1
|
Martina A, van de Bovenkamp HH, Winkelman JGM, Noordergraaf IW, Picchioni F, Heeres HJ. Biobased Chemicals from d-Galactose: An Efficient Route to 5-Hydroxymethylfurfural Using a Water/MIBK System in Combination with an HCl/AlCl 3 Catalyst. ACS OMEGA 2024; 9:40378-40393. [PMID: 39372015 PMCID: PMC11447810 DOI: 10.1021/acsomega.4c02242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 10/08/2024]
Abstract
5-Hydroxymethylfurfural (HMF) is an attractive building block for biobased chemicals. Typically, ketoses like d-fructose (FRC) are suitable starting materials and give good yields of HMF in a simple aqueous phase process with a Bro̷nsted acid catalyst. With aldoses, such as d-glucose (GLU), much lower yields were reported in the literature. Here, we report an experimental and modeling study on the use of d-galactose (GAL) for HMF synthesis, using a liquid-liquid system (water/MIBK) in combination with an HCl/AlCl3 catalyst. Experiments were conducted in a batch system with temperatures between 112 and 153 °C, HCl and AlCl3 concentrations ranging from 0.02 to 0.04 M, and initial GAL concentrations between 0.1 and 1.0 M. The highest HMF yield was 49 mol % obtained for a batch time of 90 min at 135 °C. This value is much higher than in experiments with GAL in a monophasic aqueous system with HCl as the catalyst (2 mol % HMF yield) under similar reaction conditions. Based on detailed product analyses, a reaction scheme is proposed in which the isomerization of GAL to tagatose (TAG), catalyzed by the Lewis acid AlCl3, is the first and key step. TAG is then converted to HMF by Bro̷nsted acid HCl. The experimental data were modeled using a statistical approach as well as a kinetic approach. The kinetic model demonstrates a good agreement between the experimental and modeled data. Our findings reveal that temperature is the reaction variable with the most significant influence on the HMF yield. The use of a biphasic system appears to be a promising method for HMF production from GAL.
Collapse
Affiliation(s)
- Angela Martina
- Department
of Chemical Engineering, Parahyangan Catholic
University, Ciumbuleuit
94, Bandung 40141, Indonesia
- Department
of Chemical Engineering (ENTEG), University
of Groningen, Nijenborgh 4, Groningen, AG 9747, The Netherlands
| | - Henk H. van de Bovenkamp
- Department
of Chemical Engineering (ENTEG), University
of Groningen, Nijenborgh 4, Groningen, AG 9747, The Netherlands
| | - Jozef G. M. Winkelman
- Department
of Chemical Engineering (ENTEG), University
of Groningen, Nijenborgh 4, Groningen, AG 9747, The Netherlands
| | - Inge W. Noordergraaf
- Department
of Chemical Engineering (ENTEG), University
of Groningen, Nijenborgh 4, Groningen, AG 9747, The Netherlands
| | - Francesco Picchioni
- Department
of Chemical Engineering (ENTEG), University
of Groningen, Nijenborgh 4, Groningen, AG 9747, The Netherlands
| | - Hero J. Heeres
- Department
of Chemical Engineering (ENTEG), University
of Groningen, Nijenborgh 4, Groningen, AG 9747, The Netherlands
| |
Collapse
|
2
|
Chen C, Lv M, Hu H, Huai L, Zhu B, Fan S, Wang Q, Zhang J. 5-Hydroxymethylfurfural and its Downstream Chemicals: A Review of Catalytic Routes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311464. [PMID: 38808666 DOI: 10.1002/adma.202311464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Biomass assumes an increasingly vital role in the realm of renewable energy and sustainable development due to its abundant availability, renewability, and minimal environmental impact. Within this context, 5-hydroxymethylfurfural (HMF), derived from sugar dehydration, stands out as a critical bio-derived product. It serves as a pivotal multifunctional platform compound, integral in synthesizing various vital chemicals, including furan-based polymers, fine chemicals, and biofuels. The high reactivity of HMF, attributed to its highly active aldehyde, hydroxyl, and furan ring, underscores the challenge of selectively regulating its conversion to obtain the desired products. This review highlights the research progress on efficient catalytic systems for HMF synthesis, oxidation, reduction, and etherification. Additionally, it outlines the techno-economic analysis (TEA) and prospective research directions for the production of furan-based chemicals. Despite significant progress in catalysis research, and certain process routes demonstrating substantial economics, with key indicators surpassing petroleum-based products, a gap persists between fundamental research and large-scale industrialization. This is due to the lack of comprehensive engineering research on bio-based chemicals, making the commercialization process a distant goal. These findings provide valuable insights for further development of this field.
