1
|
Močnik M, Golob Jančič S, Filipič M, Homšak E, Svetej M, Marčun Varda N. Evaluation of salusin-β in paediatric patients with chronic kidney disease or hypertension. Adv Med Sci 2025; 70:184-190. [PMID: 40020780 DOI: 10.1016/j.advms.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/15/2024] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
PURPOSE Salusins are newly identified endogenous peptides implicated in the atherosclerotic process. Salusin-β, in particular, is recognized for its proatherogenic role. Given that atherosclerosis can commence in childhood, salusin-β holds promise as a potential biomarker for cardiovascular risk assessment. The objective of our study was to investigate salusin-β levels in children with early stages of chronic kidney disease (CKD) or hypertension (HTN), and compare them to healthy controls. Furthermore, we aimed to evaluate its association with obesity and pulse wave velocity (PWV), the latter being a well-established marker for determining arterial elasticity. MATERIALS AND METHODS This cross-sectional study involved 96 paediatric patients, including 46 with CKD and 50 with HTN, as well as 33 healthy controls. Anthropometric measurements, PWV assessments, serum salusin-β values, and basic laboratory investigations were conducted for all participants. RESULTS Salusin-β levels were found to be elevated in patients with CKD (p = 0.014), but not in patients with HTN when compared to healthy controls. When correlating salusin-β levels with PWV, a significant but weak correlation was observed (r = 0.211, p = 0.020). CONCLUSIONS Salusin-β levels were elevated in paediatric patients with CKD. Additionally, salusin-β levels correlated significantly with PWV. Obesity played a smaller role in these correlations, with significant correlations observed only after combining cardiovascular risk factors revealing certain associations between salusin-β levels and some cardiovascular variables, but with inconclusive findings and, in some instances, even contrary to anticipated outcomes.
Collapse
Affiliation(s)
- Mirjam Močnik
- Department of Paediatrics, University Medical Centre Maribor, Maribor, Slovenia.
| | - Sonja Golob Jančič
- Department of Paediatrics, University Medical Centre Maribor, Maribor, Slovenia
| | - Martina Filipič
- Department of Paediatrics, University Medical Centre Maribor, Maribor, Slovenia
| | - Evgenija Homšak
- Department of Laboratory Diagnostics, University Medical Centre Maribor, Maribor, Slovenia; Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Mateja Svetej
- Department of Laboratory Diagnostics, University Medical Centre Maribor, Maribor, Slovenia
| | - Nataša Marčun Varda
- Department of Paediatrics, University Medical Centre Maribor, Maribor, Slovenia; Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
2
|
Cui X, Zhang T, Xie T, Guo FX, Zhang YY, Deng YJ, Wang Q, Guo YX, Dong MH, Luo XT. Research Progress on the Correlation Between Hypertension and Gut Microbiota. J Multidiscip Healthc 2024; 17:2371-2387. [PMID: 38770171 PMCID: PMC11104380 DOI: 10.2147/jmdh.s463880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024] Open
Abstract
Among cardiovascular diseases, hypertension is the most important risk factor for morbidity and mortality worldwide, and its pathogenesis is complex, involving genetic, dietary and environmental factors. The characteristics of the gut microbiota can vary in response to increased blood pressure (BP) and influence the development and progression of hypertension. This paper describes five aspects of the relationship between hypertension and the gut microbiota, namely, the different types of gut microbiota, metabolites of the gut microbiota, sympathetic activation, gut-brain interactions, the effects of exercise and dietary patterns and the treatment of the gut microbiota through probiotics, faecal microbiota transplantation (FMT) and herbal remedies, providing new clues for the future prevention of hypertension. Diet, exercise and traditional Chinese medicine may contribute to long-term improvements in hypertension, although the effects of probiotics and FMT still need to be validated in large populations.
