributing factors to many diseases, including cancer, recently, the link between the development of melanoma skin cancer and obesity gains increased attention. Besides several other factors, the increase of adipose stromal/stem cells (ASCs) impacts cancer progression. Moreover, increased production of cytokines and growth factors done by ASCs induces tumorigenesis and metastasis. The chronic inflammatory state that is sustained by this metabolic imbalance favors skin malignancies, melanoma included. Cutaneous melanoma, as an aggressive skin cancer, has both intrinsic and extrinsic risk factors where sun exposure and lifestyles are the main environmental factors inducing this skin cancer. With the advent of recent targeted and immune-based therapies in melanoma, the link between obesity and the efficacy of these therapies in melanoma remains controversial. A recent molecular relationship between the melanocortin pathway appending to both melanin synthesis and obesity was established. The biology of adipokines, molecules secreted by the adipose tissue, is linked to inflammation, and their molecular pathways can be involved in angiogenesis, migration, invasion, and proliferation of melanoma cells. In melanoma cells, among the most noticeable metabolic reprogramming characteristics is an increased rate of lipid synthesis. Lipid mediators impact classical oncogenic pathways, affecting melanoma progression. The chapter will tackle also the practical implications for melanoma prevention and treatment, namely, how metabolic manipulation can be exploited to overcome immunosuppression and support immune checkpoint blockade efficacy.
Collapse
Affiliation(s)
- Monica Neagu
- Immunology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
- Pathology Department, Colentina University Hospital, Bucharest, Romania
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Elena-Georgiana Dobre
- Immunology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
| |
Collapse
|
18
|
Molinelli E, Ceccarelli G, Fantone S, Di Mercurio E, Gambini D, Maurizi A, Perugini J, Tossetta G, Brisigotti V, De Simoni E, Sapigni C, Rizzetto G, Campanati A, Simonetti O, Marzioni D, Offidani A. Melanoma and subcutaneous adipose tissue: Role of peritumoral adipokines in disease characterization and prognosis. Pigment Cell Melanoma Res 2023; 36:423-430. [PMID: 37334675 DOI: 10.1111/pcmr.13103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/08/2023] [Accepted: 05/26/2023] [Indexed: 06/20/2023]
Abstract
In the last decades, the concept of adipose organ has emerged, giving adipose tissue an active endocrine and immunologic function through the secretion of multiple cytokines and chemokines that seem to be implicated in the development and progression of several cancer, including cutaneous melanoma. In this pilot experimental study, we analyzed the expression in the peritumor subcutaneous adipose tissue of the most significant adipokines involved in the processes of carcinogenesis and metastasis in a population of melanoma patients and in two control groups composed of melanocytic nevi and epidermoid cysts, respectively. We correlated the results obtained with the main disease prognostic factors observing a statistically significant increase in the expression of PAI1, LEP, CXCL1, NAMPT, and TNF-α at the level of the peritumor tissue of the melanoma samples compared to the control groups and a correlation of the same with the histopathological prognostic factor of melanoma. Our preliminary study shows that the overexpression of PAI1, LEP, CXCL1, NAMPT, and TNF-α may contribute to the growth and to the local aggressiveness of cutaneous melanoma. It opens the hypothesis of a direct oncogenic role of subcutaneous adipose tissue and adipokines in the tumorigenesis of melanoma.
Collapse
Affiliation(s)
- Elisa Molinelli
- Dermatological Unit, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | | | - Sonia Fantone
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Eleonora Di Mercurio
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Daisy Gambini
- Dermatological Unit, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Andrea Maurizi
- Dermatological Unit, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Jessica Perugini
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Valerio Brisigotti
- Dermatological Unit, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Edoardo De Simoni
- Dermatological Unit, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Claudia Sapigni
- Dermatological Unit, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Giulio Rizzetto
- Dermatological Unit, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Anna Campanati
- Dermatological Unit, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Oriana Simonetti
- Dermatological Unit, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Annamaria Offidani
- Dermatological Unit, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
19
|
Ochiai M, Fierstein S, XsSali F, DeVito N, Purkey LR, May R, Correa-Medina A, Kelley M, Page TD, DeCicco-Skinner K. Unlocking Drug Resistance in Multiple Myeloma: Adipocytes as Modulators of Treatment Response. Cancers (Basel) 2023; 15:4347. [PMID: 37686623 PMCID: PMC10486466 DOI: 10.3390/cancers15174347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Multiple myeloma (MM) is an incurable hematological malignancy characterized by the clonal proliferation of malignant plasma cells. Despite the development of a diverse array of targeted drug therapies over the last decade, patients often relapse and develop refractory disease due to multidrug resistance. Obesity is a growing public health threat and a risk factor for multiple myeloma, although the mechanisms by which obesity contributes to MM growth and progression have not been fully elucidated. In the present study, we evaluated whether crosstalk between adipocytes and MM cells promoted drug resistance and whether this was amplified by obesity. Human adipose-derived