1
|
Wang X, Dong Y, Huang R, Wang F, Xie J, Liu H, Wang Y, Wang Y, Luo S, Hu D. The Role of Short-Chain Fatty Acids in Myocardial Ischemia-Reperfusion Injury. Curr Nutr Rep 2024; 13:701-708. [PMID: 39110372 PMCID: PMC11489193 DOI: 10.1007/s13668-024-00564-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 10/19/2024]
Abstract
PURPOSE OF REVIEW This study aims to review the effects of short-chain fatty acids (SCFAs) in regulating the myocardial ischemia-reperfusion injury (MIRI). RECENT FINDINGS Coronary heart disease (CHD) is a well-known leading cause of death and disability worldwide. Cardiac substrate metabolism plays the determinant role in assessing the severity of heart injury due to the abruptly shifted energy production during the MIRI. Fatty acids are the main energy fuels for the heart, which are classified into long-, medium- and short chain fatty acids by the length of carbon chain. SCFAs are the main metabolites derived from the anaerobic bacterial fermentation of fiber-rich diets, which are shown to play a protective role in cerebrovascular disease previously. Meanwhile, accumulating evidences suggest that SCFAs can also play a crucial role in cardiac energy metabolism. Results of various studies revealed the cardioprotective effects of SCFAs by displaying anti-inflammatory and anti-ferroptotic function, connecting gut-brain neural circuit and regulating the intestinal flora.
Collapse
Affiliation(s)
- Xunxun Wang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Jingshan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yalan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Jingshan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renyin Huang
- Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Wang
- Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Junke Xie
- Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Liu
- Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wang
- Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Wang
- Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Jingshan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
McDonald T, Puchowicz M, Borges K. Impairments in Oxidative Glucose Metabolism in Epilepsy and Metabolic Treatments Thereof. Front Cell Neurosci 2018; 12:274. [PMID: 30233320 PMCID: PMC6127311 DOI: 10.3389/fncel.2018.00274] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/06/2018] [Indexed: 12/19/2022] Open
Abstract
There is mounting evidence that oxidative glucose metabolism is impaired in epilepsy and recent work has further characterized the metabolic mechanisms involved. In healthy people eating a traditional diet, including carbohydrates, fats and protein, the major energy substrate in brain is glucose. Cytosolic glucose metabolism generates small amounts of energy, but oxidative glucose metabolism in the mitochondria generates most ATP, in addition to biosynthetic precursors in cells. Energy is crucial for the brain to signal "normally," while loss of energy can contribute to seizure generation by destabilizing membrane potentials and signaling in the chronic epileptic brain. Here we summarize the known biochemical mechanisms that contribute to the disturbance in oxidative glucose metabolism in epilepsy, including decreases in glucose transport, reduced activity of particular steps in the oxidative metabolism of glucose such as pyruvate dehydrogenase activity, and increased anaplerotic need. This knowledge justifies the use of alternative brain fuels as sources of energy, such as ketones, TCA cycle intermediates and precursors as well as even medium chain fatty acids and triheptanoin.
Collapse
Affiliation(s)
- Tanya McDonald
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Michelle Puchowicz
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Karin Borges
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Davuluri G, Allawy A, Thapaliya S, Rennison JH, Singh D, Kumar A, Sandlers Y, Van Wagoner DR, Flask CA, Hoppel C, Kasumov T, Dasarathy S. Hyperammonaemia-induced skeletal muscle mitochondrial dysfunction results in cataplerosis and oxidative stress. J Physiol 2016; 594:7341-7360. [PMID: 27558544 PMCID: PMC5157075 DOI: 10.1113/jp272796] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/12/2016] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS Hyperammonaemia occurs in hepatic, cardiac and pulmonary diseases with increased muscle concentration of ammonia. We found that ammonia results in reduced skeletal muscle mitochondrial respiration, electron transport chain complex I dysfunction, as well as lower NAD+ /NADH ratio and ATP content. During hyperammonaemia, leak of electrons from complex III results in oxidative modification of proteins and lipids. Tricarboxylic acid cycle intermediates are decreased during hyperammonaemia, and providing a cell-permeable ester of αKG reversed the lower TCA cycle intermediate concentrations and increased ATP content. Our observations have high clinical relevance given the potential for novel approaches to reverse skeletal muscle ammonia toxicity by targeting the TCA cycle intermediates and mitochondrial ROS. ABSTRACT Ammonia is a cytotoxic metabolite that is removed primarily by hepatic ureagenesis in humans. Hyperammonaemia occurs in advanced hepatic, cardiac and pulmonary disease, and in urea cycle enzyme deficiencies. Increased skeletal muscle ammonia uptake and metabolism are the major mechanism of non-hepatic ammonia disposal. Non-hepatic ammonia disposal occurs in the mitochondria via glutamate synthesis from α-ketoglutarate resulting in cataplerosis. We show skeletal muscle mitochondrial dysfunction during hyperammonaemia in a comprehensive array of human, rodent and cellular models. ATP synthesis, oxygen consumption, generation of reactive oxygen species with oxidative stress, and tricarboxylic acid (TCA) cycle intermediates were quantified. ATP content was lower in the skeletal muscle from cirrhotic patients, hyperammonaemic portacaval anastomosis rat, and C2C12 myotubes compared to appropriate controls. Hyperammonaemia in C2C12 myotubes resulted in impaired intact cell respiration, reduced complex I/NADH oxidase activity and electron leak occurring at complex III of the electron transport chain. Consistently, lower NAD+ /NADH ratio was observed during hyperammonaemia with reduced TCA cycle intermediates compared to controls. Generation of reactive oxygen species resulted in increased content of skeletal muscle carbonylated proteins and thiobarbituric acid reactive substances during hyperammonaemia. A cell-permeable ester of α-ketoglutarate reversed the low TCA cycle intermediates and ATP content in myotubes during hyperammonaemia. However, the mitochondrial antioxidant MitoTEMPO did not reverse the lower ATP content during hyperammonaemia. We provide for the first time evidence that skeletal muscle hyperammonaemia results in mitochondrial dysfunction and oxidative stress. Use of anaplerotic substrates to reverse ammonia-induced mitochondrial dysfunction is a novel therapeutic approach.