Collapse
Affiliation(s)
- Xiaomei Cui
- Key Laboratory of Cardio Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People’s Republic of China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Ting Zhang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Tao Xie
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Fang-xi Guo
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Yu-ying Zhang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Yuan-jia Deng
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Qi Wang
- Key Laboratory of Cardio Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People’s Republic of China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Yi-xing Guo
- Key Laboratory of Cardio Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People’s Republic of China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Ming-hua Dong
- Key Laboratory of Cardio Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People’s Republic of China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Xiao-ting Luo
- Key Laboratory of Cardio Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People’s Republic of China
- School of General Medicine, Gannan Medical University, Ganzhou, People’s Republic of China
| |
Collapse
|
3
|
Xu Y, Fei X, Fu H, Chen A, Zhu X, Zhang F, Han Y. Upregulated expression of a TOR2A gene product-salusin-β in the paraventricular nucleus enhances sympathetic activity and cardiac sympathetic afferent reflex in rats with chronic heart failure induced by coronary artery ligation. Acta Physiol (Oxf) 2023; 238:e13987. [PMID: 37183727 DOI: 10.1111/apha.13987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/17/2023] [Accepted: 05/12/2023] [Indexed: 05/16/2023]
Abstract
AIM Enhanced cardiac sympathetic afferent reflex (CSAR) promotes sympathetic hyperactivation in chronic heart failure (CHF). Salusin-β is a torsin family 2 member A (TOR2A) gene product and a cardiovascular active peptide closely associated with cardiovascular diseases. We aimed to determine the roles of salusin-β in the paraventricular nucleus (PVN) in modulating enhanced CSAR and sympathetic hyperactivation in rats with CHF induced by coronary artery ligation and elucidate the underlying molecular mechanisms. METHODS CSAR was evaluated based on the responses of mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA) to the epicardial administration of capsaicin in rats under anesthesia. RESULTS Salusin-β protein expression was upregulated in the PVN of the CHF compared with sham-operated rats. Salusin-β microinjection into the PVN dose-dependently increased MAP and RSNA and enhanced CSAR, while anti-salusin-β IgG exerted opposite effects. The effect of salusin-β was inhibited by reactive oxygen species (ROS) scavenger or NAD(P)H oxidase inhibitor but promoted by superoxide dismutase inhibitor. The effect of anti-salusin-β IgG was interdicted by nitric oxide (NO) synthase inhibitor. Furthermore, chronic salusin-β gene knockdown in PVN attenuated CSAR, reduced sympathetic output, improved myocardial remodeling and cardiac function, decreased NAD(P)H oxidase activity and ROS levels, and increased NO levels in the CHF rats. CONCLUSION Increased salusin-β activity in the PVN contributes to sympathetic hyperactivation and CSAR in CHF by inhibiting NO release and stimulating NAD(P)H oxidase-ROS production. Reducing endogenous central salusin-β expression might be a novel strategy for preventing and treating CHF in the future.
Collapse
Affiliation(s)
- Yu Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuejie Fei
- Department of Anesthesiology and Perioperative medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China
| | - Hangjiang Fu
- Department of General Practice, Jinling Hospital, Nanjing, Jiangsu, China
| | - Aidong Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinrui Zhu
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Feng Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Han
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
The Clinical Significance of Salusins in Systemic Sclerosis-A Cross-Sectional Study. Diagnostics (Basel) 2023; 13:diagnostics13050848. [PMID: 36899991 PMCID: PMC10001236 DOI: 10.3390/diagnostics13050848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Background: Systemic sclerosis (SSc) is a connective tissue disease manifesting with progressive fibrosis of the skin and internal organs. Its pathogenesis is strictly associated with vascular disfunction and damage. Salusin-α and salusin-β, endogenous peptides regulating secretion of pro-inflammatory cytokines and vascular smooth muscle proliferation, may potentially play a role in SSc pathogenesis. Objectives: The aim of this study was to assess the concentration of salusins in sera of patients with SSc and healthy controls and to evaluate correlations between the salusins levels and selected clinical parameters within the study group. Materials and methods: 48 patients with SSc (44 women; mean age, 56.4, standard deviation, 11.4) and 25 adult healthy volunteers (25 women; mean age, 55.2, standard deviation, 11.2) were enrolled. All patients with SSc were treated with vasodilators and twenty-seven of them (56%) also received immunosuppressive therapy. Results: Circulating salusin-α was significantly elevated in patients with SSc in comparison to healthy controls (U = 350.5, p = 0.004). Patients with SSc receiving immunosuppression had higher serum salusin-α concentrations compared with those without immunosuppressive therapy (U = 176.0, p = 0.026). No correlation was observed between salusins concentrations and skin or internal organ involvement parameters. Conclusions: Salusin-α, a bioactive peptide mitigating the endothelial disfunction, was elevated in patients with systemic sclerosis receiving vasodilators and immunosuppressants. Increased salusin-α concertation may be associated with the initiation of atheroprotective processes in patients with SSc managed pharmacologically, which requires verification in future studies.
