1
|
Ghalehno AD, Abdi H, Boustan A, Jamialahmadi K, Mosaffa F. Tamoxifen resistance induction results in the upregulation of ABCG2 expression and mitoxantrone resistance in MCF-7 breast cancer cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3723-3732. [PMID: 37310508 DOI: 10.1007/s00210-023-02567-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023]
Abstract
Cancer endocrine therapy can promote evolutionary dynamics and lead to changes in the gene expression profile of tumor cells. We aimed to assess the effect of tamoxifen (TAM)-resistance induction on ABCG2 pump mRNA, protein, and activity in ER + MCF-7 breast cancer cells. We also evaluated if the resistance to TAM leads to the cross-resistance toward mitoxantrone (MX), a well-known substrate of the ABCG2 pump. The ABCG2 mRNA and protein expression were compared in MCF-7 and its TAM-resistant derivative MCF-7/TAMR cells using RT-qPCR and western blot methods, respectively. Cross-resistance of MCF-7/TAMR cells toward MX was evaluated by the MTT method. Flow cytometry was applied to compare ABCG2 function between cell lines using MX accumulation assay. ABCG2 mRNA expression was also analyzed in tamoxifen-sensitive (TAM-S) and tamoxifen-resistant (TAM-R) breast tumor tissues. The levels of ABCG2 mRNA, protein, and activity were significantly higher in MCF-7/TAMR cells compared to TAM-sensitive MCF-7 cells. MX was also less toxic in MCF-7/TAMR compared to MCF-7 cells. ABCG2 was also upregulated in tissue samples obtained from TAM-R cancer patients compared to TAM-S patients. Prolonged exposure of ER + breast cancer cells to the active form of TAM and clonal evolution imposed by the selective pressure of the drug can lead to higher expression of the ABCG2 pump in the emerged TAM-resistant cells. Therefore, in choosing a sequential therapy for a patient who develops resistance to TAM, the possibility of the cross-resistance of the evolved tumor to chemotherapy drugs that are ABCG2 substrates should be considered. Prolonged exposure of MCF-7 breast cancer cells to tamoxifen can cause resistance to it and an increase in the expression of the ABCG2 mRNA and protein levels in the cells. Tamoxifen resistance can lead to cross-resistance to mitoxantrone.
Collapse
Affiliation(s)
- Asefeh Dahmardeh Ghalehno
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hakimeh Abdi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arad Boustan
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khadijeh Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Fatemeh Mosaffa
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Xu Z, Zhao D, Zheng X, Huang B, Pan X, Xia X. Low concentrations of 17β-estradiol exacerbate tamoxifen resistance in breast cancer treatment through membrane estrogen receptor-mediated signaling pathways. ENVIRONMENTAL TOXICOLOGY 2022; 37:514-526. [PMID: 34821461 DOI: 10.1002/tox.23417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/09/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
The present study aims to discover the influences of tamoxifen and 17β-estradiol (E2) on tamoxifen-resistant (TamR) patients in vitro. Herein, we established a stabilized TamR MCF-7 cell line at 1 μM via gradient concentrations of tamoxifen cultivation. The expression changes of four ER subtypes (ERα66, ERβ, ERα36 and GPR30) were found to bring about tamoxifen resistance. Moreover, the generation of tamoxifen resistance involved in apoptosis escape via a reactive oxygen species-regulated p53 signaling pathway. Interestingly, E2 at environmental concentrations (0.1-10 nM) could activate the expression of both ERα36 and GPR30, and then stimulate the phosphorylation of ERK1/2 and Akt, resulting in cell growth promotion. Cell migration and invasion promotion, apoptosis inhibition, and cell cycle G1-S progression are involved in such proliferative effects. Conversely, the application of specific antagonists of ERα36 and GPR30 could restore tamoxifen's sensitivity as well as partially offset E2-mediated proliferation. In short, overexpression of ERα36 and GPR30 not only ablate tamoxifen responsiveness but also could promote tumor progression of TamR breast cancer under estrogen conditions. These results provided novel insights into underlying mechanisms of tamoxifen resistance and the negative effects of steroid estrogens at environmental concentrations on TamR MCF-7 cells, thus generating new thoughts for future management of ER-positive breast cancer.
