1
|
Cheleschi S, Mondanelli N, Seccafico I, Corsaro R, Moretti E, Collodel G, Fioravanti A. Role of lncRNA XIST/miR-146a Axis in Matrix Degradation and Apoptosis of Osteoarthritic Chondrocytes Through Regulation of MMP-13 and BCL2. BIOLOGY 2025; 14:221. [PMID: 40136478 PMCID: PMC11940272 DOI: 10.3390/biology14030221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 03/27/2025]
Abstract
Growing evidence demonstrates the critical roles of long non-coding RNAs (lncRNAs) in osteoarthritis (OA) pathogenesis. The lncRNA XIST is one of the most commonly studied; however, its function remains unclear. This study aimed to research the molecular mechanism of XIST in human OA chondrocytes. Cells were transfected with small interfering RNA against XIST or with a microRNA (miR)-146a inhibitor in the presence of interleukin (IL)-1β. Viability was detected using MTT; apoptosis using cytometry; and XIST, miR-146a, B-cell lymphoma (BCL)2, and metalloproteinase (MMP)-13 expression using real-time PCR. The analysis of p50 and p65 nuclear factor (NF)-κB was conducted using PCR and immunofluorescence. Our findings showed that XIST was highly expressed in OA chondrocytes when compared to T/C-28a2 lines. Furthermore, XIST silencing significantly promoted survival and limited apoptosis, with a concomitant over expression of BCL2, reduction in MMP-13 mRNA, and NF-κB activation after IL-1β stimulus. Conversely, miR-146a was significantly down-regulated in OA cells, while its levels were increased following XIST silencing; moreover, miR-146a inhibition induced opposite results to those caused by XIST. Finally, the down-regulation of XIST was correlated to the over-expression of miR-146a, with a consequent modulation of BCL2, MMP-13, and NF-κB. This study suggests an influence of the XIST/miR-146a axis on the viability, apoptosis, and matrix degradation occurring in OA.
Collapse
Affiliation(s)
- Sara Cheleschi
- Rheumatology Unit, Department of Medicine, Surgery and Neuroscience, Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, 53100 Siena, Italy; (S.C.); (I.S.)
| | - Nicola Mondanelli
- Section of Orthopedics and Traumatology, Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Le Scotte, 53100 Siena, Italy;
| | - Iole Seccafico
- Rheumatology Unit, Department of Medicine, Surgery and Neuroscience, Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, 53100 Siena, Italy; (S.C.); (I.S.)
| | - Roberta Corsaro
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (R.C.); (E.M.)
| | - Elena Moretti
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (R.C.); (E.M.)
| | - Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (R.C.); (E.M.)
| | | |
Collapse
|
2
|
Gu X, Hu X, Zhang S, Zhang X, Wang Y, Li L. The diagnostic and prognostic significance of HOXC13-AS and its molecular regulatory mechanism in human cancer. Front Mol Biosci 2025; 12:1540048. [PMID: 39981436 PMCID: PMC11839424 DOI: 10.3389/fmolb.2025.1540048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/15/2025] [Indexed: 02/22/2025] Open
Abstract
HOXC13 antisense RNA (HOXC13-AS, also known as HOXC-AS5) is a long non-coding RNA that is expressed abnormally in various types of tumors and is closely related to clinical staging, clinical pathological features, and patient survival. HOXC13-AS is involved in the occurrence and development of tumors, affecting cell proliferation, migration, invasion, epithelial-mesenchymal transition, and tumor growth. This review summarizes the clinical significance of HOXC13-AS as a biomarker for human tumor diagnosis and prognosis and outlines the function and molecular regulation mechanism of HOXC13-AS in various types of cancer, including nasopharyngeal carcinoma, breast cancer, oral squamous cell carcinoma, glioma, and cervical cancer. Overall, this review emphasizes the potential of HOXC13-AS as a human tumor predictive biomarker and therapeutic target, paving the way for its clinical application.