Collapse
|
5
|
Karagöz A, Kurt D, Günaydın ZY, Vural A, Usta M, Tosun A, Yenercag M, Özdemir F. A New Insight Into Pathophysiological Mechanism of Abdominal Aortic Aneurysm With Novel Parameters Salusin-β and Arterial Stiffness. Tex Heart Inst J 2022; 49:489127. [PMID: 36511944 PMCID: PMC9809075 DOI: 10.14503/thij-21-7561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) has risk factors similar to those of atherosclerosis. Salusin-β and arterial stiffness are novel parameters that have been shown to predict atherosclerosis and related cardiovascular disorders. However, their predictive value for detecting AAA remains unclear. METHODS Forty-eight patients with AAA and 47 age- and sex-matched participants without AAA were enrolled in the study. Arterial stiffness parameters were obtained via an oscillometric Mobil-O-Graph PWA Monitor device (IEM GmbH) with integrated ARCSolver software (Australian Institute of Technology). Plasma salusin-β levels were analyzed using an enzyme-linked immunosorbent assay reagent kit (Abbkine, Inc). The measured salusin-β levels and arterial stiffness parameters of the AAA and control groups were compared. RESULTS Salusin-β levels were significantly lower in patients with AAA (P = .014). There was a significant negative correlation between salusin-β levels and abdominal aorta diameter. No significant difference was detected between AAA and control groups in terms of arterial stiffness parameters (P > .05). In backward multiple regression analysis, the presence of AAA, platelet count, and augmentation index were found to be independent predictors of salusin-β levels (P = .006 and P = .023, respectively). CONCLUSION Arterial stiffness parameters were not found to be associated with AAA. Contrary to previous results regarding atherosclerosis and related cardiovascular disorders, salusin-β levels were found to be lower in patients with AAA. Although AAA is thought to have similar risk factors as atherosclerosis, the exact pathophysiologic mechanism remains unclear.
Collapse
Affiliation(s)
- Ahmet Karagöz
- Department of Cardiology, Samsun University, Samsun, Turkey
| | - Devrim Kurt
- Department of Cardiology, Giresun University, Giresun, Turkey
| | | | - Aslı Vural
- Department of Cardiology, Giresun University, Giresun, Turkey
| | - Murat Usta
- Department of Biochemistry, Giresun University, Giresun, Turkey
| | - Alptekin Tosun
- Department of Radiology, Giresun University, Giresun, Turkey
| | | | - Fatih Özdemir
- Department of Cardiology, Giresun University, Giresun, Turkey
| |
Collapse
|
6
|
Wang X, Chen A, Hu R, Zhang F, Liang S, Bao C, Liu X, Tang H, Han Y. Salusin-β, a TOR2A gene product, promotes proliferation, migration, fibrosis, and calcification of smooth muscle cells and accelerates the imbalance of vasomotor function and vascular remodeling in monocrotaline-induced pulmonary hypertensive rats. Front Pharmacol 2022; 13:928834. [PMID: 36249810 PMCID: PMC9564106 DOI: 10.3389/fphar.2022.928834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
Purpose: The hyper-proliferation, promoted migration, fibrosis, and calcification of pulmonary arterial smooth muscle cells (PASMCs) play critical roles in pulmonary artery (PA) continuous contraction and vascular remodeling, leading to elevated pulmonary arterial resistance and pulmonary hypertension (PH). In this study, we sought to ascertain the effects of a TOR2A gene product, salusin-β, on PASMCs’ proliferation, migration, fibrosis, calcification, and the imbalance of vasomotor function as well as pulmonary vascular remodeling in monocrotaline (MCT)-induced PH rats and their underlying mechanisms. Methods: Knockdown or overexpression of salusin-β in rats or PASMCs was performed through tail vein injection or cell transfection of virus. The right ventricular systolic pressure (RVSP) of the rat was measured