1
|
Wu M, Sun H, Wang A, Lao J, Liu D, Chen C, Zhang Y, Xia Q, Ma S. Effects of poly (ADP-ribose) polymerase 1 (PARP1) on silk proteins in the silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2024; 33:732-743. [PMID: 38961541 DOI: 10.1111/imb.12938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
Animal silk is economically important, while silk secretion is a complex and subtle mechanism regulated by many genes. We identified the poly (ADP-ribose) polymerase (PARP1) gene of the silkworm and successfully cloned its coding sequence (CDS) sequence. Using clustered regularly interspaced short palindromic repeat (CRISPR/Cas9) technology, we screened single guide RNA (sgRNA) with high knockout efficiency by cellular experiments and obtained PARP1 mutants by knocking out the PARP1 gene of the silkworm at the individual level. We found that the mutants mainly exhibited phenotypes such as smaller cocoon size and reduced cocoon shell rate than the wild type. We also detected the expression of silk protein genes in the mutant by quantitative real-time PCR (qPCR) and found that the expression of some silk protein genes was slightly down-regulated. Meanwhile, together with the results of transcriptomic analysis, we hypothesized that PARP1 may affect the synthesis of silk proteins, resulting in their failure to function properly. Our study may provide an important reference for future in-depth refinement of the molecular mechanism of silk protein expression in silk-producing animals, as well as a potential idea for future development of molecular breeding lines of silkworms to improve silk production.
Collapse
Affiliation(s)
- Mingke Wu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Hao Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Aoming Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Junjie Lao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Dan Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Chaojie Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Yan Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
| | - Sanyuan Ma
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Szántó M, Yélamos J, Bai P. Specific and shared biological functions of PARP2 - is PARP2 really a lil' brother of PARP1? Expert Rev Mol Med 2024; 26:e13. [PMID: 38698556 PMCID: PMC11140550 DOI: 10.1017/erm.2024.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 05/05/2024]
Abstract
PARP2, that belongs to the family of ADP-ribosyl transferase enzymes (ART), is a discovery of the millennium, as it was identified in 1999. Although PARP2 was described initially as a DNA repair factor, it is now evident that PARP2 partakes in the regulation or execution of multiple biological processes as inflammation, carcinogenesis and cancer progression, metabolism or oxidative stress-related diseases. Hereby, we review the involvement of PARP2 in these processes with the aim of understanding which processes are specific for PARP2, but not for other members of the ART family. A better understanding of the specific functions of PARP2 in all of these biological processes is crucial for the development of new PARP-centred selective therapies.
Collapse
Affiliation(s)
- Magdolna Szántó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - José Yélamos
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Péter Bai
- HUN-REN-UD Cell Biology and Signaling Research Group, Debrecen, 4032, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| |
Collapse
|
3
|
Cao L, Dong M, Jiang K, Zhu Q, Li F, Xiao Z, Tang H, Tao R. Triblock polymer PDMAEMA-co-PNIPAM-co-PMPC to deliver siKRAS for gene therapy in pancreatic cancer. CHEMICAL ENGINEERING JOURNAL 2024; 485:149884. [DOI: 10.1016/j.cej.2024.149884] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
|
4
|
Sell T, Klotz C, Fischer MM, Astaburuaga-García R, Krug S, Drost J, Clevers H, Sers C, Morkel M, Blüthgen N. Oncogenic signaling is coupled to colorectal cancer cell differentiation state. J Cell Biol 2023; 222:e202204001. [PMID: 37017636 PMCID: PMC10082329 DOI: 10.1083/jcb.202204001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 12/23/2022] [Accepted: 03/17/2023] [Indexed: 04/06/2023] Open
Abstract
Colorectal cancer progression is intrinsically linked to stepwise deregulation of the intestinal differentiation trajectory. In this process, sequential mutations of APC, KRAS, TP53, and SMAD4 enable oncogenic signaling and establish the hallmarks of cancer. Here, we use mass cytometry of isogenic human colon organoids and patient-derived cancer organoids to capture oncogenic signaling, cell phenotypes, and differentiation states in a high-dimensional single-cell map. We define a differentiation axis in all tumor progression states from normal to cancer. Our data show that colorectal cancer driver mutations shape the distribution of cells along the differentiation axis. In this regard, subsequent mutations can have stem cell promoting or restricting effects. Individual nodes of the cancer cell signaling network remain coupled to the differentiation state, regardless of the presence of driver mutations. We use single-cell RNA sequencing to link the (phospho-)protein signaling network to transcriptomic states with biological and clinical relevance. Our work highlights how oncogenes gradually shape signaling and transcriptomes during tumor progression.
