1
|
Hammi N, Boundor M, Chen S, Couzon N, El Kadib A, Ferri A, Pourpoint F, Loiseau T, Volkringer C, Royer S, Dhainaut J. Evaporation-Induced Reticular Growth of UiO-66_NH 2 in Chitosan Films: Adsorption of Iodine. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3952-3961. [PMID: 39763431 DOI: 10.1021/acsami.4c18621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Metal-organic frameworks (MOFs) combined with polymers as hybrid materials offer numerous advantages such as enhanced performances through synergistic effects at their interface. The primary challenge in developing polymer/MOF hybrid matrix films is ensuring optimal dispersion and strong adhesion of crystalline MOFs to the polymer without aggregation, weak interaction, or phase separation. In this study, hierarchically porous UiO-66_NH2/chitosan (ZrCSx-f) films were designed by crystallizing UiO-66_NH2 within a chitosan (CS) skeleton. The resulting ZrCSx-f films displayed remarkable homogeneity with high loadings of UiO-66_NH2 crystals, up to 45 wt %, coupled to a high adsorption capacity of iodine in gas phase, up to 317 mg.g-1.
Collapse
Affiliation(s)
- Nisrine Hammi
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France
- Univ. Lille, CNRS, INRA, Centrale Lille, Univ. Artois, FR 2638 - IMEC - Institut Michel-Eugène Chevreul, Lille 59000, France
- Key Laboratory of Functional Molecular Solids Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | | | - Shuo Chen
- Key Laboratory of Functional Molecular Solids Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Nelly Couzon
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | | | - Anthony Ferri
- Univ. Artois, CNRS, Centrale Lille, Univ. Lille, UMR 8181, Unité de Catalyse et Chimie du Solide (UCCS), Lens F-62300, France
| | - Frédérique Pourpoint
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France
- Institut Universitaire de France, 1 rue Descartes, Paris 75005, France
| | - Thierry Loiseau
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Christophe Volkringer
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Sébastien Royer
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| | - Jérémy Dhainaut
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France
| |
Collapse
|
2
|
Tajik S, Shams P, Beitollahi H, Garkani Nejad F. Electrochemical Nanosensor for the Simultaneous Determination of Anticancer Drugs Epirubicin and Topotecan Using UiO-66-NH 2/GO Nanocomposite Modified Electrode. BIOSENSORS 2024; 14:229. [PMID: 38785703 PMCID: PMC11117627 DOI: 10.3390/bios14050229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
In this work, UiO-66-NH2/GO nanocomposite was prepared using a simple solvothermal technique, and its structure and morphology were characterized using field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). An enhanced electrochemical sensor for the detection of epirubicin (EP) was proposed, which utilized a UiO-66-NH2/GO nanocomposite-modified screen-printed graphite electrode (UiO-66-NH2/GO/SPGE). The prepared UiO-66-NH2/GO nanocomposite improved the electrochemical performance of the SPGE towards the redox reaction of EP. Under optimized experimental conditions, this sensor demonstrates a remarkable limit of detection (LOD) of 0.003 µM and a linear dynamic range from 0.008 to 200.0 µM, providing a highly capable platform for sensing EP. Furthermore, the simultaneous electro-catalytic oxidation of EP and topotecan (TP) was investigated at the UiO-66-NH2/GO/SPGE surface utilizing differential pulse voltammetry (DPV). DPV measurements revealed the presence of two distinct oxidation peaks of EP and TP, with a peak potential separation of 200 mV. Finally, the UiO-66-NH2/GO/SPGE sensor was successfully utilized for the quantitative analysis of EP and TP in pharmaceutical injection, yielding highly satisfactory results.