Collapse
Affiliation(s)
- Chunlin Chen
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingxin Lv
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Hualei Hu
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Liyuan Huai
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Zhu
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shilin Fan
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiuge Wang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Zhang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Kammoun M, Margellou A, Toteva VB, Aladjadjiyan A, Sousa AF, Luis SV, Garcia-Verdugo E, Triantafyllidis KS, Richel A. The key role of pretreatment for the one-step and multi-step conversions of European lignocellulosic materials into furan compounds. RSC Adv 2023; 13:21395-21420. [PMID: 37469965 PMCID: PMC10352963 DOI: 10.1039/d3ra01533e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023] Open
Abstract
Nowadays, an increased interest from the chemical industry towards the furanic compounds production, renewable molecules alternatives to fossil molecules, which can be transformed into a wide range of chemicals and biopolymers. These molecules are produced following hexose and pentose dehydration. In this context, lignocellulosic biomass, owing to its richness in carbohydrates, notably cellulose and hemicellulose, can be the starting material for monosaccharide supply to be converted into bio-based products. Nevertheless, processing biomass is essential to overcome the recalcitrance of biomass, cellulose crystallinity, and lignin crosslinked structure. The previous reports describe only the furanic compound production from monosaccharides, without considering the starting raw material from which they would be extracted, and without paying attention to raw material pretreatment for the furan production pathway, nor the mass balance of the whole process. Taking account of these shortcomings, this review focuses, firstly, on the conversion potential of different European abundant lignocellulosic matrices into 5-hydroxymethyl furfural and 2-furfural based on their chemical composition. The second line of discussion is focused on the many technological approaches reported so far for the conversion of feedstocks into furan intermediates for polymer technology but highlighting those adopting the minimum possible steps and with the lowest possible environmental impact. The focus of this review is to providing an updated discussion of the important issues relevant to bringing chemically furan derivatives into a market context within a green European context.
Collapse
Affiliation(s)
- Maroua Kammoun
- Laboratory of Biomass and Green Technologies, University of Liege Belgium
| | - Antigoni Margellou
- Department of Chemistry, Aristotle University of Thessaloniki 54124 Thessaloniki Greece
| | - Vesislava B Toteva
- Department of Textile, Leather and Fuels, University of Chemical Technology and Metallurgy Sofia Bulgaria
| | | | - Andreai F Sousa
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro 3810-193 Aveiro Portugal
- Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra Rua Sílvio Lima-Polo II 3030-790 Coimbra Portugal
| | - Santiago V Luis
- Dpt. of Inorganic and Organic Chemistry, Supramolecular and Sustainable Chemistry Group, University Jaume I Avda Sos Baynat s/n E-12071-Castellon Spain
| | - Eduardo Garcia-Verdugo
- Dpt. of Inorganic and Organic Chemistry, Supramolecular and Sustainable Chemistry Group, University Jaume I Avda Sos Baynat s/n E-12071-Castellon Spain
| | | | - Aurore Richel
- Laboratory of Biomass and Green Technologies, University of Liege Belgium
| |
Collapse
|
4
|
Xiong J, Lu X, Li W, Yang S, Zhang R, Li X, Han J, Li D, Yu Z. One-Pot Tandem Transformation of Inulin as Fructose-Rich Platform Towards 5-Hydroxymethylfurfural: Feedstock Advantages, Acid-Site Regulation and Solvent Effects. CHEMSUSCHEM 2023; 16:e202201936. [PMID: 36545829 DOI: 10.1002/cssc.202201936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The valorization of non-grain biomass feedstocks to value-added chemicals, polymers and alternative fuels is a crucial route for the utilization of renewable resources. Inulin belongs to a type of fructans, which is a pivotal platform bridging upstream fructose-rich biomass feedstocks typically represented by Jerusalem artichoke and downstream platform molecules such as alcohols, aldehydes and acids. Fructose can be directly obtained from the inulin hydrolysis and further converted into various platform chemicals, which is a more environmentally economical route than the conventional catalytic upgrading of cellulose. Nevertheless, most perspectives over the last decade have focused on the valorization of cellulose-derived carbohydrates, without much emphasis on the practical importance of one-pot transformation of inulin. In this review, we aim to demonstrate an efficient one-pot tandem transformation system of the inulin as fructose-rich platform towards 5-hydroxymethylfurfural (HMF). Core concerns are placed on elucidating the contributing roles of acid sites and solvents in enhancing the overall catalytic performance. The perspectives presented in this review may contribute to the innovation in the catalytic refining of fructose-rich non-grain biomass and the development of a greener biomass-based energy system.