Collapse
Affiliation(s)
- Xiaosi Gu
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong, China
| | - Xin Hu
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong, China
| | - Sijia Zhang
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong, China
| | - Xiaoyu Zhang
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong, China
| | - Yong Wang
- Shandong Provincial Engineering Research Center for Bacterial Oncolysis and Cell Treatment, Jinan, Shandong, China
| | - Lianlian Li
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong, China
- Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
3
|
Dong L, Ji F, Guo XQ, Wang GG, Xie J. The role of lncRNA TSIX in osteoarthritis pathogenesis: mechanistic insights and clinical biomarker potential. J Orthop Surg Res 2024; 19:722. [PMID: 39497068 PMCID: PMC11536947 DOI: 10.1186/s13018-024-05207-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/26/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND This study seeks to elucidate the expressions of lncRNA TSIX in Osteoarthritis (OA) and to explore its mechanisms in regulating OA progression. METHODS RT-qPCR was employed to analyze the expression of TSIX in OA patients classified by Kellgren-Lawrence (K-L) grades. Receiver operator characteristic (ROC) was conducted to evaluate the diagnostic value of TSIX. Correlation between TSIX levels and clinical scores such as Lysholm and visual analogue scale (VAS) score was evaluated using Pearson method. IL-1β-induced SW1353 cells served as an in vitro model. The cell function were assessed by flow cytometry and cell counting kit-8 (CCK-8) assay. The relationship between TSIX and miR-320a was verified by luciferase reporting system, while bioinformatics approaches were utilized to predict the downstream target genes of miR-320a. RESULTS The findings revealed that TSIX level in OA patients was elevated compared to that of the control group, with a notable progressive increase in TSIX expression correlated with higher K-L grades. In OA patients, the Lysholm score showed a negative correlation with TSIX expression, while the VAS score displayed a positive correlation with TSIX levels. Cell studies demonstrated that inhibition of TSIX enhanced cell viability and mitigated IL-1β-induced apoptosis by targeting miR-320a, in addition to promoting Aggrecan and Collagen II secretion. Luciferase reporter assay further validated the targeting interaction among TSIX, miR-320a, and PTEN. CONCLUSIONS This study demonstrated an increased expression of TSIX in OA patients. It suggests that TSIX may play a role in chondrocyte dysfunction during OA by modulating the miR-320a/PTEN axis.
Collapse
Affiliation(s)
- Liangchao Dong
- Department of Orthopedics, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Futao Ji
- Orthopaedic Center, Zhengzhou 460 Hospital, Zhengzhou, 450007, China
| | - Xiu-Quan Guo
- Department of Spinal Surgery, Zhucheng People's Hospital, Weifang, Shandong, China
| | - Gang-Gang Wang
- Department of Hand and Foot Surgery, Zhucheng People's Hospital, 59 South Ring Road, Zhucheng, Weifang, 262200, Shandong, China.
| | - Junhui Xie
- Department of Geriatric Orthopedics, Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Hospital), No. 9 Pingle Road, Shenzhen, 518000, China.
| |
Collapse
|
4
|
Jiang L, Qi A, Yang H, Wang S, Wang F, Bai X, Ren J. LncRNA SNHG1 serves as a biomarker for systemic lupus erythematosus and participates in the disease progression. APMIS 2024; 132:507-514. [PMID: 38644557 DOI: 10.1111/apm.13410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/20/2024] [Indexed: 04/23/2024]
Abstract
LncRNAs play an important role in autoimmune diseases. The purpose of this study was to explore the role of lncRNA SNHG1 in systemic lupus erythematosus (SLE), and laid a theoretical foundation for the study of SLE. The basic clinical information of all subjects was first collected for statistical analysis, and SNHG1 expression in the serum of all subjects was detected by RT-qPCR. The value of SNHG1 in the diagnosis of SLE was assessed by ROC. The correlation between SNHG1 and each blood sample index was analyzed by Pearson correlation analysis. The role of SNHG1 in primary peripheral blood mononuclear cells (PBMCs) apoptosis was explored. SNHG1 expression is relatively upregulated in patients with SLE compared to healthy people. SNHG1 expression was positively correlated with SLEDAI score, IgG, CRP, and ESR, and negatively correlated with C3 and C4. ROC indicated that SNHG1 has the potential to assist in the diagnosis of SLE. PBMCs apoptosis in SLE was higher than that in control group, the knockdown and overexpression of SNHG1 could correspondingly inhibit and promote PBMCs apoptosis. SNHG1 has the potential to be a diagnosis marker for SLE and may be involved in regulating PBMCs apoptosis.
