1
|
Rodrigues ET, Nascimento SF, Moreno MJ, Oliveira PJ, Pardal MA. Rat cardiomyocyte H9c2(2-1)-based sulforhodamine B assay as a promising in vitro method to assess the biological component of effluent toxicity. J Environ Sci (China) 2020; 96:163-170. [PMID: 32819690 DOI: 10.1016/j.jes.2020.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
The treatment of wastewaters is crucial to maintain the ecological status of receiving waters, and thereby guarantee the protection of aquatic life and human health. Wastewater quality evaluation is conventionally based on physicochemical parameters, but increasing attention has been paid to integrate physicochemical and biological data. Nevertheless, the regulatory use of fish in biological testing methods has been subject to various ethical and cost concerns, and in vitro cell-based assays have thus become an important topic of interest. Hence, the present study intends: (a) to evaluate the efficiency of two different sample pre-concentration techniques (lyophilisation and solid phase extraction) to assess the toxicity of municipal effluents on rat cardiomyoblast H9c2(2-1) cells, and (b) maximizing the use of the effluent sample collected, to estimate the environmental condition of the receiving environment. The gathered results demonstrate that the H9c2(2-1) sulforhodamine B-based assay is an appropriate in vitro method to assess biological effluent toxicity, and the best results were attained by lyophilising the sample as pre-treatment. Due to its response, the H9c2(2-1) cell line might be a possible alternative in vitro model for fish lethal testing to assess the toxicity of municipal effluents. The physicochemical status of the sample suggests a high potential for eutrophication, and iron exceeded the permissible level for wastewater discharge, possibly due to the addition of ferric chloride for wastewater treatment. In general, the levels of carbamazepine and sulfamethoxazole are higher than those reported for other countries, and both surpassed the aquatic protective values for long-term exposure.
Collapse
Affiliation(s)
- Elsa T Rodrigues
- University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, Calçada Martim de Freitas, Coimbra 3000-456, Portugal.
| | - Susana F Nascimento
- University of Coimbra, Coimbra Chemistry Center, Department of Chemistry, Coimbra 3004-535, Portugal
| | - Maria João Moreno
- University of Coimbra, Coimbra Chemistry Center, Department of Chemistry, Coimbra 3004-535, Portugal
| | - Paulo J Oliveira
- Centre for Neuroscience and Cell Biology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede 3060-197, Portugal
| | - Miguel A Pardal
- University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, Calçada Martim de Freitas, Coimbra 3000-456, Portugal
| |
Collapse
|
2
|
Urban JD, Wikoff DS, Chappell GA, Harris C, Haws LC. Systematic evaluation of mechanistic data in assessing in utero exposures to trichloroethylene and development of congenital heart defects. Toxicology 2020; 436:152427. [PMID: 32145346 DOI: 10.1016/j.tox.2020.152427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/18/2020] [Accepted: 03/02/2020] [Indexed: 01/23/2023]
Abstract
The hypothesis that in utero exposures to low levels of trichloroethylene (TCE) may increase the risk of congenital heart defects (CHDs) in offspring remains a subject of substantial controversy within the scientific community due primarily to the reliance on an inconsistent and unreproducible experimental study in rats. To build on previous assessments that have primarily focused on epidemiological and experimental animal studies in developing conclusions, the objective of the current study is to conduct a systematic evaluation of mechanistic data related to in utero exposures to TCE and the development of CHDs. The evidence base was heterogeneous; 79 mechanistic datasets were identified, characterizing endpoints which ranged from molecular to organismal responses in seven species, involving both in vivo and in vitro study designs in mammalian and non-mammalian models. Of these, 24 datasets were considered reliable following critical appraisal using a study quality tool that employs metrics specific to the study type. Subsequent synthesis and integration demonstrated that the available mechanistic data: 1) did not support the potential for CHD hazard in humans, 2) did not support the biological plausibility of a response in humans based on organization via a putative adverse outcome pathway for valvulo-septal cardiac defects, and 3) were not suitable for serving as candidate studies in risk assessment. Findings supportive of an association were generally limited to in ovo chicken studies, in which TCE was administered in high concentration solutions via direct injection. Results of these in ovo studies were difficult to interpret for human health risk assessment given the lack of generalizability of the study models (including dose relevance, species-specific biological differences, variations in the construct of the study design, etc.). When the mechanistic data are integrated with findings from previous evaluations of human and animal evidence streams, the totality of evidence does not support CHDs as a critical effect in TCE human health risk assessment.