Collapse
Affiliation(s)
- Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 76169-13555, Iran
| | - Parisa Shams
- Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman 76169-13555, Iran;
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 76318-85356, Iran; (H.B.); (F.G.N.)
| | - Fariba Garkani Nejad
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 76318-85356, Iran; (H.B.); (F.G.N.)
| |
Collapse
|
3
|
Kazemi A, Moghadaskhou F, Pordsari MA, Manteghi F, Tadjarodi A, Ghaemi A. Enhanced CO 2 capture potential of UiO-66-NH 2 synthesized by sonochemical method: experimental findings and performance evaluation. Sci Rep 2023; 13:19891. [PMID: 37964001 PMCID: PMC10645735 DOI: 10.1038/s41598-023-47221-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/10/2023] [Indexed: 11/16/2023] Open
Abstract
The excessive release of greenhouse gases, especially carbon dioxide (CO2) pollution, has resulted in significant environmental problems all over the world. CO2 capture technologies offer a very effective means of combating global warming, climate change, and promoting sustainable economic growth. In this work, UiO-66-NH2 was synthesized by the novel sonochemical method in only one hour. This material was characterized through PXRD, FT-IR, FE-SEM, EDX, BET, and TGA methods. The CO2 capture potential of the presented material was investigated through the analysis of gas isotherms under varying pressure conditions, encompassing both low and high-pressure regions. Remarkably, this adsorbent manifested a notable augmentation in CO2 adsorption capacity (3.2 mmol/g), achieving an approximate enhancement of 0.9 mmol/g, when compared to conventional solvothermal techniques (2.3 mmol/g) at 25 °C and 1 bar. To accurately represent the experimental findings, three isotherm, and kinetic models were used to fit the experimental data in which the Langmuir model and the Elovich model exhibited the best fit with R2 values of 0.999 and 0.981, respectively. Isosteric heat evaluation showed values higher than 80 kJ/mol which indicates chemisorption between the adsorbent surface and the adsorbate. Furthermore, the selectivity of the adsorbent was examined using the Ideal Adsorbed Solution Theory (IAST), which showed a high value of 202 towards CO2 adsorption under simulated flue gas conditions. To evaluate the durability and performance of the material over consecutive adsorption-desorption processes, cyclic tests were conducted. Interestingly, these tests demonstrated only 0.6 mmol/g capacity decrease for sonochemical UiO-66-NH2 throughout 8 consecutive cycles.
Collapse
Affiliation(s)
- Amir Kazemi
- Research Laboratory of Inorganic Chemistry and Environment, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Fatemeh Moghadaskhou
- Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mahyar Ashourzadeh Pordsari
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Faranak Manteghi
- Research Laboratory of Inorganic Chemistry and Environment, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Azadeh Tadjarodi
- Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ahad Ghaemi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| |
Collapse
|
4
|
Kobaisy AM, Elkady MF, Abdel-Moneim AA, El-Khouly ME. Surface-decorated porphyrinic zirconium-based metal-organic frameworks (MOFs) using post-synthetic self-assembly for photodegradation of methyl orange dye. RSC Adv 2023; 13:23050-23060. [PMID: 37529362 PMCID: PMC10388159 DOI: 10.1039/d3ra02656f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/22/2023] [Indexed: 08/03/2023] Open
Abstract
We report herein the surface decoration of a water-soluble free-base porphyrin, namely, 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin-tetra(p-toluenesulfonate) (H2TMPyP), over three different zirconium-based metal-organic frameworks of different linker structure and functionality; namely UiO66, UiO66-NH2, and MIP-202, via self-assembly. The synthesized MOFs along with the resulting complexes have been characterized via spectroscopic and analytical techniques (XRD, FT-IR, TEM, N2 adsorption/desorption, and laser scanning confocal microscopy). The self-assembly of H2TMPyP with the examined three MOFs was observed by using the steady-state absorption and fluorescence, as well as the fluorescence lifetime studies. It was evident that the highest complex interaction was recorded between porphyrin and UiO-66-NH2 compared with the lowest interactions between porphyrin and MIP-202. This is in good agreement with the high surface area and pore volume of UiO-66 (1100 m2 g-1 and 0.68 cm3 g-1) and compared to that of MIP-202 (94 m2 g-1 and 0.26 cm3 g-1). The photocatalytic activities of the three porphyrin entities immobilized zirconium-based MOFs were compared toward methyl orange dye degradation from aqueous solution under visible light irradiation (λex = 430 nm). The photocatalytic studies render the fabrication of the self-assembled H2TMPyP@UiO-66-NH2 composite as a promising material for dye degradation from polluted wastewater.