by right ventricle catheterization. Sodium nitroprusside (SNP) or acetylcholine (ACh)-induced dose-dependent relaxation was used to evaluate the vasodilatation function. Primary PASMCs were isolated from the PAs of control and PH rats. Results: The salusin-β protein expressions were significantly increased in PAs and PASMCs isolated from PH rats compared with control rats. Knockdown of salusin-β in rats decreased high K+ solution-induced contraction, RVSP and RV hypertrophy index, improved SNP or ACh-induced vascular relaxation of PAs, and relieved vascular remodeling and calcification of PAs from PH rats. Silencing salusin-β in PASMCs isolated from PH rats alleviated the proliferation, migration, fibrosis, and calcification, as well as the NAD(P)H oxidase activity and reactive oxygen species (ROS) level. Overexpression of salusin-β exerted the opposite effects on vasomotor function and vascular remodeling, and PASMCs proliferation, migration, fibrosis and calcification. Conclusion: Increased salusin-β activity in PAs from PH rats contributes to PASMCs proliferation, migration, fibrosis, and calcification, leading to the imbalance of vascular contraction and relaxation and vascular remodeling through stimulating the production of NAD(P)H oxidase derived ROS.
Collapse
Affiliation(s)
- Xingxing Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Aidong Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ruihua Hu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shuxin Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Changlei Bao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xuanxuan Liu
- Department of Physiology, Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- *Correspondence: Haiyang Tang, ; Ying Han,
| | - Ying Han
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
- *Correspondence: Haiyang Tang, ; Ying Han,
| |
Collapse
|
7
|
Saluisn-β contributes to endothelial dysfunction in monocrotaline-induced pulmonary arterial hypertensive rats. Biomed Pharmacother 2022; 155:113748. [PMID: 36174379 DOI: 10.1016/j.biopha.2022.113748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The endothelial dysfunction and the consequent attenuated pulmonary vasodilatation are the major causes of elevated pulmonary arterial resistance and pressure in pulmonary arterial hypertension (PAH). Current study aimed to explore the effects of a TOR2A gene product, salusin-β, on endothelium-dependent vascular relaxation and the progression of PAH in monocrotaline (MCT)-induced PAH rats as well as the relevant signaling pathway. METHODS Acetylcholine (ACh)-induced dose-dependent relaxation was used to evaluate the endothelium-dependent vasodilatation function. RESULTS The salusin-β level in plasma and pulmonary artery (PA) in MCT-PAH rats were significantly increased, while the ACh-induced endothelium-dependent vasodilatation was attenuated. After salusin-β incubation or overexpression of salusin-β gene, the endothelium-dependent relaxation was further deteriorated, while anti-salusin-β IgG incubation or knockdown of salusin-β improved it in PAH rats. The superoxide anions scavenger NAC or the antioxidant apocynin inhibited the effect of salusin-β, while the SOD inhibitor DETC further enhanced it. The nitric oxide (NO) synthase inhibitor L-NAME almost blocked the effect of anti-salusin-β IgG. Silencing of salusin-β in PAH rats decreased right ventricular (RV) systolic pressure, RV hypertrophy index, NAD(P)H oxidase activity and ROS level, and increased the eNOS activity and NO level of PA. Overexpression of salusin-β played opposite roles. CONCLUSIONS The elevated saluisn-β level in PAH rats plays important roles in the reduction of endothelium-dependent vasodilatation and participates in the progression of PAH through stimulating NAD(P)H oxidase-ROS production and inhibiting eNOS-NO release.