Collapse
Affiliation(s)
- Jonathan D Urban
- ToxStrategies, Inc., 9390 Research Blvd, Ste. 100, Austin, TX, 78759, USA.
| | - Daniele S Wikoff
- ToxStrategies, Inc., 31 College Place, Ste. B118, Asheville, NC, 28801, USA
| | - Grace A Chappell
- ToxStrategies, Inc., 31 College Place, Ste. B118, Asheville, NC, 28801, USA
| | - Craig Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Laurie C Haws
- ToxStrategies, Inc., 9390 Research Blvd, Ste. 100, Austin, TX, 78759, USA
| |
Collapse
|
3
|
Chen S, Lencinas A, Nunez M, Selmin OI, Runyan RB. HNF4a transcription is a target of trichloroethylene toxicity in the embryonic mouse heart. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:824-832. [PMID: 32159184 PMCID: PMC7250168 DOI: 10.1039/c9em00597h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In exploration of congenital heart defects produced by TCE, Hepatocyte Nuclear Factor 4 alpha (HNF4a) transcriptional activity was identified as a central component. TCE exposure altered gene transcription in the chick heart in a non-monotonic pattern where only low dose exposure inhibited transcription by HNF4a. As the chick embryo is non-placental, we examine here HNF4a as a target of TCE in developing mouse embryos. Benfluorex and Bi6015, published agonist and antagonist, respectively, of HNF4a were compared to low dose TCE exposure. Pregnant mice were exposed to 10 ppb (76 nM) TCE, 5 μM Benfluorex, 5 μM Bi6015, or a combination of Bi6015 and TCE in drinking water. Litters (E12) were collected during a sensitive window in heart development. Embryonic hearts were collected, pooled for extraction of RNA and marker expression was examined by quantitative PCR. Multiple markers, previously identified as sensitive to TCE exposure in chicks or as published targets of HNF4a transcription were significantly affected by Benfluorex, Bi6015 and TCE. Activity of TCE and both HNF4a-specific reagents on transcription argues that HNF4a is a component of TCE cardiotoxicity and likely a proximal target of low dose exposure during development. The effectiveness of these reagents after delivery in maternal drinking water suggests that neither maternal metabolism, nor placental transport is protective of exposure.
Collapse
Affiliation(s)
- Sheri Chen
- Department of Cellular and Molecular Medicine, University of Arizona, 1501 N Campbell Ave, Tucson, Arizona 85724-5044, USA.
