1
|
Hammad M, Dugué J, Maubert E, Baugé C, Boumédiene K. Decellularized apple hypanthium as a plant-based biomaterial for cartilage regeneration in vitro: a comparative study of progenitor cell types and environmental conditions. J Biol Eng 2025; 19:38. [PMID: 40264116 PMCID: PMC12012941 DOI: 10.1186/s13036-025-00502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 04/04/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Decellularized plant tissues have been shown to enhance the integration and proliferation of human cells, demonstrating biocompatibility. These tissues are now being considered as valuable biomaterials for tissue engineering due to their diverse architectures and favorable cytocompatibility. In this study, we assessed decellularized apple hypanthium as a potential biomaterial for generating cartilage-like structures, utilizing four different progenitor cell types and varying environmental conditions in vitro. RESULTS Cell viability assays indicated integration and cell proliferation. Histological staining and gene expression analyses confirmed the synthesis and deposition of a cartilaginous extracellular matrix. Notably, hypoxia had varying effects on chondrogenesis based on the cell type. Among the progenitor cells evaluated, those derived from auricular perichondrium were particularly promising, as they differentiated into chondrocytes without requiring a low-oxygen environment. Additionally, our findings demonstrated that apple-derived biomaterials outperformed microencapsulation in alginate beads in promoting chondrogenesis. CONCLUSION These results highlight the potential of plant-based biomaterials for the development of implantable devices for cartilage regeneration and suggest broader applications in tissue engineering and future clinical endeavors.
Collapse
Affiliation(s)
- Mira Hammad
- Laboratoire BioConnect UR 7451, Université de Caen Normandie, Esplanade de la paix CS14032, Caen, 14032 Caen Cedex 5, France
- Fédération Hospitalo Universitaire SURFACE, Amiens, Caen, Rouen, France
| | - Justin Dugué
- Laboratoire BioConnect UR 7451, Université de Caen Normandie, Esplanade de la paix CS14032, Caen, 14032 Caen Cedex 5, France
- Fédération Hospitalo Universitaire SURFACE, Amiens, Caen, Rouen, France
- Service ORL et chirurgie Cervico-faciale, CHU de Caen, Caen, France
| | - Eric Maubert
- Phind Inserm UMR-S 1237, Université de Caen Normandie, Caen, France
| | - Catherine Baugé
- Laboratoire BioConnect UR 7451, Université de Caen Normandie, Esplanade de la paix CS14032, Caen, 14032 Caen Cedex 5, France
- Fédération Hospitalo Universitaire SURFACE, Amiens, Caen, Rouen, France
| | - Karim Boumédiene
- Laboratoire BioConnect UR 7451, Université de Caen Normandie, Esplanade de la paix CS14032, Caen, 14032 Caen Cedex 5, France.
- Fédération Hospitalo Universitaire SURFACE, Amiens, Caen, Rouen, France.
| |
Collapse
|
2
|
Bolinas DKM, Barcena AJR, Mishra A, Bernardino MR, Lin V, Heralde FM, Chintalapani G, Fowlkes NW, Huang SY, Melancon MP. Mesenchymal Stem Cells Loaded in Injectable Alginate Hydrogels Promote Liver Growth and Attenuate Liver Fibrosis in Cirrhotic Rats. Gels 2025; 11:250. [PMID: 40277686 PMCID: PMC12027234 DOI: 10.3390/gels11040250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Cirrhosis, a marker of severe liver diseases, limits future liver remnant (FLR) growth, preventing many cancer patients from undergoing surgery. While portal vein blockade (PVB) techniques are used to stimulate liver regeneration, 20-30% of patients still fail to achieve the required growth. Although mesenchymal stem cell (MSC) therapy improves PVB, its efficacy is limited by poor cell retention. To address this, we utilized alginate hydrogels to deliver MSCs and improve their retention. MSCs were loaded in the hydrogel and injected intraportally in cirrhotic rats. Liver volume, weights, enzyme levels, and histology were monitored. Results showed that the hydrogel maintained 89.0 ± 3.0% cell viability and gradually released MSCs for over two weeks. Furthermore, the rats injected with the MSC-loaded hydrogel demonstrated higher liver volumes (FLR ratio of 0.57 ± 0.32) and weights (FLR ratio of 0.84 ± 0.05). The treated rats exhibited more improved liver enzymes (AST: 72.75 ± 14.17 U/L, ALP: 135.67 ± 41.20 U/L, ALT: 46.00 ± 2.94 U/L) and decreased fibrotic areas in the liver (4.52 ± 0.22%) compared to the control group. Histology revealed increased retention when MSCs were delivered with the hydrogel (37.30 ± 16.10 MSCs/mm2) compared to cells alone (21.70 ± 22.10 MSCs/mm2). Overall, the MSC-loaded hydrogels enhanced the growth and reduced the fibrosis of the liver by promoting cell retention and efficacy in cirrhotic rats. This approach holds significant potential for improving outcomes among cancer patients, offering a promising therapeutic strategy for liver regeneration and treatment of liver diseases.