Collapse
Affiliation(s)
- Jian Xiong
- School of Science, Tibet University, Lhasa, 850000, P. R. China
| | - Xuebin Lu
- School of Science, Tibet University, Lhasa, 850000, P. R. China
| | - Wei Li
- School of Science, Tibet University, Lhasa, 850000, P. R. China
| | - Shijie Yang
- School of Science, Tibet University, Lhasa, 850000, P. R. China
| | - Rui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, P. R. China
| | - Xiaoyun Li
- School of Agriculture, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Jinfeng Han
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Dan Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Zhihao Yu
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
5
|
Chen L, Xiong Y, Qin H, Qi Z. Advances of Ionic Liquids and Deep Eutectic Solvents in Green Processes of Biomass-Derived 5-Hydroxymethylfurfural. CHEMSUSCHEM 2022; 15:e202102635. [PMID: 35088547 DOI: 10.1002/cssc.202102635] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/26/2022] [Indexed: 06/14/2023]
Abstract
5-Hydroxymethylfurfural (HMF) is identified as an important bio-based platform chemical to bridge petroleum-based and biomass-based resources. It can be obtained through dehydration of various carbohydrates as well as converted to value-added fuels and chemicals. As designer solvents, ionic liquids (ILs) and deep eutectic solvents (DESs) have been widely used in catalytic transformation of biomass derivatives to various chemicals. This Review summarizes recent progress in experimental and theoretical studies on dehydration of carbohydrates such as fructose, glucose, sucrose, cellobiose, chitosan, cellulose, inulin, and even raw biomass to generate HMF using ILs and DESs as catalysts/cocatalysts and/or solvents/cosolvents. It also gives an overview of IL and DES-involved catalytic transformation of HMF to downstream products via oxidation, reduction, esterification, decarboxylation, and so forth. Challenges and prospects of ILs and DESs are also proposed for further production of HMF and HMF derivatives from biomass in green and sustainable processes.
Collapse
Affiliation(s)
- Lifang Chen
- Max Planck Partner Group at the State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Yuhang Xiong
- Max Planck Partner Group at the State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Hao Qin
- Chair for Process Systems Engineering, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, D-39106, Magdeburg, Germany
| | - Zhiwen Qi
- Max Planck Partner Group at the State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| |
Collapse
|
6
|
Martina A, van de Bovenkamp HH, Noordergraaf IW, Winkelman JGM, Picchioni F, Heeres HJ. Kinetic Study on the Sulfuric Acid-Catalyzed Conversion of d-Galactose to Levulinic Acid in Water. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Angela Martina
- Department of Chemical Engineering, Parahyangan Catholic University, Ciumbuleuit 94, Bandung 40141, Indonesia
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Henk H. van de Bovenkamp
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Inge W. Noordergraaf
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jozef G. M. Winkelman
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Francesco Picchioni
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hero J. Heeres
- Department of Chemical Engineering (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
7
|
Ukawa-Sato R, Guan G, Fushimi C. Design of Minimal Waste Process for Levulinic and Formic Acids Production from Glucose by Using Choline Chloride Added Aluminum Chloride Catalyst System. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2021. [DOI: 10.1252/jcej.21we069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ryu Ukawa-Sato
- Department of Food and Energy Systems Science, Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology
| | - Guoqing Guan
- Energy Conversion Engineering Laboratory, Institute of Regional Innovation, Hirosaki University
| | - Chihiro Fushimi
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology
| |
Collapse
|
8
|