Collapse
|
8
|
Artemisinin and Its Derivate Alleviate Pulmonary Hypertension and Vasoconstriction in Rodent Models. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2782429. [PMID: 35757500 PMCID: PMC9232380 DOI: 10.1155/2022/2782429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 03/20/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022]
Abstract
Background Pulmonary arterial hypertension (PAH) is a complex pulmonary vasculature disease characterized by progressive obliteration of small pulmonary arteries and persistent increase in pulmonary vascular resistance, resulting in right heart failure and death if left untreated. Artemisinin (ARS) and its derivatives, which are common antimalarial drugs, have been found to possess a broad range of biological effects. Here, we sought to determine the therapeutic benefit and mechanism of ARS and its derivatives treatment in experimental pulmonary hypertension (PH) models. Methods Isolated perfused/ventilated lung and isometric tension measurements in arteries were performed to test pulmonary vasoconstriction and relaxation. Monocrotaline (MCT) and hypoxia+Su5416 (SuHx) were administered to rats to induce severe PH. Evaluation methods of ARS treatment and its derivatives in animal models include echocardiography, hemodynamics measurement, and histological staining. In vitro, the effect of these drugs on proliferation, viability, and hypoxia-inducible factor 1α (HIF1α) was examined in human pulmonary arterial smooth muscle cells (hPASMCs). Results ARS treatment attenuated pulmonary vasoconstriction induced by high K+ solution or alveolar hypoxia, decreased pulmonary artery (PA) basal vascular tension, improved acetylcholine- (ACh-) induced endothelial-dependent relaxation, increased endothelial nitric oxide (NO) synthase (eNOS) activity and NO levels, and decreased levels of NAD(P)H oxidase subunits (NOX2 and NOX4) expression, NAD(P)H oxidase activity, and reactive oxygen species (ROS) levels of pulmonary arteries (PAs) in MCT-PH rats. NOS inhibitor, L-NAME, abrogated the effects of ARS on PA constriction and relaxation. Furthermore, chronic application of both ARS and its derivative dihydroartemisinin (DHA) attenuated right ventricular systolic pressure (RVSP), Fulton index (right ventricular hypertrophy), and vascular remodeling of PAs in the two rat PH models. In addition, DHA inhibited proliferation and migration of hypoxia-induced PASMCs. Conclusions In conclusion, these results indicate that treatment with ARS or DHA can inhibit PA vasoconstriction, PASMC proliferation and migration, and vascular remodeling, as well as improve PA endothelium-dependent relaxation, and eventually attenuate the development and progression of PH. These effects might be achieved by decreasing NAD(P)H oxidase generated ROS production and increasing eNOS activation to release NO in PAs. ARS and its derivatives might have the potential to be novel drugs for the treatment of PH.
Collapse
|
9
|
Pujar M, Vastrad B, Kavatagimath S, Vastrad C, Kotturshetti S. Identification of candidate biomarkers and pathways associated with type 1 diabetes mellitus using bioinformatics analysis. Sci Rep 2022; 12:9157. [PMID: 35650387 PMCID: PMC9160069 DOI: 10.1038/s41598-022-13291-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a metabolic disorder for which the underlying molecular mechanisms remain largely unclear. This investigation aimed to elucidate essential candidate genes and pathways in T1DM by integrated bioinformatics analysis. In this study, differentially expressed genes (DEGs) were analyzed using DESeq2 of R package from GSE162689 of the Gene Expression Omnibus (GEO). Gene ontology (GO) enrichment analysis, REACTOME pathway enrichment analysis, and construction and analysis of protein–protein interaction (PPI) network, modules, miRNA-hub gene regulatory network and TF-hub gene regulatory network, and validation of hub genes were performed. A total of 952 DEGs (477 up regulated and 475 down regulated genes) were identified in T1DM. GO and REACTOME enrichment result results showed that DEGs mainly enriched in multicellular organism development, detection of stimulus, diseases of signal transduction by growth factor receptors and second messengers, and olfactory signaling pathway. The top hub genes such as MYC, EGFR, LNX1, YBX1, HSP90AA1, ESR1, FN1, TK1, ANLN and SMAD9 were screened out as the critical genes among the DEGs from the PPI network, modules, miRNA-hub gene regulatory network and TF-hub gene regulatory network. Receiver operating characteristic curve (ROC) analysis confirmed that these genes were significantly associated with T1DM. In conclusion, the identified DEGs, particularly the hub genes, strengthen the understanding of the advancement and progression of T1DM, and certain genes might be used as candidate target molecules to diagnose, monitor and treat T1DM.
