1
|
Yang R, Liu Q, Wang D, Zhao Z, Su Z, Fan D, Liu Q. The Toll-like Receptor-2/4 Antagonist, Sparstolonin B, and Inflammatory Diseases: A Literature Mining and Network Analysis. Cardiovasc Drugs Ther 2025; 39:499-515. [PMID: 38270691 DOI: 10.1007/s10557-023-07535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Sparstolonin B (SsnB) is characterized as a new toll-like receptor (TLR)-2/4 antagonist. However, the effects of SsnB on different inflammatory diseases have not been systemically reviewed. METHODS We investigated the effects of SsnB on inflammatory diseases with data mining and network analysis of literature, including frequency description, cluster analysis, association rule mining, functional enrichment, and protein-protein interaction (PPI) mining. RESULTS A total of 27 experimental reports were included. The ARRIVE 2.0 guidelines were used to evaluate the quality of animal studies. Frequency analysis revealed 13 different diseases (cardio-cerebrovascular system diseases account for 23.53%), 12 pharmacological effects (anti-inflammatory effect accounts for 53.85%), and 67 therapeutic targets. The overview of investigation sequence of SsnB studies was depicted by Sankey diagram. Cluster analysis classified the therapeutic targets for SsnB into four main categories: (1) NF-κB; (2) IL-1β, IL-6, and TNF-α; (3) TLR2, TLR4, and MyD88; (4) the other targets. Moreover, the Apriori association discovered two main association pairs: (1) TNF-α, IL-1β, and IL-6 and (2) TLR2, TLR4, and MyD88 (support range 33.33-50%, confidence range 83.33-88.89%). Functional enrichment of the therapeutic targets for SsnB showed that the top enriched items in the biological process were mainly the response to lipopolysaccharide (LPS)/bacterial origin and regulation of cytokine production. Finally, the PPI network and hub gene selection by maximal clique centrality (MCC) algorithm indicated the top ranked proteins were TNF-α, IL-1β, IL-6, AKT1, PPAR-γ, TLR4, CCL2, and TLR2. CONCLUSION These results emphasized the importance of TLR2/TLR4-MyD88-NF-κB-IL-1β/IL-6/TNF-α pathways as therapeutic targets of SsnB in inflammatory diseases.
Collapse
Affiliation(s)
- Rongyuan Yang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Qingqing Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Dawei Wang
- The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangdong, 510405, China
| | - Zhen Zhao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Zhaohai Su
- Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, 341000, China
| | - Daping Fan
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, 29209, USA.
| | - Qing Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
2
|
Sparstolonin B Exerts Therapeutic Effects on Collagen-Induced Arthritis by Inhibiting the NLRP3 Inflammasome and Reducing the Activity of α1,3-Fucosyltransferase. Mediators Inflamm 2021. [DOI: 10.1155/2021/8145412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objective. To explore the role of α1,3-fucosyltransferase in the mediation of rheumatoid arthritic inflammation, the protective effect of Sparstolonin B on rheumatoid arthritis (RA), and the mechanisms that regulate the NLRP3 inflammasome. Methods. Forty, weighing from 260-300 g, male Sprague-Dawley rats were randomly divided into the following groups: a sham operation group (Sham group), a rheumatoid arthritis model group (RA group), an RA+Sparstolonin B treatment group (RAS group), an RA+Iguratimod group (RAI group), and an RA+SsnB+NLRP3 inflammasome activator (Nigericin) group (RASN group); ten animals were allocated to each group. We determined the arthritis index for each group of rats, and pathological changes were evaluated by hematoxylin-eosin staining. We also used ELISAs to determine the serum levels of IL-17, IL-6, TNF-α, TGF-β, IL-18, and IL-1β. TUNEL staining was used to investigate apoptosis in synovial cells. IF was used to detect the release of ROS, ASC formation, and the expression levels of FucT-V and NLRP3. Western blotting was used to detect the protein expression levels of Bc1-2, Bax, TLR4, MYD88, NF-κB, pro-caspase-1, NLRP3, FucT-V, E-Selectin, and P-Selectin. We also performed in vitro experiments with Sparstolonin B and detected changes in 1,3-fucosyltransferase activity by ELISA. The pyroptosis-related