1
|
Ueda H, Narumi K, Asano S, Saito Y, Furugen A, Kobayashi M. Comparative study on the occurrence of adverse effects in the concomitant use of azathioprine and aldehyde oxidase inhibitors. Expert Opin Drug Saf 2024; 23:89-97. [PMID: 38097359 DOI: 10.1080/14740338.2023.2295976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023]
Abstract
OBJECTIVES Aldehyde oxidase (AO) is a molybdenum-containing redox enzyme similar to xanthine oxidase that is involved in the thiopurine metabolism. This study investigated the effects of drug-drug interactions (DDIs) between azathioprine (AZA) and AO inhibitors on hematologic and hepatic disorders using the U.S. Food and Drug Administration Adverse Event Reporting System and the Japanese Adverse Drug Event Report database. METHODS The presence of DDI was assessed using the interaction signal scores (ISSs) calculated via the reporting odds ratios and 95% confidence intervals. The study used reports of 'azathioprine' as a suspect drug for adverse effects. AO inhibitors were selected based on previous in vitro reports. RESULTS Some drugs tested positive for ISSs in each database and type of adverse effect (hematologic or hepatic disorder) analysis. Among these drugs, chlorpromazine, clozapine, hydralazine, and quetiapine could inhibit AZA metabolism via AO, given the previously reported clinical blood concentration and inhibitory effects of each drug. CONCLUSION Concomitant use of AO inhibitors increased the signals for AZA-induced adverse effects. To date, no studies have evaluated the clinical importance of AO as a drug-metabolizing enzyme, and further in vitro and clinical research is needed to clarify the contribution of AO to the pharmacokinetics of thiopurines.
Collapse
Affiliation(s)
- Hinata Ueda
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Katsuya Narumi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Education Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Shuho Asano
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yoshitaka Saito
- Department of Clinical Pharmaceutics & Therapeutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Japan
| | - Ayako Furugen
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Masaki Kobayashi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Education Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
2
|
Deynichenko KA, Ptitsyn KG, Radko SP, Kurbatov LK, Vakhrushev IV, Buromski IV, Markin SS, Archakov AI, Lisitsa AV, Ponomarenko EA. Splice Variants of mRNA of Cytochrome P450 Genes: Analysis by the Nanopore Sequencing Method in Human Liver Tissue and HepG2 Cell Line. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2022. [DOI: 10.1134/s1990750822040047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Deynichenko KA, Ptitsyn KG, Radko SP, Kurbatov LK, Vakhrushev IV, Buromski IV, Markin SS, Archakov AI, Lisitsa AV, Ponomarenko EA. [Splice variants of mRNA of cytochrome P450 genes: analysis by the nanopore sequencing method in human liver tissue and HepG2 cell line]. BIOMEDITSINSKAIA KHIMIIA 2022; 68:117-125. [PMID: 35485485 DOI: 10.18097/pbmc20226802117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The analysis of cytochrome P450 transcripts was carried out by the nanopore sequencing in liver tissue samples of three donors and HepG2 line cells. It has been demonstrated that direct mRNA sequencing with a MinION nanopore sequencer (Oxford Nanopore Technologies) allows one to obtained quantitative profiles for transcripts (and their splice variants) of cytochrome P450 superfamily genes encoding isoforms involved in metabolism of the large (~80%) part of drugs. The splice variant profiles substantially differ for donors. The cytochrome P450 gene expression at the transcript level is significantly weaker in cells of the HepG2 line compared with that in the normal liver tissue. This limits the capability of the direct mRNA nanopore sequencing for studying alternative splicing of cytochrome P450 transcripts in HepG2 cells. Both quantitative and qualitative profiles of the cytochrome P450 gene expression at the transcript level are notably differ in human liver tissue and HepG2 cells.