Collapse
Affiliation(s)
- Madhu Pujar
- Department of Pediatrics, J J M Medical College, Davangere, Karnataka, 577004, India
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. College of Pharmacy, Gadag, Karnataka, 582101, India
| | - Satish Kavatagimath
- Department of Pharmacognosy, K.L.E. College of Pharmacy, Belagavi, Karnataka, 590010, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, Karnataka, 580001, India.
| | - Shivakumar Kotturshetti
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, Karnataka, 580001, India
| |
Collapse
|
10
|
Sabe SA, Feng J, Sellke FW, Abid MR. Mechanisms and clinical implications of endothelium-dependent vasomotor dysfunction in coronary microvasculature. Am J Physiol Heart Circ Physiol 2022; 322:H819-H841. [PMID: 35333122 PMCID: PMC9018047 DOI: 10.1152/ajpheart.00603.2021] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 12/16/2022]
Abstract
Coronary microvascular disease (CMD), which affects the arterioles and capillary endothelium that regulate myocardial perfusion, is an increasingly recognized source of morbidity and mortality, particularly in the setting of metabolic syndrome. The coronary endothelium plays a pivotal role in maintaining homeostasis, though factors such as diabetes, hypertension, hyperlipidemia, and obesity can contribute to endothelial injury and consequently arteriolar vasomotor dysfunction. These disturbances in the coronary microvasculature clinically manifest as diminished coronary flow reserve, which is a known independent risk factor for cardiac death, even in the absence of macrovascular atherosclerotic disease. Therefore, a growing body of literature has examined the molecular mechanisms by which coronary microvascular injury occurs at the level of the endothelium and the consequences on arteriolar vasomotor responses. This review will begin with an overview of normal coronary microvascular physiology, modalities of measuring coronary microvascular function, and clinical implications of CMD. These introductory topics will be followed by a discussion of recent advances in the understanding of the mechanisms by which inflammation, oxidative stress, insulin resistance, hyperlipidemia, hypertension, shear stress, endothelial cell senescence, and tissue ischemia dysregulate coronary endothelial homeostasis and arteriolar vasomotor function.
Collapse
Affiliation(s)
- Sharif A Sabe
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - Jun Feng
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - Frank W Sellke
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - M Ruhul Abid
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| |
Collapse
|
11
|
Liu X, Wang X, Pan Y, Zhao L, Sun S, Luo A, Bao C, Tang H, Han Y. Artemisinin Improves Acetylcholine-Induced Vasodilatation in Rats with Primary Hypertension. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:4489-4502. [PMID: 34764635 PMCID: PMC8576437 DOI: 10.2147/dddt.s330721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/20/2021] [Indexed: 12/29/2022]
Abstract
Purpose Endothelial dysfunction and the subsequent decrease in endothelium-dependent vascular relaxation of small arteries are major features of hypertension. Artemisinin, a well-known antimalarial drug, has been shown to exert protecting roles against endothelial cell injury in cardiac and pulmonary vascular diseases. The current study aimed to investigate the effects of artemisinin on endothelium-dependent vascular relaxation and arterial blood pressure, as well as the potential signalling pathways in spontaneously hypertensive rats (SHRs). Methods In this study, acetylcholine (ACh)-induced dose-dependent relaxation assays were performed to evaluate vascular endothelial function after treatment with artemisinin. Artemisinin was administered to the rats by intravenous injection or to arteries by incubation for the acute exposure experiments, and it was administered to rats by intraperitoneal injection for 28 days for the chronic experiments. Results Both acute and chronic administration of artemisinin decreased the heart rate and improved ACh-induced endothelium-dependent relaxation but negligibly affected the arterial blood pressure in SHRs. Incubation with artemisinin decreased basal vascular tension, NAD(P)H oxidase activity and reactive oxygen species (ROS) levels, but it also increased endothelial nitric oxide (NO) synthase (eNOS) activity and NO levels in the mesenteric artery, coronary artery, and pulmonary artery of SHRs. Artemisinin chronic administration to SHRs increased the protein expression of eNOS and decreased the protein expression of the NAD(P)H oxidase subunits NOX-2 and NOX-4 in the mesenteric artery. Conclusion These results indicate that treatment with artemisinin has beneficial effects on reducing the heart rate and basal vascular tension and improving endothelium-dependent vascular relaxation in hypertension, which might occur by increasing eNOS activation and NO release and inhibiting NAD(P)H oxidase derived ROS production.