Collapse
Affiliation(s)
- Thomas Sell
- Institute of Pathology, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany
| | - Christian Klotz
- Department of Infectious Diseases, Robert Koch-Institute, Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Berlin, Germany
| | - Matthias M. Fischer
- Institute of Pathology, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany
| | - Rosario Astaburuaga-García
- Institute of Pathology, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany
| | - Susanne Krug
- Department of Gastroenterology, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Rheumatology and Infectious Diseases, Clinical Physiology/Nutritional Medicine, Berlin, Germany
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Hans Clevers
- Oncode Institute, Utrecht, Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, Netherlands
| | - Christine Sers
- Institute of Pathology, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany
- German Cancer Consortium Partner Site Berlin, German Cancer Research Center, Heidelberg, Germany
| | - Markus Morkel
- Institute of Pathology, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium Partner Site Berlin, German Cancer Research Center, Heidelberg, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Bioportal Single Cells, Berlin, Germany
| | - Nils Blüthgen
- Institute of Pathology, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany
- German Cancer Consortium Partner Site Berlin, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
5
|
Zhao Q, Luo X, Li H, Bai Y, Chen Q, Yang M, Pei B, Xu C, Han S. Targeting EIF3C to suppress the development and progression of nasopharyngeal carcinoma. Front Bioeng Biotechnol 2022; 10:994628. [PMID: 36147539 PMCID: PMC9485884 DOI: 10.3389/fbioe.2022.994628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Nasopharyngeal carcinoma occurs in many parts of the pars nasalis pharyngis, and the pathological type is mainly squamous cell carcinoma. Because of the special position of nasopharynx, breathing, pronunciation and daily life will be seriously affected. At present, the research direction of nasopharyngeal carcinoma is mainly to explore the law of tumor cell proliferation and migration, study the molecular mechanism, master its biological behavior and clinical significance, try to find therapeutic targets, and further improve the level of tumor treatment. However, the pathologic structure and molecular mechanism of nasopharyngeal carcinoma have not been fully elucidated. In this study, the Lentivirus-mediated EIF3C shRNA vector (L.V-shEIF3C) was constructed to down-regulate the expression of EIF3C in human pharyngeal squamous carcinoma cell FaDu and the human nasopharyngeal carcinoma cell 5-8F, it was found that down-regulation of EIF3C could significantly inhibit the cell proliferation, promote cell apoptosis, induce cell cycle arrest, and inhibit the formation and growth of tumors in mouse models. This study provides strong evidence that EIF3C is a key gene driving the development and progression of head and neck cancer, which is of great significance for the diagnosis, prognosis or treatment of tumors, suggesting that EIF3C may become a valuable therapeutic development and intervention target.