Collapse
Affiliation(s)
| | - K G Ptitsyn
- Institute of Biomedical Chemistry, Moscow, Russia
| | - S P Radko
- Institute of Biomedical Chemistry, Moscow, Russia
| | - L K Kurbatov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - I V Buromski
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - S S Markin
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A V Lisitsa
- Institute of Biomedical Chemistry, Moscow, Russia
| | | |
Collapse
|
4
|
Kurosawa T, Tega Y, Sako D, Mochizuki T, Yamaguchi T, Kawabata K, Inoue K, Ito N, Kusuhara H, Deguchi Y. Transport Characteristics of 6-Mercaptopurine in Brain Microvascular Endothelial Cells Derived From Human Induced Pluripotent Stem Cells. J Pharm Sci 2021; 110:3484-3490. [PMID: 34102205 DOI: 10.1016/j.xphs.2021.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 01/25/2023]
Abstract
The likelihood of reoccurrence of acute lymphoblastic leukemia is influenced by the cerebral concentration of the therapeutic agent 6-mercaptopurine (6-MP) during treatment. Therefore, it is important to understand the blood-brain barrier (BBB) transport mechanism of 6-MP. The purpose of this study was to characterize this mechanism using human induced pluripotent stem cell-derived microvascular endothelial cells (hiPS-BMECs). The permeability coefficient of 6-MP across hiPS-BMECs monolayer in the basal-to-apical direction (B-to-A) was significantly greater than that in the opposite direction (A-to-B). The inhibition profiles of 6-MP transport in the A-to-B direction were different from those in the B-to-A direction. Transport in the A-to-B direction was mainly inhibited by adenine (an inhibitor of equilibrative nucleobase transporter 1; ENBT1), while transport in the B-to-A direction was significantly reduced by inhibitors of multidrug resistance-associated proteins (MRPs), especially zaprinast (an MRP5 inhibitor). Immunocytochemical analyses demonstrated the expression of ENBT1 and MRP5 proteins in hiPS-BMECs. We confirmed that the cellular uptake of 6-MP is decreased by ENBT1 inhibitors in hiPS-BMECs and by knockdown of ENBT1 in hCMEC/D3 cells. These results suggest that ENBT1 and MRP5 make substantial contributions to the transport of 6-MP in hiPS-BMECs and hCMEC/D3 cells.
Collapse
Affiliation(s)
- Toshiki Kurosawa
- Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Yuma Tega
- Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Daiki Sako
- Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Tatsuki Mochizuki
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomoko Yamaguchi
- Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Kenji Kawabata
- Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Katsuhisa Inoue
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Naoki Ito
- Department of Pediatrics, School of Medicine, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshiharu Deguchi
- Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan.
| |
Collapse
|
5
|
Martorell M, Lucas X, Alarcón-Zapata P, Capó X, Quetglas-Llabrés MM, Tejada S, Sureda A. Targeting Xanthine Oxidase by Natural Products as a Therapeutic Approach for Mental Disorders. Curr Pharm Des 2021; 27:367-382. [PMID: 32564744 DOI: 10.2174/1381612826666200621165839] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/08/2020] [Indexed: 11/22/2022]
Abstract
Mental disorders comprise diverse human pathologies, including depression, bipolar affective disorder, schizophrenia, and dementia that affect millions of people around the world. The causes of mental disorders are unclear, but growing evidence suggests that oxidative stress and the purine/adenosine system play a key role in their development and progression. Xanthine oxidase (XO) is a flavoprotein enzyme essential for the catalysis of the oxidative hydroxylation of purines -hypoxanthine and xanthine- to generate uric acid. As a consequence of the oxidative reaction of XO, reactive oxygen species (ROS) such as superoxide and hydrogen peroxide are produced and, further, contribute to the pathogenesis of mental disorders. Altered XO activity has been associated with free radical-mediated neurotoxicity inducing cell damage and inflammation. Diverse studies reported a direct association between an increased activity of XO and diverse mental diseases including depression or schizophrenia. Small-molecule inhibitors, such as the well-known allopurinol, and dietary flavonoids, can modulate the XO activity and subsequent ROS production. In the present work, we review the available literature on XO inhibition by small molecules and their potential therapeutic application in mental disorders. In addition, we discuss the chemistry and molecular mechanism of XO inhibitors, as well as the use of structure-based and computational methods to design specific inhibitors with the capability of modulating XO activity.
