1
|
Lee CM, Jarrell ZR, Lee HY, Singer G, Tran VT, Orr M, Jones DP, Go YM. Protein S-palmitoylation enhances profibrotic signaling in response to cadmium. Toxicol Appl Pharmacol 2024; 483:116806. [PMID: 38195004 PMCID: PMC10923080 DOI: 10.1016/j.taap.2024.116806] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024]
Abstract
Cadmium (Cd) is a naturally occurring, toxic environmental metal found in foods. Humans do not have an efficient mechanism for Cd elimination; thus, Cd burden in humans increases with age. Cell and mouse studies show that Cd burden from low environmental levels of exposure impacts lung cell metabolism, proliferation signaling and cell growth as part of disease-promoting profibrotic responses in the lungs. Prior integrative analysis of metabolomics and transcriptomics identified the zDHHC11 transcript as a central functional hub in response to Cd dose. zDHHC11 encodes a protein S-palmitoyltransferase, but no evidence is available for effects of Cd on protein S-palmitoylation. In the present research, we studied palmitoylation changes in response to Cd and found increased protein S-palmitoylation in human lung fibroblasts that was inhibited by 2-bromopalmitate (2-BP), an irreversible palmitoyltransferase inhibitor. Mass spectrometry-based proteomics showed palmitoylation of proteins involved in divalent metal transport and in fibrotic signaling. Mechanistic studies showed that 2-BP inhibited palmitoylation of divalent metal ion transporter ZIP14 and also inhibited cellular Cd uptake. Transcription analyses showed that Cd stimulated transforming growth factor (TGF)-β1 and β3 expression within 8 h and lung fibrotic markers α-smooth muscle actin, matrix metalloproteinase-2, and collagen 1α1 gene expression and that these effects were blocked by 2-BP. Because 2-BP also blocked palmitoylation of proteins controlled by TGFβ1, these results show that palmitoylation impacts Cd-dependent fibrotic signaling both by enhancing cellular Cd accumulation and by supporting post-translational processing of TGFβ1-dependent proteins.
Collapse
Affiliation(s)
- Choon-Myung Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zachery R Jarrell
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ho Young Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Grant Singer
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - ViLinh Thi Tran
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael Orr
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Young-Mi Go
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
2
|
Francis Stuart SD, Villalobos AR. GSH and Zinc Supplementation Attenuate Cadmium-Induced Cellular Stress and Stimulation of Choline Uptake in Cultured Neonatal Rat Choroid Plexus Epithelia. Int J Mol Sci 2021; 22:ijms22168857. [PMID: 34445563 PMCID: PMC8396310 DOI: 10.3390/ijms22168857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/01/2021] [Accepted: 08/11/2021] [Indexed: 12/27/2022] Open
Abstract
Choroid plexus (CP) sequesters cadmium and other metals, protecting the brain from these neurotoxins. These metals can induce cellular stress and modulate homeostatic functions of CP, such as solute transport. We previously showed in primary cultured neonatal rat CP epithelial cells (CPECs) that cadmium induced cellular stress and stimulated choline uptake at the apical membrane, which interfaces with cerebrospinal fluid in situ. Here, in CPECs, we characterized the roles of glutathione (GSH) and Zinc supplementation in the adaptive stress response to cadmium. Cadmium increased GSH and decreased the reduced GSH-to-oxidized GSH (GSSG) ratio. Heat shock protein-70 (Hsp70), heme oxygenase (HO-1), and metallothionein (Mt-1) were induced along with the catalytic and modifier subunits of glutamate cysteine ligase (GCL), the rate-limiting enzyme in GSH synthesis. Inhibition of GCL by l-buthionine sulfoximine (BSO) enhanced stress protein induction and stimulation of choline uptake by cadmium. Zinc alone did not induce Hsp70, HO-1, or GCL subunits, or modulate choline uptake. Zinc supplementation during cadmium exposure attenuated stress protein induction and stimulation of choline uptake; this effect persisted despite inhibition of GSH synthesis. These data indicated up-regulation of GSH synthesis promotes adaptation to cadmium-induced cellular stress in CP, but Zinc may confer cytoprotection independent of GSH.