phenotype, including ASC, was identified by immunofluorescence, while levels of NLRP-3, pro-IL-1, and pro-caspase-1 were detected by western blotting. Results. Sparstolonin B was showed to alleviate joint swelling in RA rats, inhibited inflammatory cell infiltration and the release of ROS, reduced damage caused by oxidative stress, and suppressed the rate of apoptosis in synovial cells. The administration of Sparstolonin B inhibited the secretion of IL-17 from Th17 cells and triggered the secretion of TGF-β from Treg cells, thus leading to the reduced expression of TLR4, MyD88, and NF-κB, and the suppression of TNF-α secretion. Moreover, Sparstolonin B downregulated the expression of NLRP3, inhibited ASC formation in vivo and in vitro, and reduced the levels of IL-18 and IL-1β. The expression levels of FucT-V, E-Selectin, and P-Selectin were also inhibited. Interestingly, these protective effects of Sparstolonin B could be blocked in RA rats by inhibiting the activation of the NLRP3 inflammasome. Conclusion. Sparstolonin B improved inflammatory responses and oxidative stress by inhibiting the NLRP3 inflammasome, inhibiting the expression of FucT-V and downregulating the TLR4/MYD88/NF-𝜅B signaling pathway in order to rescue RA.
Collapse
|
3
|
Zhang XY, Wang L, Yan WJ, Lu XT, Li XY, Sun YY. Period 2-Induced Activation of Autophagy Improves Cardiac Remodeling After Myocardial Infarction. Hum Gene Ther 2021; 31:119-128. [PMID: 31822134 DOI: 10.1089/hum.2019.146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidence indicates that the onset of myocardial infarction (MI) shows obvious circadian rhythmicity. Clinical studies have shown that MIs that occur in the early morning have a poor prognosis, but the mechanisms involved are still unknown. In this study, we showed that the expression level of Period 2 (per2) in the heart of mice is lower in the early morning than at noon and that increasing the expression of per2 in H9C2 cells and rat cardiomyocytes increases autophagy levels. Further studies indicated that overexpression of per2 after an MI improved cardiac function by increasing autophagy. In summary, this study has shown that the circadian clock protein, per2, may be a regulator of MI.
Collapse
Affiliation(s)
- Xin-Yu Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China.,Grade 2016, School of Basic Medical Sciences, Clinical Medicine (5 + 3), Shandong University, Jinan, China
| | - Lin Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China.,Department of Gerontology, The Second Hospital of Shandong University, Jinan, China
| | - Wen-Jiang Yan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xiao-Ting Lu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xin-Yun Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yuan-Yuan Sun
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
4
|
Liu S, Hu J, Shi C, Sun L, Yan W, Song Y. Sparstolonin B exerts beneficial effects on prostate cancer by acting on the reactive oxygen species-mediated PI3K/AKT pathway. J Cell Mol Med 2021; 25:5511-5524. [PMID: 33951324 PMCID: PMC8184693 DOI: 10.1111/jcmm.16560] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/24/2021] [Accepted: 04/05/2021] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer is a major health concern in males worldwide, owing to its high incidence. Sparstolonin B (SsnB), a component of the Chinese herbal medicine Sparganium stoloniferum, is used to treat many diseases. However, the effects and mechanisms of action of SsnB in prostate cancer have not yet been reported. In this study, we evaluated the effects of SsnB on cellular processes and tumour growth. In particular, we verified that SsnB could inhibit the proliferation, migration and invasion of prostate cancer cells and induce apoptosis by activating G2/M phase arrest in vitro based on a series of cytological experiments. In vivo, we found that SsnB could inhibit tumour growth in nude mouse xenograft models. We further confirmed that SsnB could repress the PI3K/AKT pathway by increasing reactive oxygen species (ROS) accumulation and oxidative stress. Collectively, SsnB inhibits tumour growth and induces apoptosis in prostate cancer via the suppression of the ROS‐mediated PI3K/AKT pathway and may be a new alternative to adjuvant therapy for prostate cancer.