Collapse
Affiliation(s)
- Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepcion, 4070386 Concepcion, Chile
| | - Xavier Lucas
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel CH-4070, Switzerland
| | - Pedro Alarcón-Zapata
- Clinical Biochemistry and Immunology Department, Faculty of Pharmacy, University of Concepcion, 4070386 Concepcion, Chile
| | - Xavier Capó
- Research Group in Community Nutrition and Oxidative Stress, University of Balearic Islands & Health Research Institute of the Balearic Islands (IdISBa), E-07122, Palma, Balearic Islands, Spain
| | - Maria Magdalena Quetglas-Llabrés
- Laboratory of Neurophysiology, Department of Biology, University of Balearic Islands & Health Research Institute of the Balearic Islands (IdISBa), E-07122, Palma, Balearic Islands, Spain
| | - Silvia Tejada
- Laboratory of Neurophysiology, Department of Biology, University of Balearic Islands & Health Research Institute of the Balearic Islands (IdISBa), E-07122, Palma, Balearic Islands, Spain
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of Balearic Islands & Health Research Institute of the Balearic Islands (IdISBa), E-07122, Palma, Balearic Islands, Spain
| |
Collapse
|
6
|
Travassos IO, Mello-Andrade F, Caldeira RP, Pires WC, da Silva PFF, Correa RS, Teixeira T, Martins-Oliveira A, Batista AA, de Silveira-Lacerda EP. Ruthenium (II)/allopurinol complex inhibits breast cancer progression via multiple targets. J Biol Inorg Chem 2021; 26:385-401. [PMID: 33837856 DOI: 10.1007/s00775-021-01862-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/08/2021] [Indexed: 12/27/2022]
Abstract
Metal complexes based on ruthenium have established excellent activity with less toxicity and great selectivity for tumor cells. This study aims to assess the anticancer potential of ruthenium(II)/allopurinol complexes called [RuCl2(allo)2(PPh3)2] (1) and [RuCl2(allo)2(dppb)] (2), where allo means allopurinol, PPh3 is triphenylphosphine and dppb, 1,4-bis(diphenylphosphino)butane. The complexes were synthesized and characterized by elemental analysis, IR, UV-Vis and NMR spectroscopies, cyclic voltammetry, molar conductance measurements, as well as the X-ray crystallographic analysis of complex 2. The antitumor effects of compounds were determined by cytotoxic activity and cellular and molecular responses to cell death mechanisms. Complex 2 showed good antitumor profile prospects because in addition to its cytotoxicity, it causes cell cycle arrest, induction of DNA damage, morphological and biochemical alterations in the cells. Moreover, complex 2 induces cell death by p53-mediated apoptosis, caspase activation, increased Beclin-1 levels and decreased ROS levels. Therefore, complex 2 can be considered a suitable compound in antitumor treatment due to its cytotoxic mechanism.