Collapse
Affiliation(s)
- Ahmed M Kobaisy
- Nanoscience Program, Institute of Basic and Applied Science, Egypt-Japan University of Science and Technology (E-JUST) New Borg El-Arab City Alexandria Egypt
| | - Marwa F Elkady
- Chemical and Petrochemicals Engineering Department, Egypt-Japan University of Science and Technology (E-JUST) New Borg El-Arab City Alexandria Egypt
| | - Ahmed A Abdel-Moneim
- Nanoscience Program, Institute of Basic and Applied Science, Egypt-Japan University of Science and Technology (E-JUST) New Borg El-Arab City Alexandria Egypt
| | - Mohamed E El-Khouly
- Nanoscience Program, Institute of Basic and Applied Science, Egypt-Japan University of Science and Technology (E-JUST) New Borg El-Arab City Alexandria Egypt
| |
Collapse
|
5
|
Jia X, Liu C, Xu X, Wang F, Li W, Zhang L, Jiao S, Zhu G, Wang X. g-C 3N 4-modified Zr-Fc MOFs as a novel photocatalysis-self-Fenton system toward the direct hydroxylation of benzene to phenol. RSC Adv 2023; 13:19140-19148. [PMID: 37362340 PMCID: PMC10288341 DOI: 10.1039/d3ra03055e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
In order to explore a green, economic, and sustainable phenol production process, a heterojunction semiconductor materials g-C3N4/Zr-Fc MOF was synthesized via an in situ synthesis method. With the synergistic effect of photocatalysis and the Fenton effect, the composite could effectively catalyze the direct hydroxylation of benzene to phenol under visible light irradiation. The yield of phenol and the selectivity were 13.84% and 99.38% under the optimal conditions, respectively, and it could still maintain high photocatalytic activity after 5 photocatalytic cycles. Therefore, the designed photocatalysis-self-Fenton system has great potential in the field of the direct hydroxylation of benzene to phenol.
Collapse
Affiliation(s)
- Xu Jia
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 PR China +86-731-62506095 +86-731-62506699
| | - Cong Liu
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 PR China +86-731-62506095 +86-731-62506699
| | - Xuetong Xu
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 PR China +86-731-62506095 +86-731-62506699
| | - Fuying Wang
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 PR China +86-731-62506095 +86-731-62506699
| | - Weiwei Li
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 PR China +86-731-62506095 +86-731-62506699
| | - Liuxue Zhang
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 PR China +86-731-62506095 +86-731-62506699
| | - Shuyan Jiao
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 PR China +86-731-62506095 +86-731-62506699
| | - Genxing Zhu
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 PR China +86-731-62506095 +86-731-62506699
| | - Xiulian Wang
- School of Energy and Environment, Zhongyuan University of Technology Zhengzhou 450007 PR China
| |
Collapse
|
6
|
Garkani Nejad F, Beitollahi H, Sheikhshoaie I. A UiO-66-NH 2 MOF/PAMAM Dendrimer Nanocomposite for Electrochemical Detection of Tramadol in the Presence of Acetaminophen in Pharmaceutical Formulations. BIOSENSORS 2023; 13:bios13050514. [PMID: 37232874 DOI: 10.3390/bios13050514] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/22/2023] [Accepted: 04/04/2023] [Indexed: 05/27/2023]
Abstract
In this work, we prepared a novel electrochemical sensor for the detection of tramadol based on a UiO-66-NH2 metal-organic framework (UiO-66-NH2 MOF)/third-generation poly(amidoamine) dendrimer (G3-PAMAM dendrimer) nanocomposite drop-cast onto a glassy carbon electrode (GCE) surface. After the synthesis of the nanocomposite, the functionalization of the UiO-66-NH2 MOF by G3-PAMAM was confirmed by various techniques including X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), field emission-scanning electron microscopy (FE-SEM), and Fourier transform infrared (FT-IR) spectroscopy. The UiO-66-NH2 MOF/PAMAM-modified GCE exhibited commendable electrocatalytic performance toward the tramadol oxidation owing to the integration of the UiO-66-NH2 MOF with the PAMAM dendrimer. According to differential pulse voltammetry (DPV), it was possible to detect tramadol under optimized circumstances in a broad concentration range (0.5 μM-500.0 μM) and a narrow limit of detection (0.2 μM). In addition, the stability, repeatability, and reproducibility of the presented UiO-66-NH2 MOF/PAMAM/GCE sensor were also studied. The sensor also possessed an acceptable catalytic behavior for the tramadol determination in the co-existence of acetaminophen, with the separated oxidation potential of ΔE = 410 mV. Finally, the UiO-66-NH2 MOF/PAMAM-modified GCE exhibited satisfactory practical ability in pharmaceutical formulations (tramadol tablets and acetaminophen tablets).