Collapse
|
6
|
Zhang XT, Hu J, Su LH, Geng CA, Chen JJ. Artematrolide A inhibited cervical cancer cell proliferation via ROS/ERK/mTOR pathway and metabolic shift. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153707. [PMID: 34450376 DOI: 10.1016/j.phymed.2021.153707] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Artematrolide A (AR-A), a guaianolide dimer isolated from Artemisia atrovirens, demonstrated significant inhibitory effect on three human hepatoma cell lines (HepG2, Huh7 and SMMC7721). The anti-cervical cancer effect and mechanism of this compound have yet to be explored. This study is to reveal the role and mechanisms of artematrolide A on cervical cancer cells, and provide the pharmacological understanding of artematrolide A. PURPOSE To investigate the function and possible mechanism of artematrolide A on cervical cancer cells in vitro. METHODS HeLa S3 and SiHa cells were treated with artematrolide A at various concentrations. In this study, MTT, colony formation, cell migration and invasion, cell cycle analysis, cell apoptosis, reactive oxygen species (ROS) detection, western blotting, enzyme activity, and lactate production of artematrolide A were evaluated. RESULTS Artematrolide A inhibited cell viability, proliferation, migration and invasion in a dose-dependent manner, caused cell cycle arrest in G2/M phase, and induced cell apoptosis via Bcl-2/PARP-1. The mechanism of action of artematrolide A included two aspects: artematrolide A suppressed cell proliferation by activating ROS/ERK/mTOR signaling pathway and promoted glucose metabolism from aerobic glycolysis to mitochondrial respiration by activating pyruvate dehydrogenase complex (PDC) and oxoglutarate dehydrogenase complex (OGDC) via inhibiting the activity of alkaline phosphatases (ALP). CONCLUSION Artematrolide A exhibited a significant cytotoxic activity on cervical cancer cells, induced G2/M cell cycle arrest and apoptosis by activating ROS/ERK/mTOR signaling pathway and promoting metabolic shift from aerobic glycolysis to mitochondrial respiration, which suggested artematrolide A might be a potential agent for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Xin-Tian Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jing Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, People's Republic of China
| | - Li-Hua Su
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chang-An Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, People's Republic of China
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
7
|
Xiong B, Chen Y, Liu Y, Hu X, Han H, Li Q. Artesunate-loaded porous PLGA microsphere as a pulmonary delivery system for the treatment of non-small cell lung cancer. Colloids Surf B Biointerfaces 2021; 206:111937. [PMID: 34198232 DOI: 10.1016/j.colsurfb.2021.111937] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/23/2021] [Accepted: 06/22/2021] [Indexed: 12/18/2022]
Abstract
Non-small cell lung cancer (NSCLC) has emerged to be a significant cause of cancer mortality worldwide. Artesunate (ART) extracted from Chinese herb Artemisia annua L, has been proven to possess desirable anti-cancer efficacy, especially for the metastatic NSCLC treatment. Moreover, the poly(lactic-co-glycolic acid) (PLGA) microsphere has been considered to be a potential pulmonary delivery system for the sustained drug release to enhance the therapeutic efficacy of lung cancer. Herein, the ART-loaded porous PLGA microsphere was prepared through the emulsion solvent evaporation approach. The microsphere was demonstrated to possess highly porous structure and ideal aerodynamic diameter for the pulmonary administration. Meanwhile, sustained ART release was obtained from the porous microsphere within 8 days. The release solution collected from the microsphere could be effectively uptake by the cells and further induce the cell apoptosis and the cell cycle arrest at G2/M phase to execute the anti-proliferative effect, using human lung adenocarcinoma cell line A549 as a model. Additionally, strong inhibitory effect on the cell migration and invasion could be obtained after the treatment with release solution. Taken together, our results demonstrated that the ART-loaded PLGA porous microsphere could achieve excellent anti-cancer efficacy, providing a potential approach for the NSCLC treatment via the pulmonary administration.