Collapse
Affiliation(s)
- Dominic Karl M. Bolinas
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.K.M.B.); (A.J.R.B.); (A.M.); (M.R.B.); (V.L.); (G.C.); (S.Y.H.)
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines;
| | - Allan John R. Barcena
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.K.M.B.); (A.J.R.B.); (A.M.); (M.R.B.); (V.L.); (G.C.); (S.Y.H.)
| | - Archana Mishra
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.K.M.B.); (A.J.R.B.); (A.M.); (M.R.B.); (V.L.); (G.C.); (S.Y.H.)
| | - Marvin R. Bernardino
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.K.M.B.); (A.J.R.B.); (A.M.); (M.R.B.); (V.L.); (G.C.); (S.Y.H.)
| | - Vincent Lin
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.K.M.B.); (A.J.R.B.); (A.M.); (M.R.B.); (V.L.); (G.C.); (S.Y.H.)
| | - Francisco M. Heralde
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines;
| | - Gouthami Chintalapani
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.K.M.B.); (A.J.R.B.); (A.M.); (M.R.B.); (V.L.); (G.C.); (S.Y.H.)
| | - Natalie W. Fowlkes
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Steven Y. Huang
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.K.M.B.); (A.J.R.B.); (A.M.); (M.R.B.); (V.L.); (G.C.); (S.Y.H.)
| | - Marites P. Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.K.M.B.); (A.J.R.B.); (A.M.); (M.R.B.); (V.L.); (G.C.); (S.Y.H.)
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
3
|
Abbas SEM, Maged G, Wang H, Lotfy A. Mesenchymal Stem/Stromal Cells Microencapsulation for Cell Therapy. Cells 2025; 14:149. [PMID: 39936941 PMCID: PMC11817150 DOI: 10.3390/cells14030149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 02/13/2025] Open
Abstract
Cell microencapsulation is one of the most studied strategies to overcome the challenges associated with the implementation of mesenchymal stem/stromal cells (MSCs) in vivo. This approach isolates/shields donor MSCs from the host immune system using a semipermeable membrane that allows for the diffusion of gases, nutrients, and therapeutics, but not host immune cells. As a result, microencapsulated MSCs survive and engraft better after infusion, and they can be delivered specifically to the targeted site. Additionally, microencapsulation enables the co-culture of MSCs with different types of cells in a three-dimensional (3D) environment, allowing for better cellular interaction. Alginate, collagen, and cellulose are the most popular materials, and air jet extrusion, microfluidics, and emulsion are the most used techniques for MSC cell encapsulation in the literature. These materials and techniques differ in the size range of the resultant microcapsules and their compatibility with the applied materials. This review discusses various materials and techniques used for the microencapsulation of MSCs. We also shed light on the recent findings in this field, the advantages and drawbacks of using encapsulated MSCs, and the in vivo translation of the microencapsulated MSCs in cell therapy.
Collapse
Affiliation(s)
| | - Ghada Maged
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21526, Egypt
| | - Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA
| | - Ahmed Lotfy
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
4
|
Lin J, Huang J, Jiao Z, Nian M, Li C, Dai Y, Jia S, Zhang X. Mesenchymal stem cells for osteoarthritis: Recent advances in related cell therapy. Bioeng Transl Med 2025; 10:e10701. [PMID: 39801757 PMCID: PMC11711223 DOI: 10.1002/btm2.10701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/20/2024] [Accepted: 07/04/2024] [Indexed: 01/06/2025] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease that affects the entire joint and has been a huge burden on the health care system worldwide. Although traditional therapy and targeted cartilage cell therapy have made significant progress in the treatment of OA and cartilage regeneration, there are still many problems. Mesenchymal stem cells from various tissues are the most studied cell type and have been used in preclinical and clinical studies of OA, because they are more widely available, have a greater capacity for in vitro expansion, and have anti-inflammatory and immunomodulatory properties compared to autologous chondrocytes. This article will systematically review the latest developments in these areas. It may provide new insights for improving OA and cartilage regeneration.