| | | | | | | | | |
Collapse
|
4
|
Runyan RB, Selmin OI, Smith SM, Freeman JL. Letter to the Editor. Birth Defects Res 2019; 111:1234-1236. [DOI: 10.1002/bdr2.1573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
Affiliation(s)
| | - Ornella I. Selmin
- Nutrition and Arizona Cancer CenterUniversity of Arizona Tucson Arizona
| | - Susan M. Smith
- Nutrition Research InstituteUniversity of North Carolina at Chapel Hill Kannapolis North Carolina
| | | |
Collapse
|
5
|
Jiang Y, Wang D, Zhang G, Wang G, Tong J, Chen T. Disruption of cardiogenesis in human embryonic stem cells exposed to trichloroethylene. ENVIRONMENTAL TOXICOLOGY 2016; 31:1372-1380. [PMID: 25847060 DOI: 10.1002/tox.22142] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/09/2015] [Accepted: 03/18/2015] [Indexed: 06/04/2023]
Abstract
Trichloroethylene (TCE) is ubiquitous in our living environment, and prenatal exposure to TCE is reported to cause congenital heart disease in humans. Although multiple studies have been performed using animal models, they have limited value in predicting effects on humans due to the unknown species-specific toxicological effects. To test whether exposure to low doses of TCE induces developmental toxicity in humans, we investigated the effect of TCE on human embryonic stem cells (hESCs) and cardiomyocytes (derived from the hESCs). In the current study, hESCs cardiac differentiation was achieved by using differentiation medium consisting of StemPro-34. We examined the effects of TCE on cell viability by cell growth assay and cardiac inhibition by analysis of spontaneously beating cluster. The expression levels of genes associated with cardiac differentiation and Ca2+ channel pathways were measured by immunofluorescence and qPCR. The overall data indicated the following: (1) significant cardiac inhibition, which was characterized by decreased beating clusters and beating rates, following treatment with low doses of TCE; (2) significant up-regulation of the Nkx2.5/Hand1 gene in cardiac progenitors and down regulation of the Mhc-7/cTnT gene in cardiac cells; and (3) significant interference with Ca2+ channel pathways in cardiomyocytes, which contributes to the adverse effect of TCE on cardiac differentiation during early embryo development. Our results confirmed the involvement of Ca2+ turnover network in TCE cardiotoxicity as reported in animal models, while the inhibition effect of TCE on the transition of cardiac progenitors to cardiomyocytes is unique to hESCs, indicating a species-specific effect of TCE on heart development. This study provides new insight into TCE biology in humans, which may help explain the development of congenital heart defects after TCE exposure. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1372-1380, 2016.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Physiology and Neurobiology, Medical College, Soochow University, Suzhou, 215123, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, People's Republic of China
| | - Dan Wang
- Department of Physiology and Neurobiology, Medical College, Soochow University, Suzhou, 215123, People's Republic of China
| | - Guoxing Zhang
- Department of Physiology and Neurobiology, Medical College, Soochow University, Suzhou, 215123, People's Republic of China
| | - Guoqing Wang
- Department of Physiology and Neurobiology, Medical College, Soochow University, Suzhou, 215123, People's Republic of China
| | - Jian Tong
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, People's Republic of China.
- Department of Toxicology, Medical College, Soochow University, Suzhou, 215123, People's Republic of China.
| | - Tao Chen
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, People's Republic of China.
- Department of Toxicology, Medical College, Soochow University, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
6
|
Makris SL, Scott CS, Fox J, Knudsen TB, Hotchkiss AK, Arzuaga X, Euling SY, Powers CM, Jinot J, Hogan KA, Abbott BD, Hunter ES, Narotsky MG. A systematic evaluation of the potential effects of trichloroethylene exposure on cardiac development. Reprod Toxicol 2016; 65:321-358. [PMID: 27575429 PMCID: PMC9113522 DOI: 10.1016/j.reprotox.2016.08.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/27/2016] [Accepted: 08/25/2016] [Indexed: 11/26/2022]
Abstract
The 2011 EPA trichloroethylene (TCE) IRIS assessment, used developmental cardiac defects from a controversial drinking water study in rats (Johnson et al. [51]), along with several other studies/endpoints to derive reference values. An updated literature search of TCE-related developmental cardiac defects was conducted. Study quality, strengths, and limitations were assessed. A putative adverse outcome pathway (AOP) construct was developed to explore key events for the most commonly observed cardiac dysmorphologies, particularly those involved with epithelial-mesenchymal transition (EMT) of endothelial origin (EndMT); several candidate pathways were identified. A hypothesis-driven weight-of-evidence analysis of epidemiological, toxicological, in vitro, in ovo, and mechanistic/AOP data concluded that TCE has the potential to cause cardiac defects in humans when exposure occurs at sufficient doses during a sensitive window of fetal development. The study by Johnson et al. [51] was reaffirmed as suitable for hazard characterization and reference value derivation, though acknowledging study limitations and uncertainties.