Collapse
Affiliation(s)
- Linsen Jiang
- Department of Nephrology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Anning Qi
- Department of Laboratory, Nanjing LuHe People's Hospital, Nanjing, China
| | - Hongyu Yang
- Department of Clinical Laboratory, Affiliated Hospital of PanZhiHua University, Panzhihua, China
| | - Shuping Wang
- Department of Clinical Laboratory, Affiliated Hospital of PanZhiHua University, Panzhihua, China
| | - Fei Wang
- Department of Clinical Laboratory, Affiliated Hospital of PanZhiHua University, Panzhihua, China
| | - Xuemei Bai
- Department of Clinical Laboratory, Affiliated Hospital of PanZhiHua University, Panzhihua, China
| | - Juan Ren
- Department of Clinical Laboratory, Affiliated Hospital of PanZhiHua University, Panzhihua, China
| |
Collapse
|
5
|
Yang X, Zhao L, Pang Y. cGAS-STING pathway in pathogenesis and treatment of osteoarthritis and rheumatoid arthritis. Front Immunol 2024; 15:1384372. [PMID: 38765007 PMCID: PMC11099256 DOI: 10.3389/fimmu.2024.1384372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/12/2024] [Indexed: 05/21/2024] Open
Abstract
Osteoarthritis (OA) and Rheumatoid Arthritis (RA) are significant health concerns with notable prevalence and economic impact. RA, affecting 0.5% to 1.0% of the global population, leads to chronic joint damage and comorbidities. OA, primarily afflicting the elderly, results in joint degradation and severe pain. Both conditions incur substantial healthcare expenses and productivity losses. The cGAS-STING pathway, consisting of cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING), is a crucial component of mammalian immunity. This pathway is responsible for detecting foreign DNA, particularly double-stranded DNA (dsDNA), triggering innate immune defense responses. When cGAS recognizes dsDNA, it catalyzes the synthesis of cyclic GMP-AMP (cGAMP), which then binds to and activates STING. Activated STING, in turn, initiates downstream signaling events leading to the production of interferons and other immune mediators. The cGAS-STING pathway is essential for defending against viral infections and maintaining cellular balance. Dysregulation of this pathway has been implicated in various inflammatory diseases, including arthritis, making it a target for potential therapeutic interventions. Understanding the intricate molecular signaling network of cGAS-STING in these arthritis forms offers potential avenues for targeted therapies. Addressing these challenges through improved early detection, comprehensive management, and interventions targeting the cGAS-STING pathway is crucial for alleviating the impact of OA and RA on individuals and healthcare systems. This review offers an up-to-date comprehension of the cGAS-STING pathway's role in the development and therapeutic approaches for these arthritis types.
Collapse
Affiliation(s)
- XiCheng Yang
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, China
| | - LiLi Zhao
- Orthopedics and Arthrology, People Hospital of Xingtai, Xingtai, Hebei, China
| | - YinQuan Pang
- Graduate School, Chengde Medical University, Chengde, Hebei, China
| |
Collapse
|
6
|
Wang Q, Yang J, Pan R, Zha Z. LncRNA SNHG1 overexpression alleviates osteoarthritis via activating PI3K/Akt signal pathway and suppressing autophagy. Immunobiology 2024; 229:152799. [PMID: 38636283 DOI: 10.1016/j.imbio.2024.152799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/13/2024] [Accepted: 03/24/2024] [Indexed: 04/20/2024]
Abstract
We hereby intend to further explore and confirm the underlying mechanism of Small nucleolar RNA Host Gene 1 (SNHG1) in osteoarthritis (OA). For in vitro assays, OA was induced in primary chondrocytes with interleukin-1β (IL-1β) treatment; while for in vivo tests, OA model was established in mice using the destabilization of the medial meniscus (DMM) method. Cell viability and apoptosis were assessed with MTT and flow cytometry assays, respectively. Cartilage tissue was stained by Safranin-O/Fast Green Staining. The mRNA and protein levels were separately determined via quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. SNHG1 overexpression promoted the viability yet inhibited the apoptosis of chondrocytes injured by IL-1β. Moreover, the overexpression of SNHG1 promoted B-cell lymphoma-2 (Bcl-2) expression and activated phosphoinositol-3 kinase (PI3K)/protein kinase B (Akt) pathway but suppressed the process of autophagy, which led to down-regulation of light chain 3 (LC3)-II/I level and up-regulation of P62 level. However, rapamycin (RAPA, an autophagy activator) and LY294002 (a PI3K inhibitor) reversed the effects of SNHG1 overexpression on the viability and apoptosis of chondrocytes as well as on the proteins related to PI3K/Akt pathway and autophagy. In OA-modeled mice, SNHG1 overexpression prevented the loss of chondrocytes via the activation of PI3K/Akt pathway and the suppression of autophagy. SNHG1 overexpression might inhibit the apoptosis of chondrocytes by promoting PI3K/Akt pathway and inhibiting autophagy.
