1
|
Boonyuen S, Shanmugam P, Ramachandran R, Phromsatit T, Teerawatananond T, Tantayanon S, Arpornmaeklong P, Shirosaki Y. Exploring copper (II) porphyrin complexes and their derivatives for electrochemical analysis and biological assessment in the study of breast cancer (MCF-7) cell lines. ENVIRONMENTAL RESEARCH 2024; 250:118489. [PMID: 38373552 DOI: 10.1016/j.envres.2024.118489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/22/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
In this study, several derivatives of tetraphenylporphyrin were synthesized, each with unique meso-substituent groups including phenyl, methoxyphenyl, butyloxyphenyl, octyloxyphenyl, and dectyloxyphenyl. Additionally, their corresponding copper complexes were prepared and thoroughly characterized. The structural confirmation of all compounds was established through CHN elemental analysis, mass spectrometry, and FT-IR spectroscopy. As the number of carbon atoms in the alkyl long-chain increased, a slight red shift in the electronic absorption band was observed, which was attributed to the electronic influence of the alkyl group. DFT analysis indicated that electron density predominantly localized on the porphyrin ring of both the metal free porphyrins and copper (II) porphyrin complexes, with relatively low electron density in the p orbital of the meso-aryl long-chain substituent group. EPR spectroscopy of the Copper (II) ion complexes revealed signals, indicating their paramagnetic properties. Additionally, the Copper (II) tetraphenylporphyrin (CuTPP) complexes displayed two reversible oxidation peaks at +0.97 V and +1.35 V, whereas other derivatives exhibited lower oxidation potentials. The cytotoxicity of these compounds against MCF-7 cell lines was assessed using MTT assay, revealing cytotoxic effects in all cases. Among them, Copper (II) tetrakis (4-methyloxyphenyl)porphyrin (CuTOMPP) demonstrated the highest potential, with an IC50 value of 32.07 μg/mL.
Collapse
Affiliation(s)
- Supakorn Boonyuen
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani, 12120, Thailand.
| | - Paramasivam Shanmugam
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani, 12120, Thailand
| | - Rajan Ramachandran
- Center of Translational Medicine, Zibo Central Hospital, Zibo, 255036, Shandong, China
| | - Tossapon Phromsatit
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani, 12120, Thailand
| | - Thapong Teerawatananond
- Department of Chemistry, Faculty of Science and Technology, Valaya Alongkorn Rajabhat University, Pathumthani, 12120, Thailand
| | - Supawan Tantayanon
- Department of Chemistry, Green Chemistry Research Laboratory, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Yuki Shirosaki
- Department of Materials Science, Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| |
Collapse
|
2
|
Yong WW, Zhang HT, Guo YH, Xie F, Zhang MT. Redox-Active Ligand Assisted Multielectron Catalysis: A Case of Electrocatalyzed CO 2-to-CO Conversion. ACS ORGANIC & INORGANIC AU 2023; 3:384-392. [PMID: 38075450 PMCID: PMC10704577 DOI: 10.1021/acsorginorgau.3c00027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 03/16/2024]
Abstract
The selective reduction of carbon dioxide remains a significant challenge due to the complex multielectron/proton transfer process, which results in a high kinetic barrier and the production of diverse products. Inspired by the electrostatic and H-bonding interactions observed in the second sphere of the [NiFe]-CODH enzyme, researchers have extensively explored these interactions to regulate proton transfer, stabilize intermediates, and ultimately improve the performance of catalytic CO2 reduction. In this work, a series of cobalt(II) tetraphenylporphyrins with varying numbers of redox-active nitro groups were synthesized and evaluated as CO2 reduction electrocatalysts. Analyses of the redox properties of these complexes revealed a consistent relationship between the number of nitro groups and the corresponding accepted electron number of the ligand at -1.59 V vs. Fc+/0. Among the catalysts tested, TNPPCo with four nitro groups exhibited the most efficient catalytic activity with a turnover frequency of 4.9 × 104 s-1 and a catalytic onset potential 820 mV more positive than that of the parent TPPCo. Furthermore, the turnover frequencies of the catalysts increased with a higher number of nitro groups. These results demonstrate the promising design strategy of incorporating multielectron redox-active ligands into CO2 reduction catalysts to enhance catalytic performance.