Collapse
Affiliation(s)
- Boyu Xiong
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yanxu Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yong Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xiaolin Hu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
8
|
The clinicopathological significance of miR-149 and PARP-2 in hepatocellular carcinoma and their roles in chemo/radiotherapy. Tumour Biol 2016; 37:12339-12346. [PMID: 27300349 DOI: 10.1007/s13277-016-5106-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/09/2016] [Indexed: 01/16/2023] Open
Abstract
Hepatocellular carcinomas (HCC) are commonly diagnosed at an advanced stage with unresectable tumors. Although numerous non-surgical approaches have been developed to treat HCC, the prognosis of patients with HCC is still poor. This study investigated the expression of miR-149 and PARP-2 in HCC tumor tissues and their roles in sensitizing chemo/radiotherapy. The expression of miR-149 was measured by real-time PCR, and PARP-2 protein was measured by immunohistochemistry and Western blot. The xenograft HCC mouse model was established by inoculating Hep G2 cells. Increased PARP-1 and decreased miR-149 expression was observed in HCC tissues compared to peritumoral tissues. Positive PARP-2 and low miR-149 expression correlated with larger tumor mass size (P < 0.001), capsular and vascular invasion (P < 0.001), lymph node metastasis (P = 0.02), high histological grade (P < 0.001), TNM (P < 0.001), and BCLC grade (P = 0.001). The Kaplan-Meier survival analysis showed a negative correlation between high PARP-2 expression or low miR-149 expression in HCC tissues with the survival of patients. High PARP-2 and low miR-149 correlated with a low 5-year survival rate and are poor prognosis factors. Overexpression of miR-149 or inhibition of PARP-2 expression could inhibit tumor growth but was more effective in sensitizing chemotherapy and radiotherapy in xenograft HCC animal models. Increased PARP-2 expression and loss of miR-149 expression are involved in the pathogenesis of HCC and are poor prognosis factors in patients with HCC. Although both miR-149 overexpression and PARP-2 inhibitor exert some antitumoral effect, PARP-2 inhibitor is a chemo/radio sensor and can be used to enhance chemotherapy and radiotherapy in patients with HCC.
Collapse
|
9
|
Aredia F, Scovassi AI. Poly(ADP-ribose): a signaling molecule in different paradigms of cell death. Biochem Pharmacol 2014; 92:157-63. [PMID: 24976506 DOI: 10.1016/j.bcp.2014.06.021] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/17/2014] [Accepted: 06/17/2014] [Indexed: 12/11/2022]
Abstract
Poly(ADP-ribosylation) results from the conversion of NAD(+) into ADP-ribose and the following addition of ADP-ribose units to form polymers, further bound to acceptor proteins; once post-translationally ADP-ribosylated, proteins could change their function in basic processes. Poly(ADP-ribosylation) is activated under critical situations represented by DNA damage and cellular stress, and modulated in different paradigms of cell death. The hallmarks of the main death processes, i.e. apoptosis, parthanatos, necroptosis and autophagy, will be described, focusing on the role of poly(ADP-ribose) as a signaling molecule.
Collapse
Affiliation(s)
- Francesca Aredia
- Istituto di Genetica Molecolare CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Anna Ivana Scovassi
- Istituto di Genetica Molecolare CNR, Via Abbiategrasso 207, 27100 Pavia, Italy.
| |
Collapse
|
10
|
Szántó M, Brunyánszki A, Márton J, Vámosi G, Nagy L, Fodor T, Kiss B, Virág L, Gergely P, Bai P. Deletion of PARP-2 induces hepatic cholesterol accumulation and decrease in HDL levels. Biochim Biophys Acta Mol Basis Dis 2013; 1842:594-602. [PMID: 24365238 DOI: 10.1016/j.bbadis.2013.12.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 12/07/2013] [Accepted: 12/13/2013] [Indexed: 12/11/2022]
Abstract
Poly(ADP-ribose) polymerase-2 (PARP-2) is acknowledged as a DNA repair enzyme. However, recent investigations have attributed unique roles to PARP-2 in metabolic regulation in the liver. We assessed changes in hepatic lipid homeostasis upon the deletion of PARP-2 and found that cholesterol levels were higher in PARP-2(-/-) mice as compared to wild-type littermates. To uncover the molecular background, we analyzed changes in steady-state mRNA levels upon the knockdown of PARP-2 in HepG2 cells and in murine liver that revealed higher expression of sterol-regulatory element binding protein (SREBP)-1 dependent genes. We demonstrated that PARP-2 is a suppressor of the SREBP1 promoter, and the suppression of the SREBP1 gene depends on the enzymatic activation of PARP-2. Consequently, the knockdown of PARP-2 enhances SREBP1 expression that in turn induces the genes driven by SREBP1 culminating in higher hepatic cholesterol content. We did not detect hypercholesterolemia, higher fecal cholesterol content or increase in serum LDL, although serum HDL levels decreased in the PARP-2(-/-) mice. In cells and mice where PARP-2 was deleted we observed decreased ABCA1 mRNA and protein expression that is probably linked to lower HDL levels. In our current study we show that PARP-2 impacts on hepatic and systemic cholesterol homeostasis. Furthermore, the depletion of PARP-2 leads to lower HDL levels which represent a risk factor to cardiovascular diseases.