Collapse
Affiliation(s)
- Ingrid O Travassos
- Laboratório de Genética Molecular E Citogenética Humana, sala 213, Departamento de Genética, Instituto de Ciências Biológicas I, Campus Samambaia, Universidade Federal de Goiás, Avenida Esperança, s/n, Cx Postal: 131, Goiânia, Goiás, CEP 74690-900, Brazil
| | - Francyelli Mello-Andrade
- Laboratório de Genética Molecular E Citogenética Humana, sala 213, Departamento de Genética, Instituto de Ciências Biológicas I, Campus Samambaia, Universidade Federal de Goiás, Avenida Esperança, s/n, Cx Postal: 131, Goiânia, Goiás, CEP 74690-900, Brazil.,Department of Chemistry, Federal Institute of Education, Science and Technology of Goiás, Goiânia, Goiás, 74055-110, Brazil
| | - Raíssa P Caldeira
- Laboratório de Genética Molecular E Citogenética Humana, sala 213, Departamento de Genética, Instituto de Ciências Biológicas I, Campus Samambaia, Universidade Federal de Goiás, Avenida Esperança, s/n, Cx Postal: 131, Goiânia, Goiás, CEP 74690-900, Brazil
| | - Wanessa C Pires
- Laboratório de Genética Molecular E Citogenética Humana, sala 213, Departamento de Genética, Instituto de Ciências Biológicas I, Campus Samambaia, Universidade Federal de Goiás, Avenida Esperança, s/n, Cx Postal: 131, Goiânia, Goiás, CEP 74690-900, Brazil
| | - Paula F F da Silva
- Laboratório de Genética Molecular E Citogenética Humana, sala 213, Departamento de Genética, Instituto de Ciências Biológicas I, Campus Samambaia, Universidade Federal de Goiás, Avenida Esperança, s/n, Cx Postal: 131, Goiânia, Goiás, CEP 74690-900, Brazil
| | - Rodrigo S Correa
- Department of Chemistry, Federal University of Ouro Preto-UFOP, Ouro Preto, MG, 35400-000, Brazil
| | - Tamara Teixeira
- Department of Chemistry, Federal University of Ouro Preto-UFOP, Ouro Preto, MG, 35400-000, Brazil
| | | | - Alzir A Batista
- Department of Chemistry, Federal University of Sao Carlos-UFSCar, Sao Carlos, SP, 13565-905, Brazil
| | - Elisângela P de Silveira-Lacerda
- Laboratório de Genética Molecular E Citogenética Humana, sala 213, Departamento de Genética, Instituto de Ciências Biológicas I, Campus Samambaia, Universidade Federal de Goiás, Avenida Esperança, s/n, Cx Postal: 131, Goiânia, Goiás, CEP 74690-900, Brazil.
| |
Collapse
|
7
|
Chong LH, Ng C, Li H, Tian EF, Ananthanarayanan A, McMillian M, Toh YC. Hepatic Bioactivation of Skin-Sensitizing Drugs to Immunogenic Reactive Metabolites. ACS OMEGA 2019; 4:13902-13912. [PMID: 31497708 PMCID: PMC6714514 DOI: 10.1021/acsomega.9b01551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
The clinical use of some drugs, such as carbamazepine, phenytoin, and allopurinol, is often associated with adverse cutaneous reactions. The bioactivation of drugs into immunologically reactive metabolites by the liver is postulated to be the first step in initiating a downstream cascade of pathological immune responses. Current mechanistic understanding and the ability to predict such adverse drug cutaneous responses have been partly limited by the lack of appropriate cutaneous drug bioactivation experimental models. Although in vitro human liver models have been extensively investigated for predicting hepatotoxicity and drug-drug interactions, their ability to model the generation of antigenic reactive drug metabolites that are capable of eliciting immunological reactions is not well understood. Here, we employed a human progenitor cell (HepaRG)-derived hepatocyte model and established highly sensitive liquid chromatography-mass spectrometry analytical assays to generate and quantify different reactive metabolite species of three paradigm skin sensitizers, namely, carbamazepine, phenytoin, and allopurinol. We found that the generation of reactive drug metabolites by the HepaRG-hepatocytes was sensitive to the medium composition. In addition, a functional assay based on the activation of U937 myeloid cells into the antigen-presenting cell (APC) phenotype was established to evaluate the immunogenicity potential of the reactive drug metabolites produced by HepaRG-derived hepatocytes. We showed that the reactive drug metabolites of known skin sensitizers could significantly upregulate IL8, IL1β, and CD86 expressions in U937 cells compared to the metabolites from a nonskin sensitizer (i.e., acetaminophen). Thus, the extent of APC activation by HepaRG-hepatocytes conditioned medium containing reactive drug metabolites can potentially be used to predict their skin sensitization potential.