Collapse
Affiliation(s)
- Qiushi Wang
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital of Jinan University, Guangzhou City, Guangdong, China
| | - Jie Yang
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital of Jinan University, Guangzhou City, Guangdong, China
| | - Rui Pan
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital of Jinan University, Guangzhou City, Guangdong, China
| | - Zhengang Zha
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital of Jinan University, Guangzhou City, Guangdong, China.
| |
Collapse
|
7
|
Huang Q, Zhou H, Yu S. Long non‑coding RNA PEG13 regulates endothelial cell senescence through the microRNA‑195/IRS1 axis. Exp Ther Med 2023; 26:584. [PMID: 38023368 PMCID: PMC10665998 DOI: 10.3892/etm.2023.12283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by endothelial dysfunction and plaque formation. The present study aimed to elucidate the pathological role of the long non-coding RNA (lncRNA) paternally expressed 13 (PEG13) in the onset and progression of atherosclerosis. Specifically, its effects on human umbilical vein endothelial cell (HUVEC) proliferation, angiogenesis, senescence and senescence-associated secretory phenotype (SASP)-related factors were investigated using cell proliferation, cellular angiogenesis, β-galactosidase staining, reverse transcription-quantitative PCR and enzyme-linked immunosorbent assays. The results showed that oxidized low-density lipoprotein (ox-LDL) inhibited lncRNA PEG13 expression and HUVEC viability in a dose-dependent manner and PEG13 overexpression partially reversed these effects. Additionally, PEG13 overexpression ameliorated the ox-LDL-induced impairment of angiogenesis, cellular senescence and SASP. Furthermore, lncRNA PEG13 directly targeted microRNA (miR/miRNA)-195-5p, suppressing the ox-LDL-induced upregulation of the miRNA. The gene coding for insulin receptor substrate 1 (IRS1), an activator of the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway, was confirmed as a direct target of miR-195. PEG13 overexpression attenuated the ox-LDL-induced inhibition of IRS1 expression and PI3K/AKT signaling and its protective effects on HUVEC viability, angiogenesis and senescence were partially reversed by small interfering RNAs targeting IRS1. The present study demonstrated that lncRNA PEG13 attenuates ox-LDL-induced senescence in HUVECs by modulating the miR-195/IRS1/PI3K/AKT signaling pathway, suggesting a potential therapeutic target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Qin Huang
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Haiwen Zhou
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Songping Yu
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
8
|
Zhang X, Liu Q, Zhang J, Song C, Han Z, Wang J, Shu L, Liu W, He J, Wang P. The emerging role of lncRNAs in osteoarthritis development and potential therapy. Front Genet 2023; 14:1273933. [PMID: 37779916 PMCID: PMC10538550 DOI: 10.3389/fgene.2023.1273933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Osteoarthritis impairs the functions of various joints, such as knees, hips, hands and spine, which causes pain, swelling, stiffness and reduced mobility in joints. Multiple factors, including age, joint injuries, obesity, and mechanical stress, could contribute to osteoarthritis development and progression. Evidence has demonstrated that genetics and epigenetics play a critical role in osteoarthritis initiation and progression. Noncoding RNAs (ncRNAs) have been revealed to participate in osteoarthritis development. In this review, we describe the pivotal functions and molecular mechanisms of numerous lncRNAs in osteoarthritis progression. We mention that long noncoding RNAs (lncRNAs) could be biomarkers for osteoarthritis diagnosis, prognosis and therapeutic targets. Moreover, we highlight the several compounds that alleviate osteoarthritis progression in part via targeting lncRNAs. Furthermore, we provide the future perspectives regarding the potential application of lncRNAs in diagnosis, treatment and prognosis of osteoarthritis.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Department of Traumatology, Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, Zhejiang, China