Collapse
Affiliation(s)
- Zhixiang Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Dimeng Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Xianyao Zheng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
3
|
Ambrosio MR, Magli E, Caliendo G, Sparaco R, Massarelli P, D'Esposito V, Migliaccio T, Mosca G, Fiorino F, Formisano P. Serotoninergic receptor ligands improve Tamoxifen effectiveness on breast cancer cells. BMC Cancer 2022; 22:171. [PMID: 35168555 PMCID: PMC8845285 DOI: 10.1186/s12885-021-09147-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 12/20/2021] [Indexed: 01/19/2023] Open
Abstract
Background Serotonin (or 5-Hydroxytryptamine, 5-HT) signals in mammary gland becomes dysregulated in cancer, also contributing to proliferation, metastasis, and angiogenesis. Thus, the discovery of novel compounds targeting serotonin signaling may contribute to tailor new therapeutic strategies usable in combination with endocrine therapies. We have previously synthesized serotoninergic receptor ligands (SER) with high affinity and selectivity towards 5-HT2A and 5-HT2C receptors, the main mediators of mitogenic effect of serotonin in breast cancer (BC). Here, we investigated the effect of 10 SER on viability of MCF7, SKBR3 and MDA-MB231 BC cells and focused on their potential ability to affect Tamoxifen responsiveness in ER+ cells. Methods Cell viability has been assessed by sulforhodamine B assay. Cell cycle has been analyzed by flow cytometry. Gene expression of 5-HT receptors and Connective Tissue Growth Factor (CTGF) has been checked by RT-PCR; mRNA levels of CTGF and ABC transporters have been further measured by qPCR. Protein levels of 5-HT2C receptors have been analyzed by Western blot. All data were statistically analyzed using GraphPad Prism 7. Results We found that treatment with SER for 72 h reduced viability of BC cells. SER were more effective on MCF7 ER+ cells (IC50 range 10.2 μM - 99.2 μM) compared to SKBR3 (IC50 range 43.3 μM - 260 μM) and MDA-MB231 BC cells (IC50 range 91.3 μM - 306 μM). This was paralleled by accumulation of cells in G0/G1 phase of cell cycle. Next, we provided evidence that two ligands, SER79 and SER68, improved the effectiveness of Tamoxifen treatment in MCF7 cells and modulated the expression of CTGF, without affecting viability of MCF10A non-cancer breast epithelial cells. In a cell model of Tamoxifen resistance, SER68 also restored drug effect independently of CTGF. Conclusions These results identified serotoninergic receptor ligands potentially usable in combination with Tamoxifen to improve its effectiveness on ER+ BC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-09147-y.
Collapse
Affiliation(s)
- Maria Rosaria Ambrosio
- Institute for Experimental Endocrinology and Oncology "G. Salvatore" - National Research Council (IEOS-CNR), Via Pansini 5, 80131, Naples, Italy.,Department of Translational Medicine, University of Naples "Federico II" (DiSMeT-UniNa), Via Pansini 5, 80131, Naples, Italy
| | - Elisa Magli
- Department of Pharmacy, University of Naples "Federico II" (UniNa), Via Montesano 49 -, 80131, Naples, Italy
| | - Giuseppe Caliendo
- Department of Pharmacy, University of Naples "Federico II" (UniNa), Via Montesano 49 -, 80131, Naples, Italy
| | - Rosa Sparaco
- Department of Pharmacy, University of Naples "Federico II" (UniNa), Via Montesano 49 -, 80131, Naples, Italy
| | - Paola Massarelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, Strada delle Scotte 6 -, 53100, Siena, Italy
| | - Vittoria D'Esposito
- Institute for Experimental Endocrinology and Oncology "G. Salvatore" - National Research Council (IEOS-CNR), Via Pansini 5, 80131, Naples, Italy.,Department of Translational Medicine, University of Naples "Federico II" (DiSMeT-UniNa), Via Pansini 5, 80131, Naples, Italy
| | - Teresa Migliaccio
- Department of Translational Medicine, University of Naples "Federico II" (DiSMeT-UniNa), Via Pansini 5, 80131, Naples, Italy
| | - Giusy Mosca
- Department of Translational Medicine, University of Naples "Federico II" (DiSMeT-UniNa), Via Pansini 5, 80131, Naples, Italy
| | - Ferdinando Fiorino
- Department of Pharmacy, University of Naples "Federico II" (UniNa), Via Montesano 49 -, 80131, Naples, Italy
| | - Pietro Formisano
- Institute for Experimental Endocrinology and Oncology "G. Salvatore" - National Research Council (IEOS-CNR), Via Pansini 5, 80131, Naples, Italy. .,Department of Translational Medicine, University of Naples "Federico II" (DiSMeT-UniNa), Via Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