Collapse
Affiliation(s)
- Fariba Garkani Nejad
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 76175-133, Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman P.O. Box 76318-85356, Iran
| | - Iran Sheikhshoaie
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 76175-133, Iran
| |
Collapse
|
7
|
Farahani SK, Hosseini SM. A highly promoted nanofiltration membrane by incorporating of aminated Zr-based MOF for efficient salts and dyes removal with excellent antifouling properties. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Jia X, Wang F, Wen H, Zhang L, Jiao S, Wang X, Pei X, Xing S. An efficient photocatalyst based on H 5PMo 10V 2O 40/UiO-66-NH 2 for direct hydroxylation of benzene to phenol by H 2O 2. RSC Adv 2022; 12:29433-29439. [PMID: 36320737 PMCID: PMC9562630 DOI: 10.1039/d2ra06197j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023] Open
Abstract
To realize the direct hydroxylation of benzene to phenol by hydrogen peroxide, an efficient photoactive catalyst system was prepared by the recombination of H5PMo10V2O40 and UiO-66-NH2. The heterpolyacid was uniformly distributed on the UiO-66-NH2, and the combination was stable. The composite could effectively photocatalyze the direct hydroxylation of benzene to phenol by H2O2 in the mixture solution of acetonitrile and acetic acid. The yield and selectivity were 14.08% and 98.8% under the optimum condition, respectively. The performance of the catalyst still maintained well after 5 catalytic cycles. Hence, the investigated catalyst system might be applied in the field of hydroxylation of benzene to phenol.
Collapse
Affiliation(s)
- Xu Jia
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 PR China +86-731-62506095 +86-731-62506699
| | - Fuying Wang
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 PR China +86-731-62506095 +86-731-62506699
| | - Hao Wen
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 PR China +86-731-62506095 +86-731-62506699
| | - Liuxue Zhang
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 PR China +86-731-62506095 +86-731-62506699
| | - Shuyan Jiao
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 PR China +86-731-62506095 +86-731-62506699
| | - Xiulian Wang
- School of Energy and Environment, Zhongyuan University of Technology Zhengzhou 450007 PR China
| | - Xinyi Pei
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 PR China +86-731-62506095 +86-731-62506699
| | - Shuzhou Xing
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 PR China +86-731-62506095 +86-731-62506699
| |
Collapse
|
9
|
Han W, Xiang W, Shi J, Ji Y. Recent Advances in the Heterogeneous Photocatalytic Hydroxylation of Benzene to Phenol. Molecules 2022; 27:molecules27175457. [PMID: 36080224 PMCID: PMC9457663 DOI: 10.3390/molecules27175457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Phenol is an important chemical material that is widely used in industry. Currently, phenol is dominantly produced by the well−known three−step cumene process, which suffers from severe drawbacks. Therefore, developing a green, sustainable, and economical strategy for the production of phenol directly from benzene is urgently needed. In recent years, the photocatalytic hydroxylation of benzene to phenol, which is economically feasible and could be performed under mild conditions, has attracted more attention, and development of highly efficient photocatalyst would be a key issue in this field. In this review, we systematically introduce the recent achievements of photocatalytic hydroxylation of benzene to phenol from 2015 to mid−2022, and various heterogeneous photocatalysts are comprehensively reviewed, including semiconductors, polyoxometalates (POMs), graphitic carbon nitride (g−C3N4), metal–organic frameworks (MOFs), carbon materials, and some other types of photocatalysts. Much effort is focused on the physical and chemical approaches for modification of these photocatalysts. The challenges and future promising directions for further enhancing the catalytic performances in photocatalytic hydroxylation of benzene are discussed in the end.