Collapse
Affiliation(s)
- Jianjing Lin
- Department of Sports Medicine and RehabilitationPeking University Shenzhen HospitalShenzhenChina
| | - Jingtao Huang
- Department of Sports Medicine and RehabilitationPeking University Shenzhen HospitalShenzhenChina
- Shantou University Medical CollegeShantouChina
| | - Zilu Jiao
- Department of Sports Medicine and RehabilitationPeking University Shenzhen HospitalShenzhenChina
| | - Mengyuan Nian
- Cardre Health Care DepartmentPeking University Shenzhen HospitalShenzhenChina
| | - Canfeng Li
- Department of Sports Medicine and RehabilitationPeking University Shenzhen HospitalShenzhenChina
| | - Yali Dai
- Cardre Health Care DepartmentPeking University Shenzhen HospitalShenzhenChina
| | - Shicheng Jia
- Department of Sports Medicine and RehabilitationPeking University Shenzhen HospitalShenzhenChina
- Shantou University Medical CollegeShantouChina
| | - Xintao Zhang
- Department of Sports Medicine and RehabilitationPeking University Shenzhen HospitalShenzhenChina
| |
Collapse
|
5
|
Sousa AR, Gonçalves DC, Neves BG, Santos‐Coquillat A, Oliveira MB, Mano JF. Encapsulated Mesenchymal Stromal Cells as Cyclic Providers of Immunomodulatory Secretomes: A Living on-Demand Delivery System. Adv Healthc Mater 2024; 13:e2304012. [PMID: 38545848 PMCID: PMC11468815 DOI: 10.1002/adhm.202304012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/28/2024] [Indexed: 04/09/2024]
Abstract
The stimulation of mesenchymal stromal cells (MSCs) with inflammatory molecules is often used to boost their therapeutic effect. Prolonged exposure to inflammatory molecules has been explored to improve their action because MSCs therapies seem to be improved transiently with such stimuli. However, the possibility of cyclically stimulating MSCs to recover their optimized therapeutic potential is still to be elucidated, although the efficacy of cell-based therapies may be dependent on the ability to readapt to the relapse pathological conditions. Here, the response of MSCs, encapsulated in alginate hydrogels and cultured for 22 d, is explored using three different regimes: single, continuous, and intermittent stimulation with IFNγ. Exposure to IFNγ leads to a decrease in the secretion of IL-10, which is cyclically countered by IFNγ weaning. Conditioned media collected at different stages of pulsatile stimulation show an immunomodulatory potential toward macrophages, which directly correlates with IL-10 concentration in media. To understand whether the correlation between cyclic stimulation of MSCs and other biological actions can be observed, the effect on endothelial cells is studied, showcasing an overall modest influence on tube formation. Overall, the results describe the response of encapsulated MSCs to unusual pulsatile simulation regimens, exploring encapsulated MSCs as a living on-demand release system of tailored secretomes with recoverable immunomodulatory action.