Collapse
Affiliation(s)
- Lor Huai Chong
- Department
of Biomedical Engineering, National University
of Singapore, 4 Engineering Drive 3, #04-08, Singapore 117583
| | - Celine Ng
- School
of Applied Science, Temasek Polytechnic, Tampines Avenue 1, Singapore 529765
| | - Huan Li
- School
of Applied Science, Temasek Polytechnic, Tampines Avenue 1, Singapore 529765
| | - Edmund Feng Tian
- School
of Applied Science, Temasek Polytechnic, Tampines Avenue 1, Singapore 529765
| | | | - Michael McMillian
- Invitrocue
Pte Ltd, 11, Biopolis
Way, Helios #12-07/08, Singapore 138667
- Department
of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, MD9, #04-11, Singapore 117597
| | - Yi-Chin Toh
- Department
of Biomedical Engineering, National University
of Singapore, 4 Engineering Drive 3, #04-08, Singapore 117583
- Institute
for Health Innovation and Technology (iHealthtech), National University of Singapore, MD6, 14 Medical Drive, #14-01, Singapore 117599
- The
N.1 Institute for Health, 28 Medical Drive, #05-corridor, Singapore 117456
- NUS
Tissue Engineering Programme, National University
of Singapore, 28 Medical
Drive, Singapore 117456
| |
Collapse
|
8
|
Iron induces insulin resistance in cardiomyocytes via regulation of oxidative stress. Sci Rep 2019; 9:4668. [PMID: 30874600 PMCID: PMC6420583 DOI: 10.1038/s41598-019-41111-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/12/2019] [Indexed: 12/26/2022] Open
Abstract
Iron overload is associated with various pathological changes which contribute to heart failure. Here, we examined mechanisms via which iron alters cardiomyocyte insulin sensitivity. Treatment of primary adult and neonatal cardiomyocytes as well as H9c2 cells with iron decreased insulin sensitivity determined via Western blotting or immunofluorescent detection of Akt and p70S6K phosphorylation and glucose uptake. Using CellROX deep red or DCF-DA probes we also observed that iron increased generation of reactive oxygen species (ROS), and that pretreatment with the superoxide dismutase mimetic MnTBAP reduced ROS production and attenuated iron-induced insulin resistance. SKQ1 and allopurinol but not apocynin reduced iron-induced ROS suggesting mitochondria and xanthine oxidase contribute to cellular ROS in response to iron. Western blotting for LC3-I, LC3-II and P62 levels as well as immunofluorescent co-detection of autophagosomes with Cyto-ID and lysosomal cathepsin activity indicated that iron attenuated autophagic flux without altering total expression of Atg7 or beclin-1 and phosphorylation of mTORC1 and ULK1. This conclusion was reinforced via protein accumulation detected using Click-iT HPG labelling after iron treatment. The adiponectin receptor agonist AdipoRon increased autophagic flux and improved insulin sensitivity both alone and in the presence of iron. We created an autophagy-deficient cell model by overexpressing a dominant-negative Atg5 mutant in H9c2 cells and this confirmed that reduced autophagy flux correlated with less insulin sensitivity. In conclusion, our study showed that iron promoted a cascade of ROS production, reduced autophagy and insulin resistance in cardiomyocytes.