Collapse
Affiliation(s)
- Weiwei Han
- Correspondence: ; Tel.: +86-29-8838-2703
| | | | | | | |
Collapse
|
10
|
Li J, Zhu M, Dai B. An amino functionalized zirconium metal organic framework as a catalyst for oxidative desulfurization. NEW J CHEM 2022. [DOI: 10.1039/d2nj01375d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The excellent activity of UiO-66-NH2 may be attributed to the synergistic effect of ZrIV–OH and –NH2.
Collapse
Affiliation(s)
- Juan Li
- School of Chemistry and Chemical Engineering of Shihezi University, Shihezi, Xinjiang 832000, P. R. China
- College of Chemistry & Chemical Engineering Yantai University, Yantai, Shandong 264010, P. R. China
| | - Mingyuan Zhu
- School of Chemistry and Chemical Engineering of Shihezi University, Shihezi, Xinjiang 832000, P. R. China
- College of Chemistry & Chemical Engineering Yantai University, Yantai, Shandong 264010, P. R. China
| | - Bin Dai
- School of Chemistry and Chemical Engineering of Shihezi University, Shihezi, Xinjiang 832000, P. R. China
| |
Collapse
|
11
|
Lu G, Chu F, Huang X, Li Y, Liang K, Wang G. Recent advances in Metal-Organic Frameworks-based materials for photocatalytic selective oxidation. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214240] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Engineering titanium-organic framework decorated silver molybdate and silver vanadate as antimicrobial, anticancer agents, and photo-induced hydroxylation reactions. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113572] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
13
|
Koolivand M, Nikoorazm M, Ghorbani‐Choghamarani A, Tahmasbi B. Cu–citric acid metal–organic framework: Synthesis, characterization and catalytic application in Suzuki–Miyaura cross‐coupling reaction and oxidation of sulfides. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Mostafa Koolivand
- Department of Chemistry, Faculty of Science Ilam University Ilam Iran
| | - Mohsen Nikoorazm
- Department of Chemistry, Faculty of Science Ilam University Ilam Iran
| | | | - Bahman Tahmasbi
- Department of Chemistry, Faculty of Science Ilam University Ilam Iran
| |
Collapse
|
14
|
Xu P, Zhang L, Jia X, Wen H, Wang X, Yang S, Hui J. A novel heterogeneous catalyst NH 2-MIL-88/PMo 10V 2 for the photocatalytic activity enhancement of benzene hydroxylation. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01056e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this work, heterogeneous catalyst NH2-MIL-88/PMo10V2-3 has shown the high hydroxylation activity of benzene under visible light (a 5 W LED), which mainly attributed to the production of hydroxyl radical(˙OH) and V5+/V4+ redox pair in the existence of electron (e−).