Collapse
Affiliation(s)
- Samantha D. Francis Stuart
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA;
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Alice R. Villalobos
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA;
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
- Correspondence: ; Tel.: +1-806-743-2057
| |
Collapse
|
3
|
Bhattacharjee B, Pal PK, Chattopadhyay A, Bandyopadhyay D. Oleic acid protects against cadmium induced cardiac and hepatic tissue injury in male Wistar rats: A mechanistic study. Life Sci 2020; 244:117324. [PMID: 31958420 DOI: 10.1016/j.lfs.2020.117324] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 12/22/2022]
Abstract
AIMS The aim of the present study was to evaluate the possible antioxidant role of oleic acid (OA) against Cd-induced injuries in the heart and liver tissues of male Wistar rats. MAIN METHODS Rats were treated with either vehicle (control), or OA (10 mg/kg b.w., fed orally), or Cd (0.44 mg/kg b.w., s.c.), or both (OA + Cd) for 15 days. Following completion of the treatment period, biomarkers of organ damage and oxidative stress including ROS, activities of antioxidant enzymes and their level, activities of Krebs cycle enzymes and respiratory chain enzymes were measured. Levels of interleukins (IL-1β, IL-6, IL-10), tumor necrosis factor (TNF-α) and nuclear factor kappa B (NFκB) were estimated to evaluate the state of inflammation. In addition, changes in mitochondrial membrane potential and status of cytochrome c (Cyt c) were also studied. KEY FINDINGS Pre-treatment of rats with OA significantly protected against Cd-induced detrimental changes possibly by decreasing endogenous ROS through regulation of antioxidant defense system, inflammatory responses and activities of metabolic enzymes. Moreover, OA was also found to restore mitochondrial membrane potential possibly by regulating Cyt c leakage thereby increasing mitochondrial viability. SIGNIFICANCE Our results for the first time demonstrated systematically that OA provided protection against Cd-induced oxidative stress mediated injuries in rat heart and liver tissues through its antioxidant mechanism. The results raise the possibility of using OA singly or in combination with other antioxidants or diet in the treatment of situations arising due to oxidative stress and may have future therapeutic relevance.
Collapse
Affiliation(s)
- Bharati Bhattacharjee
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata 700009, India
| | - Palash Kumar Pal
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata 700009, India
| | - Aindrila Chattopadhyay
- Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata 700006, India
| | - Debasish Bandyopadhyay
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata 700009, India.
| |
Collapse
|
4
|
Functional Genomic Identification of Cadmium Resistance Genes from a High GC Clone Library by Coupling the Sanger and PacBio Sequencing Strategies. Genes (Basel) 2019; 11:genes11010007. [PMID: 31861815 PMCID: PMC7016576 DOI: 10.3390/genes11010007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
Functional (meta) genomics allows the high-throughput identification of functional genes in a premise-free way. However, it is still difficult to perform Sanger sequencing for high GC DNA templates, which hinders the functional genomic exploration of a high GC genomic library. Here, we developed a procedure to resolve this problem by coupling the Sanger and PacBio sequencing strategies. Identification of cadmium (Cd) resistance genes from a small-insert high GC genomic library was performed to test the procedure. The library was generated from a high GC (75.35%) bacterial genome. Nineteen clones that conferred Cd resistance to Escherichia coli subject to Sanger sequencing directly. The positive clones were in parallel subject to in vivo amplification in host cells, from which recombinant plasmids were extracted and linearized by selected restriction endonucleases. PacBio sequencing was performed to obtain the full-length sequences. As the identities, partial sequences from Sanger sequencing were aligned to the full-length sequences from PacBio sequencing, which led to the identification of seven unique full-length sequences. The unique sequences were further aligned to the full genome sequence of the source strain. Functional screening showed that the identified positive clones were all able to improve Cd resistance of the host cells. The functional genomic procedure developed here couples the Sanger and PacBio sequencing methods and overcomes the difficulties in PCR approaches for high GC DNA. The procedure can be a promising option for the high-throughput sequencing of functional genomic libraries, and realize a cost-effective and time-efficient identification of the positive clones, particularly for high GC genetic materials.
Collapse
|
5
|
Levina A, Crans DC, Lay PA. Speciation of metal drugs, supplements and toxins in media and bodily fluids controls in vitro activities. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.01.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
6
|
Nazimabashir, Manoharan V, Miltonprabu S. RETRACTED: Cadmium induced cardiac oxidative stress in rats and its attenuation by GSP through the activation of Nrf2 signaling pathway. Chem Biol Interact 2015; 242:179-93. [PMID: 26462792 DOI: 10.1016/j.cbi.2015.10.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 09/21/2015] [Accepted: 10/06/2015] [Indexed: 01/11/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Western Blots from Figures 8B and 9A appear similar to Blots from Figure 4A of the article previously published by the authors in Biochemistry and Cell Biology 93 (2015) 210-226 https://doi.org/10.1139/bcb-2014-0114 and Figures 12 and 14 of the article previously published by the corresponding author et al in Biomedicine & Preventive Nutrition 4 (2014) 561-577 https://doi.org/10.1016/j.bionut.2014.08.003, although the Western Blots purportedly described different samples. Also, sections within the panels from Figures 10 and 11D appear unusually similar to each other. The explanation provided by the corresponding author was not satisfactory and the Editor decided to retract the article.