Collapse
Affiliation(s)
- Magdolna Szántó
- MTA-DE Cell Biology and Signaling Research Group of the Hungarian Academy of Sciences, 4032 Debrecen, Hungary; Department of Medical Chemistry, University of Debrecen, 4032 Debrecen, Hungary
| | - Attila Brunyánszki
- MTA-DE Cell Biology and Signaling Research Group of the Hungarian Academy of Sciences, 4032 Debrecen, Hungary
| | - Judit Márton
- Department of Medical Chemistry, University of Debrecen, 4032 Debrecen, Hungary
| | - György Vámosi
- Department of Biophysics and Cell Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Lilla Nagy
- Department of Medical Chemistry, University of Debrecen, 4032 Debrecen, Hungary
| | - Tamás Fodor
- Department of Medical Chemistry, University of Debrecen, 4032 Debrecen, Hungary
| | - Borbála Kiss
- Department of Dermatology, Medical and Health Science Center, University of Debrecen, 4032 Debrecen, Hungary
| | - László Virág
- MTA-DE Cell Biology and Signaling Research Group of the Hungarian Academy of Sciences, 4032 Debrecen, Hungary; Department of Medical Chemistry, University of Debrecen, 4032 Debrecen, Hungary
| | - Pál Gergely
- Department of Medical Chemistry, University of Debrecen, 4032 Debrecen, Hungary
| | - Péter Bai
- MTA-DE Cell Biology and Signaling Research Group of the Hungarian Academy of Sciences, 4032 Debrecen, Hungary; Department of Medical Chemistry, University of Debrecen, 4032 Debrecen, Hungary.
| |
Collapse
|
11
|
The Sound of Silence: RNAi in Poly (ADP-Ribose) Research. Genes (Basel) 2012; 3:779-805. [PMID: 24705085 PMCID: PMC3899979 DOI: 10.3390/genes3040779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/05/2012] [Accepted: 11/06/2012] [Indexed: 02/07/2023] Open
Abstract
Poly(ADP-ribosyl)-ation is a nonprotein posttranslational modification of proteins and plays an integral part in cell physiology and pathology. The metabolism of poly(ADP-ribose) (PAR) is regulated by its synthesis by poly(ADP-ribose) polymerases (PARPs) and on the catabolic side by poly(ADP-ribose) glycohydrolase (PARG). PARPs convert NAD+ molecules into PAR chains that interact covalently or noncovalently with target proteins and thereby modify their structure and functions. PAR synthesis is activated when PARP1 and PARP2 bind to DNA breaks and these two enzymes account for almost all PAR formation after genotoxic stress. PARG cleaves PAR molecules into free PAR and finally ADP-ribose (ADPR) moieties, both acting as messengers in cellular stress signaling. In this review, we discuss the potential of RNAi to manipulate the levels of PARPs and PARG, and consequently those of PAR and ADPR, and compare the results with those obtained after genetic or chemical disruption.
Collapse
|
12
|
Kim YM, Kim IH, Nam TJ. Induction of apoptosis signaling by glycoprotein of Capsosiphon fulvescens in human gastric cancer (AGS) cells. Nutr Cancer 2012; 64:761-9. [PMID: 22591240 DOI: 10.1080/01635581.2012.683228] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Capsosiphon fulvescens is a well-known green sea algae that has been touted in recent years as a potential anticancer drug. In this study, C. fulvescens glycoprotein (Cf-GP) showed proapoptotic signaling in AGS cells. An MTS assay indicated that Cf-GP inhibited the proliferation of AGS cell lines in a dose-dependent manner. Cells were treated with Cf-GP and the expression of proteins associated with apoptosis was examined by Western blotting. Based on the Western blot, expression of Cf-GP-activated caspase-cascade and PARP, which is a substrate of caspase-3 and -8, and proteins of the Bcl-2 family was observed. Cf-GP treatment stimulated the release of cytochrome C and apoptotic protease activating factor-1 from mitochondria to the cytosol. Cf-GP inhibited the growth of AGS cells through induction of sub-G1 phase arrest. We confirmed that sub-G1-phase arrest was associated with a decrease in the expression of cyclin D, cyclin E, Cdk2, Cdk4, and Cdk6, and an increase in the protein levels of p21 and p27. As a result, the increased sub-G1 ratio appears to be inhibited by cell proliferation. Therefore, we can confirm apoptosis in the AGS cells. Our results suggest that Cf-GP could be a potential source of biofunctional material that shows anticancer effects in human gastrointestinal cancer.