Collapse
|
7
|
Gorini F, Chiappa E, Gargani L, Picano E. Potential effects of environmental chemical contamination in congenital heart disease. Pediatr Cardiol 2014; 35:559-68. [PMID: 24452958 DOI: 10.1007/s00246-014-0870-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/07/2014] [Indexed: 12/18/2022]
Abstract
There is compelling evidence that prenatal exposures to environmental xenobiotics adversely affect human development and childhood. Among all birth defects, congenital heart disease (CHD) is the most prevalent of all congenital malformations and remains the leading cause of death. It has been estimated that in most cases the causes of heart defects remain unknown, while a growing number of studies have indicated the potential role of environmental agents as risk factors in CHD occurrence. In particular, maternal exposure to chemicals during the first trimester of pregnancy represents the most critical window of exposure for CHD. Specific classes of xenobiotics (e.g. organochlorine pesticides, organic solvents, air pollutants) have been identified as potential risk factors for CHD. Nonetheless, the knowledge gained is currently still incomplete as a consequence of the frequent heterogeneity of the methods applied and the difficulty in estimating the net effect of environmental pollution on the pregnant mother. The presence of multiple sources of pollution, both indoor and outdoor, together with individual lifestyle factors, may represent a further confounding element for association with the disease. A future new approach for research should probably focus on individual measurements of professional, domestic, and urban exposure to physical and chemical pollutants in order to accurately retrace the environmental exposure of parents of affected offspring during the pre-conceptional and pregnancy periods.
Collapse
Affiliation(s)
- Francesca Gorini
- Institute of Clinical Physiology, National Council of Research (CNR), via Moruzzi, 1, 56124, Pisa, Italy,
| | | | | | | |
Collapse
|
8
|
Low-dose trichloroethylene alters cytochrome P450-2C subfamily expression in the developing chick heart. Cardiovasc Toxicol 2013; 13:77-84. [PMID: 22855351 DOI: 10.1007/s12012-012-9180-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Trichloroethylene (TCE) is an organic solvent and common environmental contaminant. TCE exposure is associated with heart defects in humans and animal models. Primary metabolism of TCE in adult rodent models is by specific hepatic cytochrome P450 enzymes (Lash et al. in Environ Health Perspect 108:177-200, 2000). As association of TCE exposure with cardiac defects is in exposed embryos prior to normal liver development, we investigated metabolism of TCE in the early embryo. Developing chick embryos were dosed in ovo with environmentally relevant doses of TCE (8 and 800 ppb) and RNA was extracted from cardiac and extra-cardiac tissue (whole embryo without heart). Real-time PCR showed upregulation of CYP2H1 transcripts in response to TCE exposure in the heart. No detectable cytochrome expression was found in extra-cardiac tissue. As seen previously, the dose response was non-monotonic and 8 ppb elicited stronger upregulation than 800 ppb. Immunostaining for CYP2C subfamily expression confirmed protein expression and showed localization in both myocardium and endothelium. TCE exposure increased protein expression in both tissues. These data demonstrate that the earliest embryonic expression of phase I detoxification enzymes is in the developing heart. Expression of these CYPs is likely to be relevant to the susceptibility of the developing heart to environmental teratogens.