Collapse
Affiliation(s)
- Nazimabashir
- Department of Zoology, Faculty of Science, Annamalai University, Annamalainagar, 608002, Tamilnadu, India
| | - Vaihundam Manoharan
- Department of Zoology, Faculty of Science, Annamalai University, Annamalainagar, 608002, Tamilnadu, India
| | - Selvaraj Miltonprabu
- Department of Zoology, Faculty of Science, Annamalai University, Annamalainagar, 608002, Tamilnadu, India.
| |
Collapse
|
7
|
Zhao WJ, Song Q, Wang YH, Li KJ, Mao L, Hu X, Lian HZ, Zheng WJ, Hua ZC. Zn-responsive proteome profiling and time-dependent expression of proteins regulated by MTF-1 in A549 cells. PLoS One 2014; 9:e105797. [PMID: 25162517 PMCID: PMC4146543 DOI: 10.1371/journal.pone.0105797] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 07/24/2014] [Indexed: 12/11/2022] Open
Abstract
Zinc plays a critical role in many biological processes. However, it is toxic at high concentrations and its homeostasis is strictly regulated by metal-responsive transcription factor 1 (MTF-1) together with many other proteins to protect cells against metal toxicity and oxidative stresses. In this paper, we used high-resolution two-dimensional gel electrophoresis (2DE) to profile global changes of the whole soluble proteome in human lung adenocarcinoma (A549) cells in response to exogenous zinc treatment for 24 h. Eighteen differentially expressed proteins were identified by MALDI TOF/TOF and MASCOT search. In addition, we used Western blotting and RT-PCR to examine the time-dependent changes in expression of proteins regulated by MTF-1 in response to Zn treatment, including the metal binding protein MT-1, the zinc efflux protein ZnT-1, and the zinc influx regulator ZIP-1. The results indicated that variations in their mRNA and protein levels were consistent with their functions in maintaining the homeostasis of zinc. However, the accumulation of ZIP-1 transcripts was down-regulated while the protein level was up-regulated during the same time period. This may be due to the complex regulatory mechanism of ZIP-1, which is involved in multiple signaling pathways. Maximal changes in protein abundance were observed at 10 h following Zn treatment, but only slight changes in protein or mRNA levels were observed at 24 h, which was the time-point frequently used for 2DE analyses. Therefore, further study of the time-dependent Zn-response of A549 cells would help to understand the dynamic nature of the cellular response to Zn stress. Our findings provide the basis for further study into zinc-regulated cellular signaling pathways.
Collapse
Affiliation(s)
- Wen-jie Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, PR China
| | - Qun Song
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, PR China
| | - Yan-hong Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, PR China
| | - Ke-jin Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, PR China
| | - Li Mao
- MOE Key Laboratory of Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, PR China
| | - Xin Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, PR China
| | - Hong-zhen Lian
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, PR China
| | - Wei-juan Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, PR China
| | - Zi-chun Hua
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, PR China
| |
Collapse
|
8
|
Bláhová L, Kohoutek J, Lebedová J, Bláha L, Večeřa Z, Buchtová M, Míšek I, Hilscherová K. Simultaneous determination of reduced and oxidized glutathione in tissues by a novel liquid chromatography-mass spectrometry method: application in an inhalation study of Cd nanoparticles. Anal Bioanal Chem 2014; 406:5867-76. [PMID: 25069883 DOI: 10.1007/s00216-014-8033-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/22/2014] [Accepted: 07/14/2014] [Indexed: 10/25/2022]
Abstract
The paper presents the development of an advanced extraction and fast analytical LC MS/MS method for simultaneous analyses of reduced and oxidized glutathione (GSH and GSSG, respectively) in different animal tissues. The simultaneous determination of GSH and GSSG is crucial because the amount and ratio of both GSH and GSSG may be altered in response to oxidative stress, an important mechanism of toxicity. The method uses the derivatization of free thiol groups in GSH. Its performance was demonstrated for less explored tissues (lung, brain, and liver) in mouse. The combined extraction and analytical method has very low variability and good reproducibility, maximum coefficients of variance for within-run and between-run analyses under 8 %, and low limits of quantification; for GSH and GSSG, these were 0.2 nM (0.06 ng/mL) and 10 nM (6 ng/mL), respectively. The performance of the method was further demonstrated in a model experiment addressing changes in GSH and GSSG concentrations in lung of mice exposed to CdO nanoparticles during acute 72 h and chronic 13-week exposures. Inhalation exposure led to increased GSH concentrations in lung. GSSG levels were in general not affected; nonsignificant suppression occurred only after the longer 13-week period of exposure. The developed method for the sensitive detection of both GSH and GSSG in very low tissue mass enables these parameters to be studied in cases where only a little sample is available, i.e. in small organisms or in small amounts of tissue.
Collapse
Affiliation(s)
- L Bláhová
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, Building A29, 62500, Brno, Czech Republic,
| | | | | | | | | | | | | | | |
Collapse
|