Collapse
Affiliation(s)
- Young-Min Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan, Republic of Korea
| | | | | |
Collapse
|
13
|
Zhang T, Du J, Liu L, Chen X, Yang F, Jin Q. Inhibitory effects and underlying mechanism of 7-hydroxyflavone phosphate ester in HeLa cells. PLoS One 2012; 7:e36652. [PMID: 22574207 PMCID: PMC3344907 DOI: 10.1371/journal.pone.0036652] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 04/10/2012] [Indexed: 11/18/2022] Open
Abstract
Chrysin and its phosphate ester have previously been shown to inhibit cell proliferation and induce apoptosis in Hela cells; however, the underlying mechanism remains to be characterized. In the present study, we therefore synthesized diethyl flavon-7-yl phosphate (FP, C19H19O6P) by a simplified Atheron-Todd reaction, and explored its anti-tumor characteristics and mechanisms. Cell proliferation, cell cycle progression and apoptosis were measured by MTS, flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling techniques, respectively in human cervical cancer HeLa cells treated with 7-hydroxyflavone (HF) and FP. p21, proliferating cell nuclear antigen (PCNA) and cAMP levels in Hela cells were analyzed by western blot and radioimmunoassay. Both HF and FP inhibited proliferation and induced apoptosis in HeLa cells via induction of PCNA/p21 expression, cleaved caspase-3/poly (ADP-ribose) polymerase (PARP)-1, elevation of cAMP levels, and cell cycle arrest with accumulation of cells in the G0/G1 fraction. The effects of FP were more potent than those of HF. The interactions of FP with Ca2+-calmodulin (CaM) and Ca2+-CaM-phosphodiesterase (PDE)1 were explored by electrospray ionization-mass spectrometry and fluorescence spectra. FP, but not HF, formed non-covalent complexes with Ca2+-CaM-PDE1, indicating that FP is an inhibitor of PDE1, and resulting in elevated cellular cAMP levels. It is possible that the elevated cAMP levels inhibit growth and induce apoptosis in Hela cells through induction of p21 and cleaved caspase-3/PARP-1 expression, and causing down-regulation of PCNA and cell cycle arrest with accumulation of cells in the G0/G1 and G2/M fractions. In conclusion, FP was shown to be a Ca2+-CaM-PDE inhibitor, which might account for its underlying anti-cancer mechanism in HeLa cells. These observations clearly demonstrate the special roles of phosphorylated flavonoids in biological processes, and suggest that FP might represent a potential new drug for the therapy of human cervical carcinoma.