Collapse
Affiliation(s)
- Wen-Wen Yong
- Center
of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
- Institute
of Materials, China Academy of Engineering Physics (CAEP), Jiangyou 621908, China
| | - Hong-Tao Zhang
- Center
of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu-Hua Guo
- Center
of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Fei Xie
- Center
of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ming-Tian Zhang
- Center
of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Zhou XY, Fu B, Jin WD, Wang X, Wang KK, Wang M, She YB, Shen HM. Efficient and Selective Oxygenation of Cycloalkanes and Alkyl Aromatics with Oxygen through Synergistic Catalysis of Bimetallic Active Centers in Two-Dimensional Metal-Organic Frameworks Based on Metalloporphyrins. Biomimetics (Basel) 2023; 8:325. [PMID: 37504212 PMCID: PMC10807029 DOI: 10.3390/biomimetics8030325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Confined catalytic realms and synergistic catalysis sites were constructed using bimetallic active centers in two-dimensional metal-organic frameworks (MOFs) to achieve highly selective oxygenation of cycloalkanes and alkyl aromatics with oxygen towards partly oxygenated products. Every necessary characterization was carried out for all the two-dimensional MOFs. The selective oxygenation of cycloalkanes and alkyl aromatics with oxygen was accomplished with exceptional catalytic performance using two-dimensional MOF Co-TCPPNi as a catalyst. Employing Co-TCPPNi as a catalyst, both the conversion and selectivity were improved for all the hydrocarbons investigated. Less disordered autoxidation at mild conditions, inhibited free-radical diffusion by confined catalytic realms, and synergistic C-H bond oxygenation catalyzed by second metal center Ni employing oxygenation intermediate R-OOH as oxidant were the factors for the satisfying result of Co-TCPPNi as a catalyst. When homogeneous metalloporphyrin T(4-COOCH3)PPCo was replaced by Co-TCPPNi, the conversion in cyclohexane oxygenation was enhanced from 4.4% to 5.6%, and the selectivity of partly oxygenated products increased from 85.4% to 92.9%. The synergistic catalytic mechanisms were studied using EPR research, and a catalysis model was obtained for the oxygenation of C-H bonds with O2. This research offered a novel and essential reference for both the efficient and selective oxygenation of C-H bonds and other key chemical reactions involving free radicals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hai-Min Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (X.-Y.Z.); (B.F.); (W.-D.J.); (X.W.); (K.-K.W.); (M.W.); (Y.-B.S.)
| |
Collapse
|
4
|
Ni JY, He B, Huang H, Ning L, Liu QP, Wang KK, Wu HK, Shen HM, She YB. Cycloalkanes oxidation with O2 in high-efficiency and high-selectivity catalyzed by 3D MOFs with limiting domain and Zn(AcO)2 through synergistic mode. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
5
|
Guo AB, Qin JW, Wang KK, Liu QP, Wu HK, Wang M, Shen HM, She YB. Synergetic catalytic oxidation of C-H bonds in cycloalkanes and alkyl aromatics by dimetallic active sites in 3D metalloporphyrinic MOFs employing O2 as oxidant with increased conversion and unconsumed selectivity. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Shen HM, Ye HL, Ni JY, Wang KK, Zhou XY, She YB. Oxidation of α-C-H bonds in alkyl aromatics with O2 catalyzed by highly dispersed cobalt(II) coordinated in confined reaction channel of porphyrin-based POFs with simultaneously enhanced conversion and selectivity. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
Ni JY, Cong SZ, Ning L, Wang M, Shen HM, She YB. Binary catalytic systems constructed by porphyrin cobalts(II) with confining nano-region and Zn(OAc)2 for oxygenation of cycloalkanes with O2 in relay mode. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Liquid-phase epoxidation of propylene with molecular oxygen by chloride manganese meso-tetraphenylporphyrins. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Zhou XT, Yu HY, Li Y, Wu HB, Ji HB. Manganese porphyrin-mediated aerobic epoxidation of propylene with isoprene: A new strategy for simultaneously preparing propylene epoxide and isoprene monoxide. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Shen HM, Guo AB, Zhang Y, Liu QP, Qin JW, She YB. Relay catalysis of hydrocarbon oxidation using O2 in the confining domain of 3D metalloporphyrin-based metal-organic frameworks with bimetallic catalytic centers. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Hu WJ, Zhou XT, Sun MZ, Ji HB. Efficient catalytic oxidation of primary benzylic C H bonds with molecular oxygen catalyzed by cobalt porphyrins and N-hydroxyphthalimide (NHPI) in supercritical carbon dioxide. CATAL COMMUN 2021. [DOI: 10.1016/j.catcom.2021.106353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
12
|
Andrade MA, Martins LMDRS. Organocatalysis Meets Hydrocarbon Oxyfunctionalization: the Role of