Collapse
Affiliation(s)
- Xuanxuan Liu
- Key Laboratory of Targeted Intervention for Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.,Department of Physiology and Pathologic Physiology, Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, People's Republic of China
| | - Xingxing Wang
- Key Laboratory of Targeted Intervention for Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Yan Pan
- Key Laboratory of Targeted Intervention for Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Li Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Shuo Sun
- Key Laboratory of Targeted Intervention for Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Ang Luo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Changlei Bao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Haiyang Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Ying Han
- Key Laboratory of Targeted Intervention for Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
12
|
Knockdown of Salusin- β Improves Cardiovascular Function in Myocardial Infarction-Induced Chronic Heart Failure Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8896226. [PMID: 34422210 PMCID: PMC8373485 DOI: 10.1155/2021/8896226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 06/22/2021] [Accepted: 07/02/2021] [Indexed: 12/18/2022]
Abstract
Salusin-β is a biologically active peptide with 20 amino acids that exerts several cardiovascular activity-regulating effects, such as regulating vascular endothelial function and the proliferation of vascular smooth muscle cells. However, the regulatory effects of salusin-β in myocardial infarction-induced chronic heart failure (CHF) are still unknown. The current study is aimed at investigating the effects of silencing salusin-β on endothelial function, cardiac function, vascular and myocardial remodeling, and its underlying signaling pathways in CHF rats induced by coronary artery ligation. CHF and sham-operated (Sham) rats were subjected to tail vein injection of adenoviral vectors encoding salusin-β shRNA or a control-shRNA. The coronary artery (CA), pulmonary artery (PA), and mesenteric artery (MA) were isolated from rats, and isometric tension measurements of arteries were performed. Compared with Sham rats, the plasma salusin-β, leptin and visfatin levels and the salusin-β protein expression levels of CA, PA, and MA were increased, while the acetylcholine- (ACh-) induced endothelium-dependent vascular relaxation of CA, PA, and MA was attenuated significantly in CHF rats and was improved significantly by salusin-β gene knockdown. Salusin-β knockdown also improved cardiac function and vascular and myocardial remodeling, increased endothelial nitric oxide synthase (eNOS) activity and nitric oxide (NO) levels, and decreased NAD(P)H oxidase activity, NOX-2 and NOX-4 expression, and reactive oxygen species (ROS) levels in arteries in CHF rats. The effects of salusin-β knockdown in CHF rats were attenuated significantly by pretreatment with the NOS inhibitor L-NAME. These results indicate that silencing salusin-β contributes to the improvement of endothelial function, cardiac function, and cardiovascular remodeling in CHF by inhibiting NAD(P)H oxidase-ROS generation and activating eNOS-NO production.