Collapse
Affiliation(s)
- Shaozhuang Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiapeng Hu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Changlong Shi
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li Sun
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wentao Yan
- Department of Urology, The Fifth People's Hospital of Fudan University, Shanghai, China
| | - Yongsheng Song
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Luo Z, Liu Y, Zhao Z, Yan X, Wang D, Liu Q. Effects of Astragalus injection and Salvia Miltiorrhiza injection on serum inflammatory markers in patients with stable coronary heart disease: a randomized controlled trial protocol. Trials 2020; 21:267. [PMID: 32178701 PMCID: PMC7076985 DOI: 10.1186/s13063-020-4109-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/26/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Coronary heart disease (CHD) is a clinical syndrome caused by coronary atherosclerosis (AS) or functional changes in coronary arteries. We have previously reported that astragaloside IV (in astragalus) and tanshinone IIA (in Salvia miltiorrhiza) improve myocardial ischemic injury. METHODS This study will employ the randomized, blinded, prospective, single-center experiments approach. Briefly, a total of 160 eligible patients will be equally randomized into three treatment groups and placebo control groups. Patients will receive appropriate treatments every 24 h for seven days after enrollment and followed up for 28 days. The main evaluation indicators will be cell count, serum high-sensitivity C-reactive protein (hs-CRP) level, monocyte chemoattractant protein 1 (MCP-1), interleukin-6 (IL-6), interleukin-1β (IL-1β), interleukin-8 (IL-8), interleukin-18 (IL-18), interleukin-10 (IL-10), tumor necrosis factor (TNF)-α, oxidized low density lipoprotein (OX-LDL), angina grade, and Traditional Chinese Medicine (TCM) symptom changes scale. Secondary indicators to be evaluated will include B-type natriuretic peptide (BNP) levels, troponin (cTn), muscle enzyme isoenzyme (CK-MB), heart-type fatty acid binding protein (H-FABP), liver and renal functions, as well as blood coagulation. Close monitoring of adverse events during the trial will also be conducted. DISCUSSION This randomized controlled trial of Chinese herbal extracts for the treatment of coronary heart disease will generate results that are expected to provide valuable clinical evidence to inform future development of therapies towards management of CHD. TRIAL REGISTRATION China Clinical Trial Registration Center, ChiCTR1900021590. Registered on 28 February 2019.
Collapse
Affiliation(s)
- Zhihao Luo
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou and Zhuhai, China
| | - Yuntao Liu
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou and Zhuhai, China.,Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Emergency Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Zhen Zhao
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou and Zhuhai, China
| | - Xia Yan
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou and Zhuhai, China.,Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Emergency Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Dawei Wang
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou and Zhuhai, China.,Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Qing Liu
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou and Zhuhai, China. .,Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Feng W, Jin L, Xie Q, Huang L, Jiang Z, Ji Y, Li C, Yang L, Wang D. Eugenol protects the transplanted heart against ischemia/reperfusion injury in rats by inhibiting the inflammatory response and apoptosis. Exp Ther Med 2018; 16:3464-3470. [PMID: 30233696 PMCID: PMC6143862 DOI: 10.3892/etm.2018.6598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 06/06/2018] [Indexed: 12/21/2022] Open
Abstract
The aim of the present study was to investigate the protective effect of eugenol on the transplanted heart and explore its mechanisms of action. Male Sprague-Dawley rats were randomly divided into a sham group (n=10), a eugenol group (n=10 pairs, donors and recipients) and a control group (n=10 pairs, donors and recipients). The recipients in the eugenol group received an intraperitoneal injection of eugenol (20 mg/kg/day). The sham group and the control group received equal volumes of physiological saline by intraperitoneal injection. After 15 days the recipients in the control and eugenol groups underwent abdominal heterotopic heart transplantation, while the sham group received only a coeliotomy. The orthotopic hearts in the sham group and the heterotopic hearts in the eugenol and control groups, as well as the peripheral blood samples from all three groups were taken 3 h post operation for biochemical, histopathological, molecular and apoptosis analyses. Compared with the control group, the eugenol treatment significantly reduced the myocardial malondialdehyde content, serum cardiac troponin I, creatine kinase-MB, tumor necresis factor-α and interleukin-6 levels (P<0.05) and significantly alleviated myocardial injury. Western blot analysis demonstrated that the protein expression of cleaved Poly (ADP-ribose) polymerase 1, BAX and active caspase-3 in the eugenol group were significantly decreased, while B-cell lymphoma 2 expression was significantly increased compared with the control group (P<0.05). The myocardial apoptosis rate of the eugenol group was significantly decreased compared with the control group (P<0.05). In conclusion eugenol treatment significantly reduced myocardial injury and demonstrated protective effects for the transplanted heart.