N
‐Hydroxyimides. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marta A. Andrade
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico Universidade de Lisboa 1049-001 Lisboa Portugal
| | - Luísa M. D. R. S. Martins
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico Universidade de Lisboa 1049-001 Lisboa Portugal
| |
Collapse
|
13
|
|
14
|
Yuan E, Zhou M, Gu M, Jian P, Xia L, Xiao J. Boosting Creation of Oxygen Vacancies in Co-Co3O4 Homogeneous Hybrids for Aerobic Oxidation of Cyclohexane. Catal Letters 2021. [DOI: 10.1007/s10562-021-03638-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Kushch OV, Hordieieva IO, Kompanets MO, Zosenko OO, Opeida IA, Shendrik AN. Hydrogen Atom Transfer from Benzyl Alcohols to N-Oxyl Radicals. Reactivity Parameters. J Org Chem 2021; 86:3792-3799. [PMID: 33573371 DOI: 10.1021/acs.joc.0c02595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A model for predicting the rate constants of hydrogen atom transfer (HAT) from the α-C-H bond of p-substituted benzyl alcohols to N-oxyl radicals was proposed. To quantify the factors governing the reactivity of both N-oxyl radicals and benzyl alcohols, multivariate regression analysis was performed using various combinations of reactivity parameters. The analysis was based on a 2D array of 35 HAT reactions, the rate constants of which span 4 orders of magnitude. The proposed polyparameter equation approximates the experimental rate constants of reactions with high accuracy using three independent parameters: Brown and Okamoto's substituent constants σ+ in alcohol molecules and the spin population on O and N atoms in the N-O• fragment of N-oxyl radicals [calculated by DFT/B3LYP/6-31G(d,p)]. The rate constants of HAT reactions from p-substituted benzyl alcohols to a series of aryl-substituted phthalimide-N-oxyl radicals containing either electron-withdrawing or electron-donating substituents (4-Cl, 4-HOOC, 4-CH3O), quinolinimide-N-oxyl, benzotriazole-N-oxyl, and violuric acid radicals were experimentally determined at 30 °C in acetonitrile.
Collapse
Affiliation(s)
- Olga V Kushch
- L.M. Litvinenko Institute of Physico-Organic Chemistry and Coal Chemistry, National Academy of Sciences of Ukraine, Kyiv 02660, Ukraine.,Faculty of Chemistry, Biology and Biotechnologies, Vasyl' Stus Donetsk National University, Vinnytsia 21021, Ukraine
| | - Iryna O Hordieieva
- Faculty of Chemistry, Biology and Biotechnologies, Vasyl' Stus Donetsk National University, Vinnytsia 21021, Ukraine
| | - Mykhailo O Kompanets
- L.M. Litvinenko Institute of Physico-Organic Chemistry and Coal Chemistry, National Academy of Sciences of Ukraine, Kyiv 02660, Ukraine.,National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv 03056, Ukraine
| | - Olha O Zosenko
- Faculty of Chemistry, Biology and Biotechnologies, Vasyl' Stus Donetsk National University, Vinnytsia 21021, Ukraine
| | - Iosip A Opeida
- Department of Physical Chemistry of Fossil Fuels InPOCC, National Academy of Sciences of Ukraine, Lviv 79053, Ukraine
| | - Alexander N Shendrik
- Faculty of Chemistry, Biology and Biotechnologies, Vasyl' Stus Donetsk National University, Vinnytsia 21021, Ukraine
| |
Collapse
|
16
|
Santra SK, Szpilman AM. Visible-Spectrum Solar-Light-Mediated Benzylic C-H Oxygenation Using 9,10-Dibromoanthracene As an Initiator. J Org Chem 2021; 86:1164-1171. [PMID: 33236899 DOI: 10.1021/acs.joc.0c01720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We report a visible-light-mediated benzylic C-H oxygenation reaction. The reaction is initiated by solar light or the blue LED activation of 9,10-dibromoanthracene in a reaction with oxygen and takes place at ambient temperature and air pressure. Secondary benzylic positions are oxygenated to ketones, while tertiary benzylic carbons are oxygenated to give hydroperoxides. Notably, cumene hydroperoxide is produced in a higher yield and at milder conditions than the currently employed industrial conditions.
Collapse
Affiliation(s)
- Sourav K Santra
- Department of Chemical Sciences, Ariel University, 4070000 Ariel, Israel
| | - Alex M Szpilman
- Department of Chemical Sciences, Ariel University, 4070000 Ariel, Israel
| |
Collapse
|
17
|
Yang L, Liu P, Zhang HY, Zhang Y, Zhao J. Catalytic Oxidation of o-Chlorotoluene with Oxygen to o-Chlorobenzaldehyde in a Microchannel Reactor. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Lijun Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
- Tianjin Taipu Pharmaceutical Ltd., Tianjin 300193, P. R. China
| | - Peng Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Hong-yu Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Yuecheng Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
- Hebei Provincial Key Lab of Green Chemical Technology and High Efficient Energy Saving, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Jiquan Zhao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
| |
Collapse
|