Collapse
|
9
|
Cohn HM, Dave M, Loftus EV. Understanding the Cautions and Contraindications of Immunomodulator and Biologic Therapies for Use in Inflammatory Bowel Disease. Inflamm Bowel Dis 2017; 23:1301-1315. [PMID: 28708806 PMCID: PMC5731468 DOI: 10.1097/mib.0000000000001199] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ulcerative colitis and Crohn's disease are chronic inflammatory bowel diseases for which there are no cures. These diseases are immunopathogenic, and medical treatment is centered on the temperance of a dysregulated immune response to allow mucosal healing and prevent the sequelae of fistulation and stenosis. Accordingly, the armamentarium of medications, which has expanded immensely in recent history, is not without significant infectious and neoplastic risks. Many of these untoward effects can be mitigated by screening and avoidance of contraindicated medications. This review seeks to highlight the cautions for use of immunomodulators, anticytokine, and α4-integrin antagonists. The potential adverse events are further complicated by substantial heterogeneity in disease phenotype in the inflammatory bowel disease population. Large patient registries and databases provide considerable experience and knowledge to calculate the incidence of safety outcomes. To identify rarer outcomes after prolonged therapy, more prospective studies and continued adverse event reporting will aid safe application and minimize potential harms.
Collapse
Affiliation(s)
- H. Matthew Cohn
- Division of Gastroenterology and Liver Disease, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Maneesh Dave
- Division of Gastroenterology and Liver Disease, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
- Division of Gastroenterology and Liver Disease, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
| | - Edward V. Loftus
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota Review Article for Inflammatory Bowel Disease Journal
| |
Collapse
|
10
|
Combination treatment with 6-mercaptopurine and allopurinol in HepG2 and HEK293 cells - Effects on gene expression levels and thiopurine metabolism. PLoS One 2017; 12:e0173825. [PMID: 28278299 PMCID: PMC5344510 DOI: 10.1371/journal.pone.0173825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/26/2017] [Indexed: 12/13/2022] Open
Abstract
Combination treatment with low-dose thiopurine and allopurinol (AP) has successfully been used in patients with inflammatory bowel disease with a so called skewed thiopurine metabolite profile. In red blood cells in vivo, it reduces the concentration of methylated metabolites and increases the concentration of the phosphorylated ones, which is associated with improved therapeutic efficacy. This study aimed to investigate the largely unknown mechanism of AP on thiopurine metabolism in cells with an active thiopurine metabolic pathway using HepG2 and HEK293 cells. Cells were treated with 6-mercaptopurine (6MP) and AP or its metabolite oxypurinol. The expression of genes known to be associated with thiopurine metabolism, and the concentration of thiopurine metabolites were analyzed. Gene expression levels were only affected by AP in the presence of 6MP. The addition of AP to 6MP affected the expression of in total 19 genes in the two cell lines. In both cell lines the expression of the transporter SLC29A2 was reduced by the combined treatment. Six regulated genes in HepG2 cells and 8 regulated genes in HEK293 cells were connected to networks with 18 and 35 genes, respectively, present at known susceptibility loci for inflammatory bowel disease, when analyzed using a protein-protein interaction database. The genes identified as regulated as well as the disease associated interacting genes represent new candidates for further investigation in the context of combination therapy with thiopurines and AP. However, no differences in absolute metabolite concentrations were observed between 6MP+AP or 6MP+oxypurinol vs. 6MP alone in either of the two cell lines. In conclusion; the effect of AP on gene expression levels requires the presence of 6MP, at least in vitro. Previously described AP-effects on metabolite concentrations observed in red blood cells in vivo could not be reproduced in our cell lines in vitro. AP’s effects in relation to thiopurine metabolism are complex. The network-identified susceptibility genes represented biological processes mainly associated with purine nucleotide biosynthetic processes, lymphocyte proliferation, NF-KB activation, JAK-STAT signaling, and apoptotic signaling at oxidative stress.