Collapse
Affiliation(s)
- Wei Feng
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Longyu Jin
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Qianyi Xie
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Lihua Huang
- Center for Medical Experiments, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhibin Jiang
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Ying Ji
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Chunyun Li
- Department of Pediatrics, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Linfei Yang
- Center for Medical Experiments, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Dianjun Wang
- Department of Cardiothoracic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
7
|
Caplan IF, Maguire-Zeiss KA. Toll-Like Receptor 2 Signaling and Current Approaches for Therapeutic Modulation in Synucleinopathies. Front Pharmacol 2018; 9:417. [PMID: 29780321 PMCID: PMC5945810 DOI: 10.3389/fphar.2018.00417] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 04/10/2018] [Indexed: 12/18/2022] Open
Abstract
The innate immune response in the central nervous system (CNS) is implicated as both beneficial and detrimental to health. Integral to this process are microglia, the resident immune cells of the CNS. Microglia express a wide variety of pattern-recognition receptors, such as Toll-like receptors, that detect changes in the neural environment. The activation of microglia and the subsequent proinflammatory response has become increasingly relevant to synucleinopathies, including Parkinson's disease the second most prevalent neurodegenerative disease. Within these diseases there is evidence of the accumulation of endogenous α-synuclein that stimulates an inflammatory response from microglia via the Toll-like receptors. There have been recent developments in both new and old pharmacological agents designed to target microglia and curtail the inflammatory environment. This review will aim to delineate the process of microglia-mediated inflammation and new therapeutic avenues to manage the response.
Collapse
Affiliation(s)
- Ian F Caplan
- Biology Department, Georgetown University, Washington, DC, United States
| | - Kathleen A Maguire-Zeiss
- Biology Department, Georgetown University, Washington, DC, United States.,Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
8
|
Chang JE, Kim HJ, Jheon S, Lim C. Protective effects of GV1001 on myocardial ischemia‑reperfusion injury. Mol Med Rep 2017; 16:7315-7320. [PMID: 28944828 PMCID: PMC5865859 DOI: 10.3892/mmr.2017.7528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 08/02/2017] [Indexed: 12/27/2022] Open
Abstract
The potential cardioprotective effects of the novel vaccine peptide GV1001 were evaluated in myocardial ischemia‑reperfusion injury induced rat models. GV1001 is a human telomerase reverse transcriptase derived peptide, which has been reported to possess both anti‑tumor and anti‑inflammatory effects. The normal saline (control group) and various concentrations (0.001‑10 mg/kg) of GV1001 were administered directly to the right ventricle anterior wall before induction of ischemia. The was induced by Tightening the snare around the left anterior descending coronary artery for 40 min, before releasing the snare for 10 min induced the myocardial ischemia‑reperfusion injury and was conducted in Sprague‑Dawley rats. The area at risk, histology, apoptotic cells, neutrophils and inflammatory cytokines were analyzed from the excised heart tissue following myocardial ischemia‑reperfusion injury. The area at risk was protected by concentrations of GV1001 equal to or higher than 0.01 mg/kg. At 0.1 mg/kg and higher concentrations of GV1001, the hemorrhage in the heart was attenuated, while severe congestion was reported in the control group. Apoptotic cells, myeloperoxidase activity and inflammatory cytokines [tumor necrosis factor (TNF)‑α and interleukin (IL)‑6] revealed decreased levels in a dose‑dependent manner with respect to GV1001 concentration. The group treated with 10 mg/kg GV1001 demonstrated 59.73% apoptotic cells (P<0.001), 48.14% neutrophil contents (P<0.001), 55.63% TNF‑α (P<0.01) and 42.35% IL‑6 (P<0.01) levels, compared with the control group. The novel vaccine peptide GV1001 provided protective effects on myocardial ischemia‑reperfusion injury and, therefore, it should be considered as an alternative potential anti‑inflammatory agent for myocardial ischemia‑reperfusion injury.