Collapse
Affiliation(s)
- PanPan Xu
- School of Materials and Chemical Engineering, Zhong yuan University of Technology, Zhengzhou, 450007, PR China
| | - Liuxue Zhang
- School of Materials and Chemical Engineering, Zhong yuan University of Technology, Zhengzhou, 450007, PR China
| | - Xu Jia
- School of Materials and Chemical Engineering, Zhong yuan University of Technology, Zhengzhou, 450007, PR China
| | - Hao Wen
- School of Materials and Chemical Engineering, Zhong yuan University of Technology, Zhengzhou, 450007, PR China
| | - Xiulian Wang
- School of Energy and Environment, Zhong yuan University of Technology, Zhengzhou, 450007, PR China
| | - Suqing Yang
- School of Materials and Chemical Engineering, Zhong yuan University of Technology, Zhengzhou, 450007, PR China
| | - Juxian Hui
- School of Materials and Chemical Engineering, Zhong yuan University of Technology, Zhengzhou, 450007, PR China
| |
Collapse
|
15
|
Xu P, Zhang L, Jia X, Wang X, Cao Y, Zhang Y. Visible‐Light‐Enhanced Photocatalytic Activities for Degradation of Organics by Chromium Acetylacetone Supported on UiO‐66‐NH
2. ChemistrySelect 2020. [DOI: 10.1002/slct.202003485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- PanPan Xu
- School of Materials and Chemical Engineering Zhongyuan University of Technology Zhengzhou 450007 PR China
| | - Liuxue Zhang
- School of Materials and Chemical Engineering Zhongyuan University of Technology Zhengzhou 450007 PR China
| | - Xu Jia
- School of Materials and Chemical Engineering Zhongyuan University of Technology Zhengzhou 450007 PR China
| | - Xiulian Wang
- School of Energy and Environment Zhongyuan University of Technology Zhengzhou 450007 PR China
| | - Yijie Cao
- School of Materials and Chemical Engineering Zhongyuan University of Technology Zhengzhou 450007 PR China
| | - Yu Zhang
- School of Materials and Chemical Engineering Zhongyuan University of Technology Zhengzhou 450007 PR China
| |
Collapse
|
16
|
Ottenbacher RV, Talsi EP, Bryliakov KP. Recent progress in catalytic oxygenation of aromatic C–H groups with the environmentally benign oxidants H
2
O
2
and O
2. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5900] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Roman V. Ottenbacher
- Novosibirsk State University, Faculty of Natural Sciences Pirogova, 1 Novosibisk 630090 Russia
- Boreskov Institute of Catalysis Pr. Lavrentieva 5 Novosibisk 630090 Russia
| | - Evgenii P. Talsi
- Novosibirsk State University, Faculty of Natural Sciences Pirogova, 1 Novosibisk 630090 Russia
- Boreskov Institute of Catalysis Pr. Lavrentieva 5 Novosibisk 630090 Russia
| | - Konstantin P. Bryliakov
- Novosibirsk State University, Faculty of Natural Sciences Pirogova, 1 Novosibisk 630090 Russia
- Boreskov Institute of Catalysis Pr. Lavrentieva 5 Novosibisk 630090 Russia
| |
Collapse
|
17
|
Zhao Q, Zhang L, Zhao M, Xu P, Wang X, Jia X, Zhang J. Vanadium Oxyacetylacetonate Grated on Metal Organic Framework as Catalyst for the Direct Hydroxylation of Benzene to Phenol. ChemistrySelect 2020. [DOI: 10.1002/slct.202000842] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qianqian Zhao
- School of Materials and Chemical EngineeringZhongyuan University of Technology Zhengzhou 450007 P.R. China
| | - Liuxue Zhang
- School of Materials and Chemical EngineeringZhongyuan University of Technology Zhengzhou 450007 P.R. China
| | - Meiyan Zhao
- School of Materials and Chemical EngineeringZhongyuan University of Technology Zhengzhou 450007 P.R. China
| | - Panpan Xu
- School of Materials and Chemical EngineeringZhongyuan University of Technology Zhengzhou 450007 P.R. China
| | - Xiulian Wang
- School of Energy and EnvironmentZhongyuan University of Technology Zhengzhou 450007 P.R. China
| | - Xu Jia
- School of Materials and Chemical EngineeringZhongyuan University of Technology Zhengzhou 450007 P.R. China
| | - Jie Zhang
- School of Materials and Chemical EngineeringZhongyuan University of Technology Zhengzhou 450007 P.R. China
| |
Collapse
|
18
|
Filian H, Kohzadian A, Mohammadi M, Ghorbani‐Choghamarani A, Karami A. Pd(0)‐guanidine@MCM‐41: a very effective catalyst for rapid production of bis (pyrazolyl)methanes. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5579] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hossein Filian
- Department of Chemistry, Khuzestan Science and Research BranchIslamic Azad University Ahvaz Iran
| | - Alireza Kohzadian
- Young Researchers Club, Ilam BranchIslamic Azad University, Ilam Iran
| | - Masoud Mohammadi
- Department of Chemistry, Faculty of ScienceIlam University P. O. Box 69315516 Ilam Iran
| | | | - Amirali Karami
- Department of Chemistry, Khuzestan Science and Research BranchIslamic Azad University Ahvaz Iran
| |
Collapse
|