| | - Qishun Liu
- Department of Orthopedics, Zhejiang Medical & Health Group Hangzhou Hospital, Hang Gang Hospital, Hangzhou, China
| | - Jiandong Zhang
- Department of Orthopedics and Traumatology, Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, Zhejiang, China
| | - Caiyuan Song
- Department of Traumatology, Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, Zhejiang, China
| | - Zongxiao Han
- Department of Traumatology, Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, Zhejiang, China
| | - Jinjie Wang
- Department of Traumatology, Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, Zhejiang, China
| | - Lilu Shu
- Zhejiang Zhongwei Medical Research Center, Department of Medicine, Hangzhou, Zhejiang, China
| | - Wenjun Liu
- Zhejiang Zhongwei Medical Research Center, Department of Medicine, Hangzhou, Zhejiang, China
| | - Jinlin He
- Department of Traumatology, Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, Zhejiang, China
| | - Peter Wang
- Zhejiang Zhongwei Medical Research Center, Department of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Wu Z, Yang Z, Liu L, Xiao Y. Natural compounds protect against the pathogenesis of osteoarthritis by mediating the NRF2/ARE signaling. Front Pharmacol 2023; 14:1188215. [PMID: 37324450 PMCID: PMC10266108 DOI: 10.3389/fphar.2023.1188215] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
Osteoarthritis (OA), a chronic joint cartilage disease, is characterized by the imbalanced homeostasis between anabolism and catabolism. Oxidative stress contributes to inflammatory responses, extracellular matrix (ECM) degradation, and chondrocyte apoptosis and promotes the pathogenesis of OA. Nuclear factor erythroid 2-related factor 2 (NRF2) is a central regulator of intracellular redox homeostasis. Activation of the NRF2/ARE signaling may effectively suppress oxidative stress, attenuate ECM degradation, and inhibit chondrocyte apoptosis. Increasing evidence suggests that the NRF2/ARE signaling has become a potential target for the therapeutic management of OA. Natural compounds, such as polyphenols and terpenoids, have been explored to protect against OA cartilage degeneration by activating the NRF2/ARE pathway. Specifically, flavonoids may function as NRF2 activators and exhibit chondroprotective activity. In conclusion, natural compounds provide rich resources to explore the therapeutic management of OA by activating NRF2/ARE signaling.
Collapse
Affiliation(s)
- Zhenyu Wu
- First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Zhouxin Yang
- First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Luying Liu
- First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Yong Xiao
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- Xiaoyong Traditional Chinese Medicine Clinic in Yudu, Ganzhou, China
| |
Collapse
|
10
|
Wu J, Zhang Z, Ma X, Liu X. Advances in Research on the Regulatory Roles of lncRNAs in Osteoarthritic Cartilage. Biomolecules 2023; 13:biom13040580. [PMID: 37189327 DOI: 10.3390/biom13040580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Osteoarthritis (OA) is the most common degenerative bone and joint disease that can lead to disability and severely affect the quality of life of patients. However, its etiology and pathogenesis remain unclear. It is currently believed that articular cartilage lesions are an important marker of the onset and development of osteoarthritis. Long noncoding RNAs (lncRNAs) are a class of multifunctional regulatory RNAs that are involved in various physiological functions. There are many differentially expressed lncRNAs between osteoarthritic and normal cartilage tissues that play multiple roles in the pathogenesis of OA. Here, we reviewed lncRNAs that have been reported to play regulatory roles in the pathological changes associated with osteoarthritic cartilage and their potential as biomarkers and a therapeutic target in OA to further elucidate the pathogenesis of OA and provide insights for the diagnosis and treatment of OA.
Collapse
|