Chen G, Wu L, Fan H, Li BG. Highly Efficient Two-Step Synthesis of 2,5-Furandicarboxylic Acid from Fructose without 5-Hydroxymethylfurfural (HMF) Separation: In Situ Oxidation of HMF in Alkaline Aqueous H2O/DMSO Mixed Solvent under Mild Conditions. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03589] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Martel AL, Montaut S, Ulíbarri G, Spiers GA. Conversion of Symphytum officinale and Panicum virgatum plant extracts to 5-hydroxymethylfurfural catalysed by metal chlorides in ionic liquids. CAN J CHEM 2018. [DOI: 10.1139/cjc-2017-0663] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present work examined the potential for two plants grown on Canadian soil, Symphytum officinale L. (common comfrey) and Panicum virgatum L. (switchgrass), to produce 5-hydroxymethylfurfural using metal chloride catalysis in two ionic liquids, 1-butyl-3-methylimidazolium chloride or 1-ethyl-3-methylimidazolium chloride. Furthermore, two pre-treatments, namely the dilute sulfuric acid treatment and the methanol extraction, were studied as a way to improve sugar availability and increase 5-hydroxymethylfurfural yields compared with untreated biomass. The 0.5 mol/L H2SO4 hydrolysis under autoclave conditions produced sugar-rich extracts containing 230 ± 23 mg of sugars per gram of hydrolysed biomass for comfrey and 425 ± 13 mg of sugars per gram of hydrolysed biomass for switchgrass. The methanol extraction produced extracts high in simple sugars with concentration of 300 ± 60 mg of sugars per gram of dry extract for comfrey and 202 ± 16 mg of sugars per gram of dry extract for switchgrass. The yield of 5-hydroxymethylfurfural was improved from less than 1% using untreated biomass to 6.04% and 18.0% using dry methanol extracts of comfrey and switchgrass, respectively. These yields, although small, are important, as they show for the first time that a methanol extract could enhance the metal chloride catalysis in ionic liquids for 5-hydroxymethylfurfural production from biomass.
Collapse
Affiliation(s)
- Alexandrine L. Martel
- Department of Chemistry & Biochemistry, Biomolecular Sciences Programme, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| | - Sabine Montaut
- Department of Chemistry & Biochemistry, Biomolecular Sciences Programme, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| | - Gerardo Ulíbarri
- Department of Chemistry & Biochemistry, Biomolecular Sciences Programme, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| | - Graeme A. Spiers
- School of the Environment, Department of Earth Sciences and Department of Biology, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
10
|
Mika LT, Cséfalvay E, Németh Á. Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability. Chem Rev 2017; 118:505-613. [DOI: 10.1021/acs.chemrev.7b00395] [Citation(s) in RCA: 662] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- László T. Mika
- Department
of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest 1111, Hungary
| | - Edit Cséfalvay
- Department
of Energy Engineering, Budapest University of Technology and Economics, Budapest 1111, Hungary
| | - Áron Németh
- Department
of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest 1111, Hungary
| |
Collapse
|
11
|
Jia S, He Y, Wang G. Dimethylsulfoxide/Water Mixed Solvent Mediated Synthesis of 5‐Hydroxymethylfurfural from Galactose with Aluminum Salt Catalyst. ChemistrySelect 2017. [DOI: 10.1002/slct.201700156] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Songyan Jia
- College of Chemical EngineeringShenyang University of Chemical Technology No. 11 Street, Economic and Technological Development Zone Shenyang, Liaoning Province 110142 PR China
| | - Yangdong He
- College of Chemical EngineeringShenyang University of Chemical Technology No. 11 Street, Economic and Technological Development Zone Shenyang, Liaoning Province 110142 PR China
| | - Guosheng Wang
- College of Chemical EngineeringShenyang University of Chemical Technology No. 11 Street, Economic and Technological Development Zone Shenyang, Liaoning Province 110142 PR China
| |
Collapse
|
12
|
Jing Y, Gao J, Liu C, Zhang D. Theoretical Insight into the Conversion Mechanism of Glucose to Fructose Catalyzed by CrCl2 in Imidazolium Chlorine Ionic Liquids. J Phys Chem B 2017; 121:2171-2178. [DOI: 10.1021/acs.jpcb.6b11820] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yaru Jing
- Key
Lab of Colloid and Interface Chemistry, Ministry of Education, Institute