4
|
Establishment and transcriptome characterization of tamoxifen-resistant canine mammary gland tumor cells. Res Vet Sci 2022; 145:135-146. [DOI: 10.1016/j.rvsc.2022.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 12/28/2021] [Accepted: 02/09/2022] [Indexed: 11/22/2022]
|
5
|
Wang Y, Wang Q, Li X, Luo G, Shen M, Shi J, Wang X, Tang L. Paeoniflorin Sensitizes Breast Cancer Cells to Tamoxifen by Downregulating microRNA-15b via the FOXO1/CCND1/β-Catenin Axis. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:245-257. [PMID: 33519190 PMCID: PMC7837563 DOI: 10.2147/dddt.s278002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/12/2020] [Indexed: 12/30/2022]
Abstract
Background Paeoniflorin (Pae) possesses anti-tumor activity in various malignancies. However, it is unclear whether Pae plays a sensitizer role in breast cancer (BC) and the molecular mechanisms involved in this process. Our oligonucleotide microarray revealed that microRNA (miR)-15b is the most significantly downregulated miRNA in MCF-7/4-hydroxytamoxifen (4-OHT) cells treated with Pae. This paper summarized the relevance of Pae in BC cell endocrine resistance to tamoxifen (Tam) and the molecular mechanisms involved miR-15b expression. Materials and Methods 4-OHT-resistant BC cell lines were developed and treated with different concentrations of Pae. Flow cytometry, lactose dehydrogenase activity, caspase-3 activity, colony formation, and EdU assays were carried out to assess the impact of Pae on BC cells. Differentially expressed miRNAs in BC cells treated with Pae were analyzed by microarray. Targeting mRNAs of screened miR-15b as well as the binding of forkhead box O1 (FOXO1) to the cyclin D1 (CCND1) promoter sequence were predicted through bioinformatics analysis. Finally, the expression of β-catenin signaling-related genes in cells was detected by Western blotting. Results Pae (100 μg/mL) inhibited the clonality and viability of BC cells, while enhancing apoptosis in vitro. Pae also repressed miR-15b expression. Overexpression of miR-15b restored the growth and resistance of BC cells to 4-OHT. Moreover, Pae promoted FOXO1 expression by downregulating miR-15b, thereby transcriptionally inhibiting CCND1 and subsequently blocking β-catenin signaling. Conclusion Pae inhibits 4-OHT resistance in BC cells by regulating the miR-15b/FOXO1/CCND1/β-catenin pathway.
Collapse
Affiliation(s)
- Yanhong Wang
- Department of Basic Medicine, Medical College of Yunnan University of Economics and Management, Kunming, Yunnan 650000, People's Republic of China.,Second Department of Internal Medicine, Chongming Branch of Yueyang Integrated Hospital of Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Chongming, Shanghai, 202150, People's Republic of China
| | - Qian Wang
- Department of Basic Medicine, Medical College of Yunnan University of Economics and Management, Kunming, Yunnan 650000, People's Republic of China
| | - Xibei Li
- Department of Stomatology, Jining Medical College, Jining, Shandong 272000, People's Republic of China
| | - Gongwen Luo
- Second Department of Internal Medicine, Chongming Branch of Yueyang Integrated Hospital of Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Chongming, Shanghai, 202150, People's Republic of China
| | - Mou Shen
- Second Department of Internal Medicine, Chongming Branch of Yueyang Integrated Hospital of Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Chongming, Shanghai, 202150, People's Republic of China
| | - Jia Shi
- Department of Information, The First Affiliated Hospital of Naval Military Medical University (Shanghai Changhai Hospital), Shanghai 200433, People's Republic of China
| | - Xueliang Wang
- Department of Nephrology and Rheumatology, Zhaotong Traditional Chinese Medicine Hospital of Yunnan Province, Zhaotong, Yunnan 657000 People's Republic of China
| | - Lu Tang
- Department of Traditional Chinese Medicine, Kunming Second People's Hospital, Kunming, Yunnan, 650000 People's Republic of China
| |
Collapse
|
6
|