Collapse
|
11
|
Wang DC, Wang X, Chen C. Effects of anti-human T lymphocyte immune globulins in patients: new or old. J Cell Mol Med 2016; 20:1796-9. [PMID: 27084794 PMCID: PMC4988288 DOI: 10.1111/jcmm.12860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/29/2016] [Indexed: 02/06/2023] Open
Abstract
Multiple studies demonstrated that anti‐human T lymphocyte immune globulins (ATG) can decrease the incidence of acute and chronic graft rejection in cell or organ transplants. However, further in‐depth study indicates that different subgroups may benefit from either different regimes or alteration of them. Studies among renal transplant patients indicate that low immunological risk patients may not gain the same amount of benefit and thus tilt the risk versus benefit consideration. This may hold true for low immunological risk patients receiving other organ transplants and would be worth further investigation. The recovery time of T cells and natural killer (NK) cells also bears consideration and the impact that it has on the severity and incidence of opportunistic infections closely correlated with the dosage of ATG. The use of lower doses of ATG in combination with other induction medications may offer a solution. The finding that ATG may lose efficacy in cases of multiple transplants or re‐transplants in the case of heart transplants may hold true for other transplantations. This may lead to reconsideration of which induction therapies would be most beneficial in the clinical setting. These studies on ATG done on different patient groups will naturally not be applicable to all, but the evidence accrued from them as a whole may offer us new and different perspectives on how to approach and potentially solve the clinical question of how to best reduce the mortality associated with chronic host‐versus‐graft disease.
Collapse
Affiliation(s)
- Diane C Wang
- Department of Respiratory Medicine, The First Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiangdong Wang
- Department of Respiratory Medicine, The First Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chengshui Chen
- Department of Respiratory Medicine, The First Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
12
|
Cell viability, reactive oxygen species, apoptosis, and necrosis in myoblast cultures exposed to low-level infrared laser. Lasers Med Sci 2016; 31:841-8. [PMID: 26886589 DOI: 10.1007/s10103-016-1909-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 02/08/2016] [Indexed: 12/16/2022]
Abstract
Low-level infrared laser is considered safe and effective for treatment of muscle injuries. However, the mechanism involved on beneficial effects of laser therapy are not understood. The aim was to evaluate cell viability, reactive oxygen species, apoptosis, and necrosis in myoblast cultures exposed to low-level infrared laser at therapeutic fluences. C2C12 myoblast cultures at different (2 and 10 %) fetal bovine serum (FBS) concentrations were exposed to low-level infrared laser (808 nm, 100 mW) at different fluences (10, 35, and 70 J/cm(2)) and evaluated after 24, 48, and 72 h. Cell viability was evaluated by WST-1 assay; reactive oxygen species (ROS), apoptosis, and necrosis were evaluated by flow cytometry. Cell viability was decreased atthe lowest FBS concentration. Laser exposure increased the cell viability in myoblast cultures at 2 % FBS after 48 and 72 h, but no significant increase in ROS was observed. Apoptosis was decreased at the higher fluence and necrosis was increased at lower fluence in myoblast cultures after 24 h of laser exposure at 2 % FBS. No laser-induced alterations were obtained at 10 % FBS. Results show that level of reactive oxygen species is not altered, at least to those evaluated in this study, but low-level infrared laser exposure affects cell viability, apoptosis, and necrosis in myoblast cultures depending on laser fluence and physiologic conditions of cells.
Collapse
|
13
|
Knickelbein JE, Armbrust KR, Kim M, Sen HN, Nussenblatt RB. Pharmacologic Treatment of Noninfectious Uveitis. Handb Exp Pharmacol 2016; 242:231-268. [PMID: 27848029 DOI: 10.1007/164_2016_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Uveitis encompasses a spectrum of diseases whose common feature is intraocular inflammation, which may be infectious or noninfectious in etiology (Nussenblatt and Whitcup 2010). Infectious causes of uveitis are typically treated with appropriate antimicrobial therapy and will not be discussed in this chapter. Noninfectious uveitides are thought have an autoimmune component to their etiology and are thus treated with anti-inflammatory agents.
Collapse
Affiliation(s)
- Jared E Knickelbein
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bldg 10 Room 10N109, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Karen R Armbrust
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bldg 10 Room 10N109, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Meredith Kim
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bldg 10 Room 10N109, 10 Center Drive, Bethesda, MD, 20892, USA
| | - H Nida Sen
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bldg 10 Room 10N109, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Robert B Nussenblatt
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bldg 10 Room 10N109, 10 Center Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|