Collapse
Affiliation(s)
- Ji-Eun Chang
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - Hyun Jun Kim
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - Sanghoon Jheon
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
- Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Cheong Lim
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
- Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
9
|
Wang C, Wang R, Xie H, Sun Y, Tao R, Liu W, Li W, Lu H, Jia Z. Effect of acetazolamide on cytokines in rats exposed to high altitude. Cytokine 2016; 83:110-117. [PMID: 27104804 DOI: 10.1016/j.cyto.2016.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 03/19/2016] [Accepted: 04/03/2016] [Indexed: 02/08/2023]
Abstract
Acute mountain sickness (AMS) is a dangerous hypoxic illness that can affect humans who rapidly reach a high altitude above 2500m. In the study, we investigated the changes of cytokines induced by plateau, and the acetazolamide (ACZ) influenced the cytokines in rats exposed to high altitude. Wistar rats were divided into low altitude (Control), high altitude (HA), and high altitude+ACZ (22.33mg/kg, Bid) (HA+ACZ) group. The rats were acute exposed to high altitude at 4300m for 3days. The HA+ACZ group were given ACZ by intragastric administration. The placebo was equal volume saline. The results showed that hypoxia caused the heart, liver and lung damage, compared with the control group. Supplementation with ACZ significantly alleviated hypoxia-caused damage to the main organs. Compared with the HA group, the biochemical and blood gas indicators of the HA+ACZ group showed no difference, while some cytokines have significantly changed, such as activin A, intercellular adhesion molecule-1 (ICAM-1, CD54), interleukin-1α,2 (IL-1α,2), l-selectin, monocyte chemotactic factor (MCP-1), CC chemokines (MIP-3α) and tissue inhibitor of matrix metalloproteinase 1 (TIMP-1). Then, the significant difference pro-inflammatory cytokines in protein array were chosen for further research. The protein and mRNA content of pro-inflammatory cytokines MCP-1, interleukin-1β (IL-1β), tumor necrosis factor (TNF-α), interferon-γ (IFN-γ) in rat lung were detected. The results demonstrated that the high altitude affected the body's physiological and biochemical parameters, but, ACZ did not change those parameters of the hypoxia rats. This study found that ACZ could decrease the content of pro-inflammatory cytokines, such as MCP-1, IL-1β, TNF-α and IFN-γ in rat lungs, and, the lung injury in the HA+ACZ group reduced. The mechanism that ACZ protected hypoxia rats might be related to changes in cytokine content. The reducing of the pro-inflammatory cytokines in rat lung might be other reason to explain ACZ against the acute mountain sickness.