Porsch M, Özdemir E, Wisniewski M, Graf S, Bull F, Hoffmann K, Ignatov A, Haybaeck J, Grosse I, Kalinski T, Nass N. Time resolved gene expression analysis during tamoxifen adaption of MCF-7 cells identifies long non-coding RNAs with prognostic impact. RNA Biol 2019; 16:661-674. [PMID: 30760083 DOI: 10.1080/15476286.2019.1581597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Acquired tamoxifen resistance is a persistent problem for the treatment of estrogen receptor positive, premenopausal breast cancer patients and predictive biomarkers are still elusive. We here analyzed gene expression changes in a cellular model to identify early and late changes upon tamoxifen exposure and thereby novel prognostic biomarkers. Estrogen receptor positive MCF-7 cells were incubated with 4OH-tamoxifen (10 nM) and gene expression analyzed by array hybridization during 12 weeks. Array results were confirmed by nCounter- and qRT-PCR technique. Pathway enrichment analysis revealed that early responses concerned mainly amine synthesis and NRF2-related signaling and evolved into a stable gene expression pattern within 4 weeks characterized by changes in glucuronidation-, estrogen metabolism-, nuclear receptor- and interferon signaling pathways. As a large number of long non coding RNAs was subject to regulation, we investigated 5 of these (linc01213, linc00632 linc0992, LOC101929547 and XR_133213) in more detail. From these, only linc01213 was upregulated but all were less abundant in estrogen-receptor negative cell lines (MDA-MB 231, SKBR-3 and UACC3199). In a web-based survival analysis linc01213 and linc00632 turned out to have prognostic impact. Linc01213 was investigated further by plasmid-mediated over-expression as well as siRNA down-regulation in MCF-7 cells. Nevertheless, this had no effect on proliferation or expression of tamoxifen regulated genes, but migration was increased. In conclusion, the cellular model identified a set of lincRNAs with prognostic relevance for breast cancer. One of these, linc01213 although regulated by 4OH-tamoxifen, is not a central regulator of tamoxifen adaption, but interferes with the regulation of migration.
Collapse
Affiliation(s)
- Martin Porsch
- a Insitute of Computer Science , Martin Luther University Halle-Wittenberg , Halle , Germany.,b Institute of Human Genetics , Martin Luther University Halle-Wittenberg , Halle , Germany.,c German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig , Leipzig , Germany
| | - Esra Özdemir
- d Institute of Pathology, Otto von Guericke University Magdeburg , Magdeburg , Germany
| | - Martin Wisniewski
- d Institute of Pathology, Otto von Guericke University Magdeburg , Magdeburg , Germany
| | - Sebastian Graf
- a Insitute of Computer Science , Martin Luther University Halle-Wittenberg , Halle , Germany
| | - Fabian Bull
- a Insitute of Computer Science , Martin Luther University Halle-Wittenberg , Halle , Germany.,b Institute of Human Genetics , Martin Luther University Halle-Wittenberg , Halle , Germany.,c German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig , Leipzig , Germany
| | - Katrin Hoffmann
- b Institute of Human Genetics , Martin Luther University Halle-Wittenberg , Halle , Germany
| | - Atanas Ignatov
- e Department of Obstetrics and Gynecology , Otto von Guericke University Magdeburg , Magdeburg , Germany
| | - Johannes Haybaeck
- d Institute of Pathology, Otto von Guericke University Magdeburg , Magdeburg , Germany.,f Diagnostic and Research Institute of Pathology , Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz , Graz , Austria.,g Department of Pathology , Medical University of Innsbruck , Innsbruck , Austria
| | - Ivo Grosse
- a Insitute of Computer Science , Martin Luther University Halle-Wittenberg , Halle , Germany.,c German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig , Leipzig , Germany
| | - Thomas Kalinski
- d Institute of Pathology, Otto von Guericke University Magdeburg , Magdeburg , Germany
| | - Norbert Nass
- d Institute of Pathology, Otto von Guericke University Magdeburg , Magdeburg , Germany
| |
Collapse
|
7
|
Intrinsic Xenobiotic Resistance of the Intestinal Stem Cell Niche. Dev Cell 2018; 46:681-695.e5. [DOI: 10.1016/j.devcel.2018.07.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/12/2018] [Accepted: 07/24/2018] [Indexed: 02/07/2023]
|
8
|
Beyond Deubiquitylation: USP30-Mediated Regulation of Mitochondrial Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1038:133-148. [DOI: 10.1007/978-981-10-6674-0_10] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
How Far Can Mitochondrial DNA Drive the Disease? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1038:1-8. [DOI: 10.1007/978-981-10-6674-0_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Mitochondrial DNA Methylation and Related Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1038:117-132. [DOI: 10.1007/978-981-10-6674-0_9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|