Collapse
Affiliation(s)
- Gangarao Davuluri
- Department of PathobiologyCleveland Clinic9500 Euclid AvenueClevelandOH44195USA
| | - Allawy Allawy
- Department of PathobiologyCleveland Clinic9500 Euclid AvenueClevelandOH44195USA
| | - Samjhana Thapaliya
- Department of PathobiologyCleveland Clinic9500 Euclid AvenueClevelandOH44195USA
| | - Julie H. Rennison
- Department of PathobiologyCleveland Clinic9500 Euclid AvenueClevelandOH44195USA
| | - Dharmvir Singh
- Department of PathobiologyCleveland Clinic9500 Euclid AvenueClevelandOH44195USA
| | - Avinash Kumar
- Department of PathobiologyCleveland Clinic9500 Euclid AvenueClevelandOH44195USA
| | - Yana Sandlers
- Department of ChemistryCleveland State UniversitySR 364, 2351 Euclid AvenueClevelandOH44115USA
| | - David R. Van Wagoner
- Department of Molecular CardiologyCleveland Clinic9500 Euclid AvenueClevelandOH44195USA
| | - Chris A. Flask
- Department of Biomedical EngineeringSchool of MedicineCase Western Reserve University10900 Euclid AvenueClevelandOH44106USA
| | - Charles Hoppel
- Department of Pharmacology and MedicineSchool of MedicineCase Western Reserve University10900 Euclid AvenueClevelandOH44106USA
| | - Takhar Kasumov
- Department of Pharmaceutical SciencesNortheast Ohio Medical University4209 State Route 44RootstownOH44272
| | - Srinivasan Dasarathy
- Department of PathobiologyCleveland Clinic9500 Euclid AvenueClevelandOH44195USA
- Department of GastroenterologyCleveland Clinic9500 Euclid AvenueClevelandOH44195USA
| |
Collapse
|
4
|
Kasumov T, Li L, Li M, Gulshan K, Kirwan JP, Liu X, Previs S, Willard B, Smith JD, McCullough A. Ceramide as a mediator of non-alcoholic Fatty liver disease and associated atherosclerosis. PLoS One 2015; 10:e0126910. [PMID: 25993337 PMCID: PMC4439060 DOI: 10.1371/journal.pone.0126910] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/09/2015] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease (CVD) is a serious comorbidity in nonalcoholic fatty liver disease (NAFLD). Since plasma ceramides are increased in NAFLD and sphingomyelin, a ceramide metabolite, is an independent risk factor for CVD, the role of ceramides in dyslipidemia was assessed using LDLR-/- mice, a diet-induced model of NAFLD and atherosclerosis. Mice were fed a standard or Western diet (WD), with or without myriocin, an inhibitor of ceramide synthesis. Hepatic and plasma ceramides were profiled and lipid and lipoprotein kinetics were quantified. Hepatic and intestinal expression of genes and proteins involved in insulin, lipid and lipoprotein metabolism were also determined. WD caused hepatic oxidative stress, inflammation, apoptosis, increased hepatic long-chain ceramides associated with apoptosis (C16 and C18) and decreased very-long-chain ceramide C24 involved in insulin signaling. The plasma ratio of ApoB/ApoA1 (proteins of VLDL/LDL and HDL) was increased 2-fold due to increased ApoB production. Myriocin reduced hepatic and plasma ceramides and sphingomyelin, and decreased atherosclerosis, hepatic steatosis, fibrosis, and apoptosis without any effect on oxidative stress. These changes were associated with decreased lipogenesis, ApoB production and increased HDL turnover. Thus, modulation of ceramide synthesis may lead to the development of novel strategies for the treatment of both NAFLD and its associated atherosclerosis.