Collapse
Affiliation(s)
- Ting Zhang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Jiang Du
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Liguo Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Xiaolan Chen
- Key Laboratory of Chemical Biology, Department of Chemistry, Zhengzhou University, Zhengzhou, People's Republic of China
- * E-mail: (QJ); (XC); (FY)
| | - Fang Yang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- * E-mail: (QJ); (XC); (FY)
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- * E-mail: (QJ); (XC); (FY)
| |
Collapse
|
14
|
Bacalini MG, Tavolaro S, Peragine N, Marinelli M, Santangelo S, Del Giudice I, Mauro FR, Di Maio V, Ricciardi MR, Caiafa P, Chiaretti S, Foà R, Guarini A, Reale A. A subset of chronic lymphocytic leukemia patients display reduced levels of PARP1 expression coupled with a defective irradiation-induced apoptosis. Exp Hematol 2012; 40:197-206.e1. [DOI: 10.1016/j.exphem.2011.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 10/25/2011] [Accepted: 11/14/2011] [Indexed: 02/03/2023]
|
15
|
Vilchez Larrea SC, Alonso GD, Schlesinger M, Torres HN, Flawiá MM, Fernández Villamil SH. Poly(ADP-ribose) polymerase plays a differential role in DNA damage-response and cell death pathways in Trypanosoma cruzi. Int J Parasitol 2010; 41:405-16. [PMID: 21185298 DOI: 10.1016/j.ijpara.2010.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 11/05/2010] [Indexed: 12/20/2022]
Abstract
Poly(ADP-ribosyl)ation is a post-translational modification of proteins. Poly(ADP-ribose) polymerase (PARP) and poly(ADP-ribose) glycohydrolase (PARG) are the enzymes responsible for poly(ADP-ribose) (PAR) polymer metabolism and are present in most higher eukaryotes. The best understood role of PARP is the maintenance of genomic integrity either via promotion of DNA repair at low levels of genotoxic stress or via promotion of cell death at higher levels of damage. The unicellular eukaryote Trypanosoma cruzi, as opposed to humans and other organisms, has only one PARP (TcPARP) and one PARG (TcPARG). In the present study we show that under different DNA-damaging agents (H(2)O(2) or UV-C radiation) TcPARP is activated and translocated from the cytosol to the nucleus, while TcPARG always shows a nuclear localisation. Parasites in the presence of PARP or PARG inhibitors, as well as parasites over-expressing either TcPARP or TcPARG, suggested that PAR metabolism could be involved in different phases of cell growth, even in the absence of DNA damage. We also believe that we provide the first reported evidence that different proteins could be poly(ADP-ribosyl)ated in response to different stimuli, leading to different cell death pathways.
Collapse
Affiliation(s)
- Salomé C Vilchez Larrea
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires, 1428 Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
16
|
Agarwal A, Mahfouz RZ, Sharma RK, Sarkar O, Mangrola D, Mathur PP. Potential biological role of poly (ADP-ribose) polymerase (PARP) in male gametes. Reprod Biol Endocrinol 2009; 7:143. [PMID: 19961617 PMCID: PMC2800114 DOI: 10.1186/1477-7827-7-143] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 12/05/2009] [Indexed: 12/13/2022] Open
Abstract
Maintaining the integrity of sperm DNA is vital to reproduction and male fertility. Sperm contain a number of molecules and pathways for the repair of base excision, base mismatches and DNA strand breaks. The presence of Poly (ADP-ribose) polymerase (PARP), a DNA repair enzyme, and its homologues has recently been shown in male germ cells, specifically during stage VII of spermatogenesis. High PARP expression has been reported in mature spermatozoa and in proven fertile men. Whenever there are strand breaks in sperm DNA due to oxidative stress, chromatin remodeling or cell death, PARP is activated. However, the cleavage of PARP by caspase-3 inactivates it and inhibits PARP's DNA-repairing abilities. Therefore, cleaved PARP (cPARP) may be considered a marker of apoptosis. The presence of higher levels of cPARP in sperm of infertile men adds a new proof for the correlation between apoptosis and male infertility. This review describes the possible biological significance of PARP in mammalian cells with the focus on male reproduction. The review elaborates on the role played by PARP during spermatogenesis, sperm maturation in ejaculated spermatozoa and the potential role of PARP as new marker of sperm damage. PARP could provide new strategies to preserve fertility in cancer patients subjected to genotoxic stresses and may be a key to better male reproductive health.