Collapse
Affiliation(s)
- Ana Rita Sousa
- Department of ChemistryCICECO – Aveiro Institute of MaterialsUniversity of AveiroAveiro3810‐193Portugal
| | - Diana C. Gonçalves
- Department of ChemistryCICECO – Aveiro Institute of MaterialsUniversity of AveiroAveiro3810‐193Portugal
| | - Beatriz Guapo Neves
- Department of ChemistryCICECO – Aveiro Institute of MaterialsUniversity of AveiroAveiro3810‐193Portugal
| | - Ana Santos‐Coquillat
- Department of ChemistryCICECO – Aveiro Institute of MaterialsUniversity of AveiroAveiro3810‐193Portugal
| | - Mariana B. Oliveira
- Department of ChemistryCICECO – Aveiro Institute of MaterialsUniversity of AveiroAveiro3810‐193Portugal
| | - João F. Mano
- Department of ChemistryCICECO – Aveiro Institute of MaterialsUniversity of AveiroAveiro3810‐193Portugal
| |
Collapse
|
6
|
Mamachan M, Sharun K, Banu SA, Muthu S, Pawde AM, Abualigah L, Maiti SK. Mesenchymal stem cells for cartilage regeneration: Insights into molecular mechanism and therapeutic strategies. Tissue Cell 2024; 88:102380. [PMID: 38615643 DOI: 10.1016/j.tice.2024.102380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/15/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
The use of mesenchymal stem cells (MSCs) in cartilage regeneration has gained significant attention in regenerative medicine. This paper reviews the molecular mechanisms underlying MSC-based cartilage regeneration and explores various therapeutic strategies to enhance the efficacy of MSCs in this context. MSCs exhibit multipotent capabilities and can differentiate into various cell lineages under specific microenvironmental cues. Chondrogenic differentiation, a complex process involving signaling pathways, transcription factors, and growth factors, plays a pivotal role in the successful regeneration of cartilage tissue. The chondrogenic differentiation of MSCs is tightly regulated by growth factors and signaling pathways such as TGF-β, BMP, Wnt/β-catenin, RhoA/ROCK, NOTCH, and IHH (Indian hedgehog). Understanding the intricate balance between these pathways is crucial for directing lineage-specific differentiation and preventing undesirable chondrocyte hypertrophy. Additionally, paracrine effects of MSCs, mediated by the secretion of bioactive factors, contribute significantly to immunomodulation, recruitment of endogenous stem cells, and maintenance of chondrocyte phenotype. Pre-treatment strategies utilized to potentiate MSCs, such as hypoxic conditions, low-intensity ultrasound, kartogenin treatment, and gene editing, are also discussed for their potential to enhance MSC survival, differentiation, and paracrine effects. In conclusion, this paper provides a comprehensive overview of the molecular mechanisms involved in MSC-based cartilage regeneration and outlines promising therapeutic strategies. The insights presented contribute to the ongoing efforts in optimizing MSC-based therapies for effective cartilage repair.
Collapse
Affiliation(s)
- Merlin Mamachan
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India; Graduate Institute of Medicine, Yuan Ze University, Taoyuan, Taiwan.
| | - S Amitha Banu
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Sathish Muthu
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India; Orthopaedic Research Group, Coimbatore, Tamil Nadu, India; Department of Orthopaedics, Government Medical College, Kaur, Tamil Nadu, India
| | - Abhijit M Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Laith Abualigah
- Artificial Intelligence and Sensing Technologies (AIST) Research Center, University of Tabuk, Tabuk 71491, Saudi Arabia; Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman 19328, Jordan; Computer Science Department, Al al-Bayt University, Mafraq 25113, Jordan; MEU Research Unit, Middle East University, Amman 11831, Jordan; Department of Electrical and Computer Engineering, Lebanese American University, Byblos 13-5053, Lebanon; Applied Science Research Center, Applied Science Private University, Amman 11931, Jordan; School of Engineering and Technology, Sunway University Malaysia, Petaling Jaya 27500, Malaysia
| | - Swapan Kumar Maiti
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
7
|
Bai L, Han Q, Han Z, Zhang X, Zhao J, Ruan H, Wang J, Lin F, Cui W, Yang X, Hao Y. Stem Cells Expansion Vector via Bioadhesive Porous Microspheres for Accelerating Articular Cartilage Regeneration. Adv Healthc Mater 2024; 13:e2302327. [PMID: 37947298 DOI: 10.1002/adhm.202302327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Stem cell tissue engineering is a potential treatment for osteoarthritis. However, the number of stem cells that can be delivered, loss of stem cells during injection, and migration ability of stem cells limit applications of traditional stem cell tissue engineering. Herein, kartogenin (KGN)-loaded poly(lactic-co-glycolic acid) (PLGA) porous microspheres is first engineered via emulsification, and then anchored with chitosan through the amidation reaction to develop a new porous microsphere (PLGA-CS@KGN) as a stem cell expansion vector. Following 3D co-culture of the PLGA-CS@KGN carrier with mesenchymal stem cells (MSCs), the delivery system is injected into the capsule cavity in situ. In vivo and in vitro experiments show that PLGA-CS microspheres have a high cell-carrying capacity up to 1 × 104 mm-3 and provide effective protection of MSCs to promote their controlled release in the osteoarthritis microenvironment. Simultaneously, KGN loaded inside the microspheres effectively cooperated with PLGA-CS to induce MSCs to differentiate into chondrocytes. Overall, these findings indicate that PLGA-CS@KGN microspheres held high cell-loading ability, adapt to the migration and expansion of cells, and promote MSCs to express markers associated with cartilage repair. Thus, PLGA-CS@KGN can be used as a potential stem cell carrier for enhancing stem cell therapy in osteoarthritis treatment.