stem cells (ASCs) from nineteen normal (BMI = 20-25 kg/m2), overweight (25-30 kg/m2), or obese (30-35 kg/m2) patients undergoing elective liposuction were utilized. Cells were differentiated into adipocytes, co-cultured with RPMI 8226 or U266B1 multiple myeloma cell lines, and treated with standard MM therapies, including bortezomib or a triple combination of bortezomib, dexamethasone, and lenalidomide. We found that adipocytes from overweight and obese individuals increased cell adhesion-mediated drug resistance (CAM-DR) survival signals in MM cells, and P-glycoprotein (P-gp) and multidrug resistance-associated protein (MRP) drug transporter expression. Further, co-culture enhanced in vitro angiogenesis, MMP-2 activity, and protected MM cells from drug-induced decreases in viability. In summary, we provide an underlying mechanism by which obesity can impair the drug response to MM and allow for recurrence and/or disease progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Kathleen DeCicco-Skinner
- Department of Biology, American University, 4400 Massachusetts Ave, NW, Washington, DC 20016, USA
| |
Collapse
|
20
|
Qin Y, Ge G, Yang P, Wang L, Qiao Y, Pan G, Yang H, Bai J, Cui W, Geng D. An Update on Adipose-Derived Stem Cells for Regenerative Medicine: Where Challenge Meets Opportunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207334. [PMID: 37162248 PMCID: PMC10369252 DOI: 10.1002/advs.202207334] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/24/2023] [Indexed: 05/11/2023]
Abstract
Over the last decade, adipose-derived stem cells (ADSCs) have attracted increasing attention in the field of regenerative medicine. ADSCs appear to be the most advantageous cell type for regenerative therapies owing to their easy accessibility, multipotency, and active paracrine activity. This review highlights current challenges in translating ADSC-based therapies into clinical settings and discusses novel strategies to overcome the limitations of ADSCs. To further establish ADSC-based therapies as an emerging platform for regenerative medicine, this review also provides an update on the advancements in this field, including fat grafting, wound healing, bone regeneration, skeletal muscle repair, tendon reconstruction, cartilage regeneration, cardiac repair, and nerve regeneration. ADSC-based therapies are expected to be more tissue-specific and increasingly important in regenerative medicine.
Collapse
Affiliation(s)
- Yi Qin
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| | - Gaoran Ge
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| | - Peng Yang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| | - Liangliang Wang
- Department of OrthopaedicsThe Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical UniversityChangzhouJiangsu213000China
| | - Yusen Qiao
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| | - Guoqing Pan
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangJiangsu212013China
| | - Huilin Yang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| | - Jiaxiang Bai
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Dechun Geng
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| |
Collapse
|
21
|
Trevellin E, Bettini S, Pilatone A, Vettor R, Milan G. Obesity, the Adipose Organ and Cancer in Humans: Association or Causation? Biomedicines 2023; 11:biomedicines11051319. [PMID: 37238992 DOI: 10.3390/biomedicines11051319] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Epidemiological observations, experimental studies and clinical data show that obesity is associated with a higher risk of developing different types of cancer; however, proof of a cause-effect relationship that meets the causality criteria is still lacking. Several data suggest that the adipose organ could be the protagonist in this crosstalk. In particular, the adipose tissue (AT) alterations occurring in obesity parallel some tumour behaviours, such as their theoretically unlimited expandability, infiltration capacity, angiogenesis regulation, local and systemic inflammation and changes to the immunometabolism and secretome. Moreover, AT and cancer share similar morpho-functional units which regulate tissue expansion: the adiponiche and tumour-niche, respectively. Through direct and indirect interactions involving different cellular types and molecular mechanisms, the obesity-altered adiponiche contributes to cancer development, progression, metastasis and chemoresistance. Moreover, modifications to the gut microbiome and circadian rhythm disruption also play important roles. Clinical studies clearly demonstrate that weight loss is associated with a decreased risk of developing obesity-related cancers, matching the reverse-causality criteria and providing a causality correlation between the two variables. Here, we provide an overview of the methodological, epidemiological and pathophysiological aspects, with a special focus on clinical implications for cancer risk and prognosis and potential therapeutic interventions.
Collapse
Affiliation(s)
- Elisabetta Trevellin
- Center for the Study and Integrated Treatment of Obesity (CeSTIO), Internal Medicine 3, Department of Medicine, University Hospital of Padova, 35128 Padova, Italy
| | - Silvia Bettini
- Center for the Study and Integrated Treatment of Obesity (CeSTIO), Internal Medicine 3, Department of Medicine, University Hospital of Padova, 35128 Padova, Italy
| | - Anna Pilatone
- Center for the Study and Integrated Treatment of Obesity (CeSTIO), Internal Medicine 3, Department of Medicine, University Hospital of Padova, 35128 Padova, Italy
| | - Roberto Vettor
- Center for the Study and Integrated Treatment of Obesity (CeSTIO), Internal Medicine 3, Department of Medicine, University Hospital of Padova, 35128 Padova, Italy
| | - Gabriella Milan
- Center for the Study and Integrated Treatment of Obesity (CeSTIO), Internal Medicine 3, Department of Medicine, University Hospital of Padova, 35128 Padova, Italy
| |
Collapse
|