Collapse
Affiliation(s)
- Ashok Agarwal
- Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Reda Z Mahfouz
- Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Rakesh K Sharma
- Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Oli Sarkar
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry, India
- McGill University Health Center, Montreal, Canada
| | - Devna Mangrola
- Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Premendu P Mathur
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry, India
| |
Collapse
|
17
|
Moroni F, Formentini L, Gerace E, Camaioni E, Pellegrini-Giampietro DE, Chiarugi A, Pellicciari R. Selective PARP-2 inhibitors increase apoptosis in hippocampal slices but protect cortical cells in models of post-ischaemic brain damage. Br J Pharmacol 2009; 157:854-62. [PMID: 19422384 DOI: 10.1111/j.1476-5381.2009.00232.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Poly(ADP-ribose) polymerases (PARP)-1 and PARP-2 play complementary tasks in the maintenance of genomic integrity, but their role in cell death or survival processes is rather different. A recently described series of selective PARP-2 inhibitors (UPF-1035, UPF-1069) were used to study the role of PARP-1 and PARP-2 in post-ischaemic brain damage. EXPERIMENTAL APPROACH We evaluated post-ischaemic brain damage in two different in vitro models: rat organotypic hippocampal slices exposed to oxygen-glucose deprivation (OGD) for 20-30 min, a model characterized by apoptosis-like cell death and mouse mixed cortical cell cultures exposed to 60 min OGD, a model in which cells die with mostly necrosis-like features. KEY RESULTS In organotypic hippocampal slices, PARP-2 inhibition with UPF-1069 (0.01-1 micromolxL(-1)) caused a concentration-dependent exacerbation (up to 155%) of OGD-induced CA1 pyramidal cell death. Higher concentrations, acting on both PARP-1 and PARP-2, had no effect on OGD injury. In mouse mixed cortical cells exposed to OGD, on the contrary, UPF-1069 (1-10 micromolxL(-1)) significantly reduced post-ischaemic damage. CONCLUSION AND IMPLICATIONS Selective PARP-2 inhibitors increased post-OGD cell death in a model characterized by loss of neurons through a caspase-dependent, apoptosis-like process (hippocampal slice cultures), but they reduced post-OGD damage and increased cell survival in a model characterized by a necrosis-like process (cortical neurons). UPF-1069 may be a valuable tool to explore the function of PARP-2 in biological systems and to examine the different roles of PARP isoenzymes in the mechanisms of cell death and survival.
Collapse
Affiliation(s)
- F Moroni
- Department of Preclinical and Clinical Pharmacology, University of Florence, Florence, Italy
| | | | | | | | | | | | | |
Collapse
|
18
|
Protection against chronic hypoperfusion-induced retinal neurodegeneration by PARP inhibition via activation of PI-3-kinase Akt pathway and suppression of JNK and p38 MAP kinases. Neurotox Res 2009; 16:68-76. [PMID: 19526300 DOI: 10.1007/s12640-009-9049-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 03/25/2009] [Accepted: 03/27/2009] [Indexed: 12/11/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) activation is considered as a major regulator of cell death in various pathophysiological conditions, however, no direct information is available about its role in chronic hypoperfusion-induced neuronal death. Here, we provide evidence for the protective effect of PARP inhibition on degenerative retinal damage induced by bilateral common carotid artery occlusion (BCCAO), an adequate chronic hypoperfusion murine model. We found that BCCAO in adult male Wistar rats led to severe degeneration of all retinal layers that was attenuated by a carboxaminobenzimidazol-derivative PARP inhibitor (HO3089) administered unilaterally into the vitreous body immediately following carotid occlusion and then 4 times in a 2-week-period. Normal morphological structure of the retina was preserved and the thickness of the retinal layers was increased in HO3089-treated eyes compared to the BCCAO eyes. For Western blot studies, HO3089 was administered immediately after BCCAO and retinas were removed 4 h later. According to Western blot analysis utilizing phosphorylation-specific primary antibodies, besides activating poly-ADP-ribose (PAR) synthesis, BCCAO induced phosphorylation of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). HO3089 inhibited PAR synthesis, and decreased the phosphorylation of these proapoptotic MAPKs. In addition, HO3089 treatment induced phosphorylation, that is activation, of the protective Akt/glycogen synthase kinase (GSK)-3beta and extracellular signal-regulated kinase (ERK1/2) signaling pathways. These data indicate that PARP activation has a major role in mediating chronic hypoperfusion-induced neuronal death, and inhibition of the enzyme prevents the pathological changes both in the morphology and the kinase signaling cascades involved. These results identify PARP inhibition as a possible molecular target in the clinical management of chronic hypoperfusion-induced neurodegenerative diseases including ocular ischemic syndrome.
Collapse
|