of Theoretical Chemistry, Shandong University, Jinan 250100, P. R. China
| | - Jun Gao
- Hubei
Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Chengbu Liu
- Key
Lab of Colloid and Interface Chemistry, Ministry of Education, Institute
of Theoretical Chemistry, Shandong University, Jinan 250100, P. R. China
| | - Dongju Zhang
- Key
Lab of Colloid and Interface Chemistry, Ministry of Education, Institute
of Theoretical Chemistry, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
13
|
Bayu A, Guan G, Karnjanakom S, Hao X, Kusakabe K, Abudula A. Catalytic synthesis of levulinic acid and formic acid from glucose in choline chloride aqueous solution. ChemistrySelect 2016. [DOI: 10.1002/slct.201500008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Asep Bayu
- Graduate School of Science and Technology; Hirosaki University; 1-Bunkyocho Hirosaki 036-8560 Japan
| | - Guoqing Guan
- Graduate School of Science and Technology; Hirosaki University; 1-Bunkyocho Hirosaki 036-8560 Japan
- North Japan Research Institute for Sustainable Energy (NJRISE); Hirosaki University; 2-1-3, Matsubara Aomori 030-0813 Japan
| | - Surachai Karnjanakom
- Graduate School of Science and Technology; Hirosaki University; 1-Bunkyocho Hirosaki 036-8560 Japan
| | - Xiaogang Hao
- Department of Chemical Engineering; Taiyuan University of Technology; Taiyuan 030024 China
| | - Katsuki Kusakabe
- Department of Nanoscience; Sojo University; 4-22-1 Ikeda, Nishi-ku Kumamoto 860-0082 Japan
| | - Abuliti Abudula
- Graduate School of Science and Technology; Hirosaki University; 1-Bunkyocho Hirosaki 036-8560 Japan
- North Japan Research Institute for Sustainable Energy (NJRISE); Hirosaki University; 2-1-3, Matsubara Aomori 030-0813 Japan
| |
Collapse
|
14
|
Chinnappan A, Baskar C, Kim H. Biomass into chemicals: green chemical conversion of carbohydrates into 5-hydroxymethylfurfural in ionic liquids. RSC Adv 2016. [DOI: 10.1039/c6ra12021k] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Biomass is one of the few resources that have the potential to meet the challenges of sustainable and green energy systems.
Collapse
Affiliation(s)
- Amutha Chinnappan
- Department of Energy Science and Technology
- Smart Living Innovation Technology Center
- Myongji University
- Yongin
- Republic of Korea
| | - Chinnappan Baskar
- THDC Institute of Hydropower Engineering and Technology Tehri
- Uttarakhand Technical University
- Dehradun
- India 249001
| | - Hern Kim
- Department of Energy Science and Technology
- Smart Living Innovation Technology Center
- Myongji University
- Yongin
- Republic of Korea
| |
Collapse
|
15
|
Amde M, Liu JF, Pang L. Environmental Application, Fate, Effects, and Concerns of Ionic Liquids: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:12611-27. [PMID: 26445034 DOI: 10.1021/acs.est.5b03123] [Citation(s) in RCA: 251] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Ionic liquids (ILs) comprise mostly of organic salts with negligible vapor pressure and low flammability that are proposed as replacements for volatile solvents. ILs have been promoted as "green" solvents and widely investigated for their various applications. Although the utility of these chemicals is unquestionable, their toxic effects have attracted great attention. In order to manage their potential hazards and design environmentally benign ILs, understanding their environmental behavior, fate and effects is important. In this review, environmentally relevant issues of ILs, including their environmental application, environmental behavior and toxicity are addressed. In addition, also presented are the influence of ILs on the environmental fate and toxicity of other coexisting contaminants, important routes for designing nontoxic ILs and the techniques that might be adopted for the removal of ILs.
Collapse
Affiliation(s)
- Meseret Amde
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences , Beijing 100049, China
| | - Jing-Fu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- Institute of Environment and Health, Jianghan University , Hubei Province, Wuhan 430056, China
| | - Long Pang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry , No. 166, Science Avenue, Zhengzhou 450001, China
| |
Collapse
|