Collapse
Affiliation(s)
- Chang Wang
- PLA Key Laboratory of the Plateau of the Environmental Damage Control, Lanzhou General Hospital, Lanzhou Command, Lanzhou 730050, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Rong Wang
- PLA Key Laboratory of the Plateau of the Environmental Damage Control, Lanzhou General Hospital, Lanzhou Command, Lanzhou 730050, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| | - Hua Xie
- PLA Key Laboratory of the Plateau of the Environmental Damage Control, Lanzhou General Hospital, Lanzhou Command, Lanzhou 730050, China
| | - Yuhuan Sun
- PLA Key Laboratory of the Plateau of the Environmental Damage Control, Lanzhou General Hospital, Lanzhou Command, Lanzhou 730050, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Rui Tao
- PLA Key Laboratory of the Plateau of the Environmental Damage Control, Lanzhou General Hospital, Lanzhou Command, Lanzhou 730050, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Wenqing Liu
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Wenbin Li
- PLA Key Laboratory of the Plateau of the Environmental Damage Control, Lanzhou General Hospital, Lanzhou Command, Lanzhou 730050, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Hui Lu
- PLA Key Laboratory of the Plateau of the Environmental Damage Control, Lanzhou General Hospital, Lanzhou Command, Lanzhou 730050, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhengping Jia
- PLA Key Laboratory of the Plateau of the Environmental Damage Control, Lanzhou General Hospital, Lanzhou Command, Lanzhou 730050, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
10
|
Dattaroy D, Seth RK, Das S, Alhasson F, Chandrashekaran V, Michelotti G, Fan D, Nagarkatti M, Nagarkatti P, Diehl AM, Chatterjee S. Sparstolonin B attenuates early liver inflammation in experimental NASH by modulating TLR4 trafficking in lipid rafts via NADPH oxidase activation. Am J Physiol Gastrointest Liver Physiol 2016; 310:G510-25. [PMID: 26718771 PMCID: PMC4824178 DOI: 10.1152/ajpgi.00259.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/28/2015] [Indexed: 01/31/2023]
Abstract
Although significant research data exist on the pathophysiology of nonalcoholic steatohepatitis (NASH), finding an efficient treatment regimen for it remains elusive. The present study used sparstolonin B (SsnB), a novel TLR4 antagonist derived from the Chinese herb Sparganium stoloniferum, as a possible drug to mitigate early inflammation in NASH. This study used an early steatohepatitic injury model in high-fat-fed mice with CYP2E1-mediated oxidative stress as a second hit. SsnB was administered for 1 wk along with bromodichloromethane (BDCM), an inducer of CYP2E1-mediated oxidative stress. Results showed that SsnB administration attenuated inflammatory morphology and decreased elevation of the liver enzyme alanine aminotransferase (ALT). Mice administered SsnB also showed decreased mRNA expression of proinflammatory cytokines TNF-α, IFN-γ, IL-1β, and IL-23, while protein levels of both TNF-α and IL-1β were significantly decreased. SsnB significantly decreased Kupffer cell activation as evidenced by reduction in CD68 and monocyte chemoattractant protein-1 (MCP1) mRNA and protein levels with concomitant inhibition of macrophage infiltration in the injured liver. Mechanistically, SsnB decreased TLR4 trafficking to the lipid rafts, a phenomenon described by the colocalization of TLR4 and lipid raft marker flotillin in tissues and immortalized Kupffer cells. Since we have shown previously that NADPH oxidase drives TLR4 trafficking in NASH, we studied the role of SsnB in modulating this pathway. SsnB prevented NADPH oxidase activation in vivo and in vitro as indicated by decreased peroxynitrite formation. In summary, the present study reports a novel use of the TLR4 antagonist SsnB in mitigating inflammation in NASH and in parallel shows a unique molecular mechanism of decreasing nitrative stress.