Collapse
|
9
|
Trichloroethylene and Trichloroacetic Acid Regulate Calcium Signaling Pathways in Murine Embryonal Carcinoma Cells P19. Cardiovasc Toxicol 2008; 8:47-56. [DOI: 10.1007/s12012-008-9014-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Accepted: 03/28/2008] [Indexed: 10/22/2022]
|
10
|
Caldwell PT, Thorne PA, Johnson PD, Boitano S, Runyan RB, Selmin O. Trichloroethylene disrupts cardiac gene expression and calcium homeostasis in rat myocytes. Toxicol Sci 2008; 104:135-43. [PMID: 18411232 DOI: 10.1093/toxsci/kfn078] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have been investigating the molecular mechanisms by which trichloroethylene (TCE) might induce cardiac malformations in the embryonic heart. Previous results indicated that TCE disrupted expression of genes encoding proteins involved in regulation of intracellular Ca2+, [Ca2+](i), in cardiac cells, including ryanodine receptor isoform 2 (Ryr2), and sarcoendoplasmatic reticulum Ca2+ ATPase, Serca2a. These observations are important in light of the notion that altered cardiac contractility can produce morphological defects. The hypothesis tested in this study is that the TCE-induced changes in gene expression of Ca2+-associated proteins resulted in altered Ca2+ flux regulation. We used real-time PCR and digital imaging microscopy to characterize effects of various doses of TCE on gene expression and Ca2+ response to vasopressin (VP) in rat cardiac H9c2 myocytes. We observed a reduction in Serca2a and Ryr2 expression at 12 and 48 h after exposure to TCE. In addition, we found significant differences in Ca2+ response to VP in cells treated with TCE doses as low as 10 parts per billion. Taken all together, our data strongly indicate that exposure to TCE disrupts the ability of myocytes to regulate cellular Ca2+ fluxes. Perturbation of calcium signaling alters cardiac cell physiology and signal transduction and may hint to morphogenetic consequences in the context of heart development. These results point to a novel area of TCE biology and, if confirmed in vivo, may help to explain the apparent cardio-specific toxicity of TCE exposure in the rodent embryo.
Collapse
Affiliation(s)
- Patricia T Caldwell
- Department of Veterinary Science & Microbiology, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | |
Collapse
|
11
|
Drake VJ, Koprowski SL, Lough J, Hu N, Smith SM. Trichloroethylene exposure during cardiac valvuloseptal morphogenesis alters cushion formation and cardiac hemodynamics in the avian embryo. ENVIRONMENTAL HEALTH PERSPECTIVES 2006; 114:842-7. [PMID: 16759982 PMCID: PMC1480523 DOI: 10.1289/ehp.8781] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
It is controversial whether trichloroethylene (TCE) is a cardiac teratogen. We exposed chick embryos to 0, 0.4, 8, or 400 ppb TCE/egg during the period of cardiac valvuloseptal morphogenesis (2-3.3 days' incubation) . Embryo survival, valvuloseptal cellularity, and cardiac hemodynamics were evaluated at times thereafter. TCE at 8 and 400 ppb/egg reduced embryo survival to day 6.25 incubation by 40-50%. At day 4.25, increased proliferation and hypercellularity were observed within the atrioventricular and outflow tract primordia after 8 and 400 ppb TCE. Doppler ultrasound revealed that the dorsal aortic and atrioventricular blood flows were reduced by 23% and 30%, respectively, after exposure to 8 ppb TCE. Equimolar trichloroacetic acid (TCA) was more potent than TCE with respect to increasing mortality and causing valvuloseptal hypercellularity. These results independently confirm that TCE disrupts cardiac development of the chick embryo and identifies valvuloseptal development as a period of sensitivity. The hypercellular valvuloseptal profile is consistent with valvuloseptal heart defects associated with TCE exposure. This is the first report that TCA is a cardioteratogen for the chick and the first report that TCE exposure depresses cardiac function. Valvuloseptal hypercellularity may narrow the cardiac orifices, which reduces blood flow through the heart, thereby compromising cardiac output and contributing to increased mortality. The altered valvuloseptal formation and reduced hemodynamics seen here are consistent with such an outcome. Notably, these effects were observed at a TCE exposure (8 ppb) that is only slightly higher than the U.S. Environmental Protection Agency maximum containment level for drinking water (5 ppb) .
Collapse
Affiliation(s)
- Victoria J Drake
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|