Collapse
Affiliation(s)
- Takhar Kasumov
- Department of Gastroenterology& Hepatology, Cleveland Clinic, Cleveland, OH, United States of America
- * E-mail: (TK); (AM)
| | - Ling Li
- Department of Research Core Services, Cleveland Clinic, Cleveland, OH, United States of America
| | - Min Li
- Department of Pathobiology, Cleveland Clinic, Cleveland, OH, United States of America
| | - Kailash Gulshan
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, OH, United States of America
| | - John P. Kirwan
- Department of Pathobiology, Cleveland Clinic, Cleveland, OH, United States of America
| | - Xiuli Liu
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, OH, United States of America
| | - Stephen Previs
- Department of Nutrition & Medicine, Case Western Reserve University School of Medicine Cleveland Clinic, Cleveland, OH, United States of America
| | - Belinda Willard
- Department of Research Core Services, Cleveland Clinic, Cleveland, OH, United States of America
| | - Jonathan D. Smith
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, OH, United States of America
| | - Arthur McCullough
- Department of Gastroenterology& Hepatology, Cleveland Clinic, Cleveland, OH, United States of America
- Department of Pathobiology, Cleveland Clinic, Cleveland, OH, United States of America
- * E-mail: (TK); (AM)
| |
Collapse
|
5
|
Czibik G, Steeples V, Yavari A, Ashrafian H. Citric Acid Cycle Intermediates in Cardioprotection. ACTA ACUST UNITED AC 2014; 7:711-9. [DOI: 10.1161/circgenetics.114.000220] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Over the last decade, there has been a concerted clinical effort to deliver on the laboratory promise that a variety of maneuvers can profoundly increase cardiac tolerance to ischemia and/or reduce additional damage consequent upon reperfusion. Here we will review the proximity of the metabolic approach to clinical practice. Specifically, we will focus on how the citric acid cycle is involved in cardioprotection. Inspired by cross-fertilization between fundamental cancer biology and cardiovascular medicine, a set of metabolic observations have identified novel metabolic pathways, easily manipulable in man, which can harness metabolism to robustly combat ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Gabor Czibik
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Violetta Steeples
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Arash Yavari
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Houman Ashrafian
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
|
7
|
Des Rosiers C, Labarthe F, Lloyd SG, Chatham JC. Cardiac anaplerosis in health and disease: food for thought. Cardiovasc Res 2011; 90:210-9. [PMID: 21398307 DOI: 10.1093/cvr/cvr055] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
There has been a resurgence of interest for the field of cardiac metabolism catalysed by the increased need for new therapeutic targets for patients with heart failure. The primary focus of research in this area to date has been on the impact of substrate selection for oxidative energy metabolism; however, anaplerotic metabolism also has significant interest for its potential cardioprotective role. Anaplerosis refers to metabolic pathways that replenish the citric acid cycle intermediates, which are essential to energy metabolism; however, our understanding of the role and regulation of this process in the heart, particularly under pathophysiological conditions, is very limited. Therefore, the goal of this article is to provide a foundation for future directions of research on cardiac anaplerosis and heart disease. We include an overview of anaplerotic metabolism, a critical evaluation of current methods available for its quantitation in the intact heart, and a discussion of its role and regulation both in health and disease as it is currently understood based mostly on animal studies. We also consider genetic diseases affecting anaplerotic pathways in humans and acute intervention studies with anaplerotic substrates in the clinics. Finally, as future perspectives, we will share our thoughts about potential benefits and practical considerations on modalities of interventions targeting anaplerosis in heart disease, including heart failure.
Collapse
Affiliation(s)
- Christine Des Rosiers
- Department of Nutrition, Montreal Heart Institute and Université de Montréal, Montreal, QC, Canada H3C 3J7.
| | | | | | | |
Collapse
|
8
|
Kombu RS, Brunengraber H, Puchowicz MA. Analysis of the citric acid cycle intermediates using gas chromatography-mass spectrometry. Methods Mol Biol 2011; 708:147-57. [PMID: 21207288 DOI: 10.1007/978-1-61737-985-7_8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Researchers view analysis of the citric acid cycle (CAC) intermediates as a metabolomic approach to identifying unexpected correlations between apparently related and unrelated pathways of metabolism. Relationships of the CAC intermediates, as measured by their concentrations and relative ratios, offer useful information to understanding interrelationships between the CAC and metabolic pathways under various physiological and pathological conditions. This chapter presents a relatively simple method that is sensitive for simultaneously measuring concentrations of CAC intermediates (relative and absolute) and other related intermediates of energy metabolism using gas chromatography-mass spectrometry.
Collapse
Affiliation(s)
- Rajan S Kombu
- Department of Nutrition, Mouse Metabolic Phenotyping Center, Case Western Reserve University, Cleveland, OH, USA
| | | | | |
Collapse
|