1
|
Zhao H, Roy A, Samaranayake A, Ishtaweera P, Baker GA, Duong N, Markmann LG, Fernando NS, Mitchell-Koch KR. Lipase-Catalyzed Michael Addition in 'Water-like' Ionic Liquids and Tertiary Amides: What Is the Role of the Enzymes? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:12718-12730. [PMID: 40356070 DOI: 10.1021/acs.langmuir.5c00874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Michael addition is an important reaction to form C-C bonds. Different hydrolases (e.g., lipases, proteases, and d-aminoacylase) have been reported to catalyze C-C-forming reactions, but the reaction mechanism is not entirely clear. This study examined several model Michael reactions catalyzed by lipases and amino acids in various solvents and found that "water-like" functionalized ionic liquids (ILs) increased the reaction yield to 35-55% from 30% in triglyme and 17% in [BMIM][Tf2N]. Interestingly, tertiary amides as solvents remarkably increased the reaction yield (to up to 65-85%) and enantioselectivity (up to 71-84% ee) when catalyzed by porcine pancreatic lipase (PPL). Our experimental, spectroscopic, and computational studies discovered that the lipase catalysis can be attributed to basic amino acid residues as the catalysts to promote Michael addition, especially when tertiary amide solvents partially unfold the protein and expose its (basic) amino acid residues.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Angira Roy
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Ashen Samaranayake
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Piyuni Ishtaweera
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Gary A Baker
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Nhu Duong
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2 Canada
| | - Leo G Markmann
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2 Canada
| | - Nadeesha S Fernando
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2 Canada
| | | |
Collapse
|
2
|
Zhao H. Recent advances in enzymatic carbon-carbon bond formation. RSC Adv 2024; 14:25932-25974. [PMID: 39161440 PMCID: PMC11331486 DOI: 10.1039/d4ra03885a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024] Open
Abstract
Enzymatic carbon-carbon (C-C) bond formation reactions have become an effective and invaluable tool for designing new biological and medicinal molecules, often with asymmetric features. This review provides a systematic overview of key C-C bond formation reactions and enzymes, with the focus of reaction mechanisms and recent advances. These reactions include the aldol reaction, Henry reaction, Knoevenagel condensation, Michael addition, Friedel-Crafts alkylation and acylation, Mannich reaction, Morita-Baylis-Hillman (MBH) reaction, Diels-Alder reaction, acyloin condensations via Thiamine Diphosphate (ThDP)-dependent enzymes, oxidative and reductive C-C bond formation, C-C bond formation through C1 resource utilization, radical enzymes for C-C bond formation, and other C-C bond formation reactions.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Bioproducts and Biosystems Engineering, University of Minnesota St. Paul MN 55108 USA
| |
Collapse
|
3
|
Haeger G, Probst J, Jaeger K, Bongaerts J, Siegert P. Novel aminoacylases from Streptomyces griseus DSM 40236 and their recombinant production in Streptomyces lividans. FEBS Open Bio 2023; 13:2224-2238. [PMID: 37879963 PMCID: PMC10699109 DOI: 10.1002/2211-5463.13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/15/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023] Open
Abstract
Amino acid-based surfactants are valuable compounds for cosmetic formulations. The chemical synthesis of acyl amino acids is conventionally performed by the Schotten-Baumann reaction using fatty acyl chlorides, but aminoacylases have also been investigated for use in biocatalytic synthesis with free fatty acids. Aminoacylases and their properties are diverse; they belong to different peptidase families and show differences in substrate specificity and biocatalytic potential. Bacterial aminoacylases capable of synthesis have been isolated from Burkholderia, Mycolicibacterium, and Streptomyces. Although several proteases and peptidases from S. griseus have been described, no aminoacylases from this species have been identified yet. In this study, we investigated two novel enzymes produced by S. griseus DSM 40236T . We identified and cloned the respective genes and recombinantly expressed an α-aminoacylase (EC3.5.1.14), designated SgAA, and an ε-lysine acylase (EC3.5.1.17), designated SgELA, in S. lividans TK23. The purified aminoacylase SgAA was biochemically characterized, focusing on its hydrolytic activity to determine temperature- and pH optima and stabilities. The aminoacylase could hydrolyze various acetyl amino acids at the Nα -position with a broad specificity regarding the sidechain. Substrates with longer acyl chains, like lauroyl amino acids, were hydrolyzed to a lesser extent. Purified aminoacylase SgELA specific for the hydrolysis of Nε -acetyl-l-lysine was unstable and lost its enzymatic activity upon storage for a longer period but could initially be characterized. The pH optimum of SgELA was pH 8.0. While synthesis of acyl amino acids was not observed with SgELA, SgAA catalyzed the synthesis of lauroyl-methionine.
