1
|
Skeate JG, Pomeroy EJ, Slipek NJ, Jones BJ, Wick BJ, Chang JW, Lahr WS, Stelljes EM, Patrinostro X, Barnes B, Zarecki T, Krueger JB, Bridge JE, Robbins GM, McCormick MD, Leerar JR, Wenzel KT, Hornberger KM, Walker K, Smedley D, Largaespada DA, Otto N, Webber BR, Moriarity BS. Evolution of the clinical-stage hyperactive TcBuster transposase as a platform for robust non-viral production of adoptive cellular therapies. Mol Ther 2024; 32:1817-1834. [PMID: 38627969 PMCID: PMC11184336 DOI: 10.1016/j.ymthe.2024.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/06/2024] [Accepted: 04/12/2024] [Indexed: 06/09/2024] Open
Abstract
Cellular therapies for the treatment of human diseases, such as chimeric antigen receptor (CAR) T and natural killer (NK) cells have shown remarkable clinical efficacy in treating hematological malignancies; however, current methods mainly utilize viral vectors that are limited by their cargo size capacities, high cost, and long timelines for production of clinical reagent. Delivery of genetic cargo via DNA transposon engineering is a more timely and cost-effective approach, yet has been held back by less efficient integration rates. Here, we report the development of a novel hyperactive TcBuster (TcB-M) transposase engineered through structure-guided and in vitro evolution approaches that achieves high-efficiency integration of large, multicistronic CAR-expression cassettes in primary human cells. Our proof-of-principle TcB-M engineering of CAR-NK and CAR-T cells shows low integrated vector copy number, a safe insertion site profile, robust in vitro function, and improves survival in a Burkitt lymphoma xenograft model in vivo. Overall, TcB-M is a versatile, safe, efficient and open-source option for the rapid manufacture and preclinical testing of primary human immune cell therapies through delivery of multicistronic large cargo via transposition.
Collapse
Affiliation(s)
- Joseph G Skeate
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Emily J Pomeroy
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nicholas J Slipek
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Bryce J Wick
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jae-Woong Chang
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Walker S Lahr
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Erin M Stelljes
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | - Joshua B Krueger
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jacob E Bridge
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gabrielle M Robbins
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Madeline D McCormick
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | - David A Largaespada
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Neil Otto
- Bio-Techne, Minneapolis, MN 55413, USA
| | - Beau R Webber
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Branden S Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
2
|
Park JY, Hyun JS, Jee JG, Park SJ, Khang D. Structural Deformation of MTX Induced by Nanodrug Conjugation Dictate Intracellular Drug Transport and Drug Efficacy. Int J Nanomedicine 2021; 16:4943-4957. [PMID: 34326636 PMCID: PMC8315289 DOI: 10.2147/ijn.s317231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Understanding structural interactions between the active drug and conjugated nanoparticles is critical for optimizing intracellular drug transport and for increasing nano drug efficacy. In this regard, analyzing the conformational deformation of conjugated drugs surrounding nanoparticles is essential to understand the corresponding nanodrug efficacy. PURPOSE The objective of this study is to present an optimal synthesis method for efficient drug delivery through a clear structural analysis of nanodrugs according to the type of conjugation. METHODS AND RESULTS In this study, the structural variation of methotrexate (MTX) surrounding carbon nanotubes, depending on the type of conjugation style, such as covalent and non-covalent (PEGylation) bonds, was investigated. Specifically, covalent bonds of MTX surrounding CNTs induced greater structural deformation compared to non-covalent bonds (ie, PEGylated CNT). CONCLUSION Greater changes in the structural variations of MTX analyzed by nuclear magnetic resonance (NMR) significantly improved the anti-inflammatory drug efficacy of human fibroblast-like synovial cells (FLS) via stable drug release in the extracellular environment and burst drug release under intracellular conditions.
Collapse
Affiliation(s)
- Jun-Young Park
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Republic of Korea
| | - Ja-Shil Hyun
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, 21936, Republic of Korea
| | - Jun-Goo Jee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sung Jean Park
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, 21936, Republic of Korea
| | - Dongwoo Khang
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Republic of Korea
- Department of Physiology, College of Medicine, Gachon University, Incheon, 21999, Republic of Korea
| |
Collapse
|
3
|
Suksiriworapong J, Taresco V, Ivanov DP, Styliari ID, Sakchaisri K, Junyaprasert VB, Garnett MC. Synthesis and properties of a biodegradable polymer-drug conjugate: Methotrexate-poly(glycerol adipate). Colloids Surf B Biointerfaces 2018; 167:115-125. [PMID: 29631222 DOI: 10.1016/j.colsurfb.2018.03.048] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/10/2018] [Accepted: 03/27/2018] [Indexed: 01/09/2023]
Abstract
Polymer-drug conjugates have been actively developed as potential anticancer drug delivery systems. In this study, we report the first polymer-anticancer drug conjugate with poly(glycerol adipate) (PGA) through the successful conjugation of methotrexate (MTX). MTX-PGA conjugates were controllably and simply fabricated by carbodiimide-mediated coupling reaction with various high molar ratios of MTX. The MTX-PGA conjugate self-assembled into nanoparticles with size dependent on the amount of conjugated MTX and the pH of medium. Change in particle size was attributed to steric hindrance and bulkiness inside the nanoparticle core and dissociation of free functional groups of the drug. The MTX-PGA nanoparticles were physically stable in media with pH range of 5-9 and ionic strength of up to 0.15 M NaCl and further chemically stable against hydrolysis in pH 7.4 medium over 30 days but enzymatically degradable to release unchanged free drug. Although 30%MTX-PGA nanoparticles exhibited only slightly less potency than free MTX in 791T cells in contrast to previously reported human serum albumin-MTX conjugates which had >300 times lower potency than free MTX. However, the MTX nanoparticles showed 7 times higher toxicity to Saos-2 cells than MTX. Together with the enzymic degradation experiments, these results suggest that with a suitable biodegradable polymer a linker moiety is not a necessary component. These easily synthesised PGA drug conjugates lacking a linker moiety could therefore be an effective new pathway for development of polymer drug conjugates.
Collapse
Affiliation(s)
- Jiraphong Suksiriworapong
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Ratchathewi, Bangkok 10400, Thailand; Center of Excellence in Innovative Drug Delivery and Nanomedicine, Faculty of Pharmacy, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand.
| | - Vincenzo Taresco
- University of Nottingham, School of Pharmacy, University Park, Nottingham, NG7 2RD, UK
| | - Delyan P Ivanov
- Division of Cancer and Stem Cells, Cancer Biology, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Ioanna D Styliari
- University of Nottingham, School of Pharmacy, University Park, Nottingham, NG7 2RD, UK
| | - Krisada Sakchaisri
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Varaporn Buraphacheep Junyaprasert
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Ratchathewi, Bangkok 10400, Thailand; Center of Excellence in Innovative Drug Delivery and Nanomedicine, Faculty of Pharmacy, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Martin C Garnett
- University of Nottingham, School of Pharmacy, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|