Collapse
Affiliation(s)
- Diptadip Dattaroy
- 1Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina;
| | - Ratanesh Kumar Seth
- 1Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina;
| | - Suvarthi Das
- 1Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina;
| | - Firas Alhasson
- 1Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina;
| | - Varun Chandrashekaran
- 1Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina;
| | | | - Daping Fan
- 3Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina; and
| | - Mitzi Nagarkatti
- 4Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Prakash Nagarkatti
- 4Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Anna Mae Diehl
- 2Division of Gastroenterology, Duke University, Durham, North Carolina;
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina;
| |
Collapse
|
11
|
Zhang J, Zou N, Liang Q, Tang Y, Duan J. Simultaneous HPLC Quantitative Analysis of Nine Bioactive Constituents in Scirpus Yagara Ohwi. (Cyperaceae). J Chromatogr Sci 2015; 54:453-9. [PMID: 26657411 DOI: 10.1093/chromsci/bmv167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Indexed: 11/14/2022]
Abstract
The tuber of Scirpus yagara Ohwi. (Cyperaceae) has long been used in traditional Chinese medicine (TCM). Several chemical constituents isolated from it possess a variety of physiologically activities such as anti-inflammatory, antitumor and antioxidant. A simultaneous high-performance liquid chromatography (HPLC) analysis was developed and validated for the determination of nine active components in tubers and aerial parts of S. yagara. The analysis was performed on a YMC-Pack ODS-A column (4.6 × 250 mm, 5 μm, 30 nm) with a multilinear gradient mobile phase of water-formic acid (100 : 0.2, v/v) and methanol. The established HPLC method was validated in terms of linearity, sensitivity, precision, accuracy, recovery and stability. All analyzed components were detected in the whole tested samples, and the contents of most components in the aerial parts were even higher than those in the tubers. Moreover, the best harvest period was discovered to be November, which is different from the traditional. The method developed was successfully applied for simultaneous qualitative and quantitative analysis of nine active components in S. yagara.
Collapse
Affiliation(s)
- Jianfang Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Nuoshu Zou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Qiaoli Liang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Yamin Tang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Jin'ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| |
Collapse
|
12
|
Zou NS, Liang QL, Li P, Liu J, Liu X, Kang A, Deng HS. Determination of sparstolonin B by ultra-high performance liquid chromatography coupled with triple quadrupole mass spectrometry: application to pharmacokinetic study of sparstolonin B in rat plasma. Biomed Chromatogr 2015; 29:1486-91. [PMID: 25731641 DOI: 10.1002/bmc.3447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 01/01/2015] [Accepted: 01/14/2015] [Indexed: 11/11/2022]
Abstract
Sparstolonin B (SsnB), a spontaneous isocoumarin compound isolated from the tuber of Scirpus yagara Ohwi. (Cyperaceae), possesses potent anti-inflammatory and antitumor activity. In the present study, a rapid and simple UHPLC/MS/MS method for determination of SsnB in rat plasma was developed and validated. Plasma samples were pretreated by liquid-liquid extraction with ethyl acetate containing rhein as an internal standard and separated on a C18 column at 35 °C, with a gradient mobile phase consisting of acetonitrile and water containing 0.2% (v/v) formic acid within 2.1 min. MS/MS detection was accomplished in multiple reaction monitoring mode with negative electrospray ionization. The precursor-product ion transitions were m/z 266.9 [M-H](-) → m/z 211.0 for SsnB and m/z 283.2 [M-H](-) → m/z 239.0 for IS. The intra- and inter-day precision (RSD) was <8.98% and the accuracy (RE) ranged from -7.40 to 4.50%. The extraction recoveries ranged from 96.28 to 97.30%. The pharmacokinetic parameters were calculated using Win Nonlin53 software. The absolute bioavailability of SsnB was estimated to be 6.98%. The proposed method was successfully applied to a pharmacokinetic study of SsnB in rats after intravenous administration with a dose of 0.5 mg/kg and oral administration at a dose of 5 mg/kg.
Collapse
Affiliation(s)
- Nuo-Shu Zou
- Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China
| | - Qiao-Li Liang
- Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China
| | - Ping Li
- Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China
| | - Jie Liu
- Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China
| | - Xiao Liu
- Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China.,Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing, 210023, China
| | - An Kang
- Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China
| | - Hai-Shan Deng
- Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China
| |
Collapse
|