Collapse
Affiliation(s)
- Gerrit Haeger
- Institute of Nano‐ and BiotechnologiesAachen University of Applied SciencesJülichGermany
| | - Johanna Probst
- Institute of Nano‐ and BiotechnologiesAachen University of Applied SciencesJülichGermany
| | - Karl‐Erich Jaeger
- Institute of Molecular Enzyme TechnologyHeinrich Heine University DüsseldorfJülichGermany
- Institute of Bio‐ and Geosciences IBG‐1: BiotechnologyForschungszentrum Jülich GmbHJülichGermany
| | - Johannes Bongaerts
- Institute of Nano‐ and BiotechnologiesAachen University of Applied SciencesJülichGermany
| | - Petra Siegert
- Institute of Nano‐ and BiotechnologiesAachen University of Applied SciencesJülichGermany
| |
Collapse
|
4
|
Hirabayashi J, Yakushiji F, Katsuyama A, Ichikawa S. Total Synthesis of Acaulide and Acaulone A. Org Lett 2020; 22:5545-5549. [PMID: 32619097 DOI: 10.1021/acs.orglett.0c01907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acaulide and acaulone A, which contain 14-membered macrodiolides, were isolated from a culture of Acaulium sp. H-JQSF. The antiosteoporosis activity of acaulide is expected to contribute to drug discovery research for an aging society. We herein report the first total synthesis of acaulide, acaulone A, and 10-keto-acaudiol A. Acaulide and acaulone A were synthesized via the late stage Michael addition to the 14-membered macrodiolide, which was inspired by plausible biosynthetic pathways. This approach succeeded in the construction of the acaulide skeleton, which revealed the specific conformation of the 14-membered macrodiolide for late stage functionalization.
Collapse
Affiliation(s)
- Jun Hirabayashi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Fumika Yakushiji
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.,Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Akira Katsuyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.,Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Satoshi Ichikawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.,Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
5
|
Maximuck WJ, Ganzmann C, Alvi S, Hooda KR, Gladysz JA. Rendering classical hydrophilic enantiopure Werner salts [M(en) 3] n+nX - lipophilic (M/n = Cr/3, Co/3, Rh/3, Ir/3, Pt/4); new chiral hydrogen bond donor catalysts and enantioselectivities as a function of metal and charge. Dalton Trans 2020; 49:3680-3691. [PMID: 32124905 DOI: 10.1039/d0dt00523a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Known hydrophilic halide salts of the title compounds are converted to new lipophilic BArf- (B(3,5-C6H3(CF3)2)4-) salts. These are isolated as hydrates (Λ- or Δ-[M(en)3]n+nBArf-·zH2O; z = 17-9) and characterized by NMR (acetone-d6) and microanalyses. Thermal stabilities are probed by capillary thermolyses and TGA and DSC measurements (onset of dehydration 71-151 °C). In the presence of tertiary amines, they are effective catalysts for enantioselective Michael type carbon-carbon or carbon-nitrogen bond forming additions of 1,3-dicarbonyl compounds (acceptors: trans-β-nitrostyrene, di-tert-butylazodicarboxylate, 2-cyclopenten-1-one; average ee = 33%, 52%, 17%). Effects of the metal and charge upon enantioselectivities are analyzed. A number of properties appear to correlate to the NH Brønsted acidity order ([Pt(en)3]4+ > [Cr(en)3]3+ > [Co(en)3]3+ > [Rh(en)3]3+ > [Ir(en)3]3+).
Collapse
Affiliation(s)
- William J Maximuck
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, USA.
| | - Carola Ganzmann
- Institut für Organische Chemie and Interdisciplinary Center for Molecular Materials Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 42, 91054 Erlangen, Germany
| | - Scheherzad Alvi
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, USA.
| | - Karan R Hooda
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, USA.
| | - John A Gladysz
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, USA.
| |
Collapse
|
6
|
Synthesis and continuous catalytic application of alkaline protease nanoflowers–PVA composite hydrogel. CATAL COMMUN 2018. [DOI: 10.1016/j.catcom.2018.07.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|