Collapse
|
13
|
Farré X, Molina R, Barteri F, Timmers PRHJ, Joshi PK, Oliva B, Acosta S, Esteve-Altava B, Navarro A, Muntané G. Comparative Analysis of Mammal Genomes Unveils Key Genomic Variability for Human Life Span. Mol Biol Evol 2021; 38:4948-4961. [PMID: 34297086 PMCID: PMC8557403 DOI: 10.1093/molbev/msab219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The enormous mammal's lifespan variation is the result of each species' adaptations to their own biological trade-offs and ecological conditions. Comparative genomics have demonstrated that genomic factors underlying both, species lifespans and longevity of individuals, are in part shared across the tree of life. Here, we compared protein-coding regions across the mammalian phylogeny to detect individual amino acid (AA) changes shared by the most long-lived mammals and genes whose rates of protein evolution correlate with longevity. We discovered a total of 2,737 AA in 2,004 genes that distinguish long- and short-lived mammals, significantly more than expected by chance (P = 0.003). These genes belong to pathways involved in regulating lifespan, such as inflammatory response and hemostasis. Among them, a total 1,157 AA showed a significant association with maximum lifespan in a phylogenetic test. Interestingly, most of the detected AA positions do not vary in extant human populations (81.2%) or have allele frequencies below 1% (99.78%). Consequently, almost none of these putatively important variants could have been detected by genome-wide association studies. Additionally, we identified four more genes whose rate of protein evolution correlated with longevity in mammals. Crucially, SNPs located in the detected genes explain a larger fraction of human lifespan heritability than expected, successfully demonstrating for the first time that comparative genomics can be used to enhance interpretation of human genome-wide association studies. Finally, we show that the human longevity-associated proteins are significantly more stable than the orthologous proteins from short-lived mammals, strongly suggesting that general protein stability is linked to increased lifespan.
Collapse
Affiliation(s)
- Xavier Farré
- Department of Experimental and Health Sciences, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Spain
| | - Ruben Molina
- Structural Bioinformatics Lab, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Fabio Barteri
- Department of Experimental and Health Sciences, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Spain
| | - Paul R H J Timmers
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom,Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Baldomero Oliva
- Structural Bioinformatics Lab, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Sandra Acosta
- Department of Experimental and Health Sciences, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Spain
| | - Borja Esteve-Altava
- Department of Experimental and Health Sciences, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Spain
| | | | | |
Collapse
|
14
|
Chen S, Hu Y, Zhang J, Zhang P. Anti‑inflammatory effect of salusin‑β knockdown on LPS‑activated alveolar macrophages via NF‑κB inhibition and HO‑1 activation. Mol Med Rep 2020; 23:127. [PMID: 33300078 PMCID: PMC7751479 DOI: 10.3892/mmr.2020.11766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
Inflammation of alveolar macrophages is the primary pathological factor leading to acute lung injury (ALI), and NF-κB activation and HO-1 inhibition are widely involved in inflammation. Salusin-β has been reported to contribute to the progression of the inflammatory response, but whether salusin-β could regulate inflammation in lipopolysaccharide (LPS)-induced ALI remains unknown. The present study aimed to investigate the role of salusin-β in LPS-induced ALI and to uncover the potential underlying mechanisms. Sprague-Dawley rats were subjected to LPS administration, and then pathological manifestations of lung tissues, inflammatory cytokines levels in bronchoalveolar lavage fluid (BALF) and expression of salusin-β in macrophages of lung tissues were assessed. NR8383 cells with or without salusin-β knockdown were treated with LPS, and then the concentration of inflammatory cytokines, and the expression of high mobility group box-1 (HMGB1), NF-κB signaling molecules and heme oxygenase-1 (HO-1) levels were detected. The results showed that LPS caused injury of lung tissues, increased the levels of proinflammatory cytokines in BALF, and led to higher expression of salusin-β or macrophages in lung tissues of rats. In vitro experiments, LPS also upregulated salusin-β expression in NR8383 cells. Knockdown of salusin-β using short hairpin (sh)RNA inhibited the LPS-induced generation of inflammatory cytokines. LPS also enhanced HMGB1, phosphorylated (p)-IκB and p-p65 expression, but reduced HO-1 expression in both lung tissues and NR8383 cells, which were instead inhibited by the transfection of sh-salusin-β. In addition, knockdown of HO-1 using shRNA reversed the inhibitory effect of sh-salusin-β on the LPS-induced generation of inflammatory cytokines, activation of NF-κB signaling and inactivation of HO-1. In conclusion, this study suggested that knockdown of salusin-β may inhibit LPS-induced inflammation in alveolar macrophages by blocking NF-κB signaling and upregulating HO-1 expression.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Yunnan Hu
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Jiaxin Zhang
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Pengyu Zhang
- Department of Emergency, Jilin Central General Hospital, Jilin, Jilin 132011, P.R. China
| |
Collapse
|