Collapse
Affiliation(s)
- Lang Bai
- Department of orthopedics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, 215008, China
- Gusu School, Nanjing Medical University, 458 Shizi Road, Suzhou, 215006, P. R. China
| | - Qibin Han
- Department of orthopedics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, 215008, China
- Gusu School, Nanjing Medical University, 458 Shizi Road, Suzhou, 215006, P. R. China
| | - Zeyu Han
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Xiaoyu Zhang
- Department of orthopedics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, 215008, China
- Gusu School, Nanjing Medical University, 458 Shizi Road, Suzhou, 215006, P. R. China
| | - Jingwen Zhao
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Huitong Ruan
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Junliang Wang
- Department of Orthopedic Surgery, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, 572022, China
| | - Feng Lin
- Department of Orthopedic Surgery, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, 572022, China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Xing Yang
- Department of orthopedics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, 215008, China
- Gusu School, Nanjing Medical University, 458 Shizi Road, Suzhou, 215006, P. R. China
| | - Yuefeng Hao
- Department of orthopedics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, 215008, China
- Gusu School, Nanjing Medical University, 458 Shizi Road, Suzhou, 215006, P. R. China
| |
Collapse
|
8
|
Johnbosco C, Karbaat L, Korthagen NM, Warmink K, Koerselman M, Coeleveld K, Becker M, van Loo B, Zoetebier B, Both S, Weinans H, Karperien M, Leijten J. Microencapsulated stem cells reduce cartilage damage in a material dependent manner following minimally invasive intra-articular injection in an OA rat model. Mater Today Bio 2023; 22:100791. [PMID: 37731960 PMCID: PMC10507156 DOI: 10.1016/j.mtbio.2023.100791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/05/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative disease of the joints for which no curative treatment exists. Intra-articular injection of stem cells is explored as a regenerative approach, but rapid clearance of cells from the injection site limits the therapeutic outcome. Microencapsulation of mesenchymal stem cells (MSCs) can extend the retention time of MSCs, but the outcomes of the few studies currently performed are conflicting. We hypothesize that the composition of the micromaterial's shell plays a deciding factor in the treatment outcome of intra-articular MSC injection. To this end, we microencapsulate MSCs using droplet microfluidic generators in flow-focus mode using various polymers and polymer concentrations. We demonstrate that polymer composition and concentration potently alter the metabolic activity as well as the secretome of MSCs. Moreover, while microencapsulation consistently prolongs the retention time of MSC injected in rat joints, distinct biodistribution within the joint is demonstrated for the various microgel formulations. Furthermore, intra-articular injections of pristine and microencapsulated MSC in OA rat joints show a strong material-dependent effect on the reduction of cartilage degradation and matrix loss. Collectively, this study highlights that micromaterial composition and concentration are key deciding factors for the therapeutic outcome of intra-articular injections of microencapsulated stem cells to treat degenerative joint diseases.
Collapse
Affiliation(s)
- Castro Johnbosco
- Department of Developmental BioEngineering, TechMed Centre, University of Twente, the Netherlands
| | - Lisanne Karbaat
- Department of Developmental BioEngineering, TechMed Centre, University of Twente, the Netherlands
| | - Nicoline M. Korthagen
- Faculty of Veterinary Sciences Department of equine sciences, University of Utrecht, the Netherlands
- Department of Orthopaedics, University Medical Centre Utrecht, the Netherlands
| | - Kelly Warmink
- Department of Orthopaedics, University Medical Centre Utrecht, the Netherlands
| | - Michelle Koerselman
- Department of Developmental BioEngineering, TechMed Centre, University of Twente, the Netherlands
| | - Katja Coeleveld
- Department of Rheumatology & Clinical Immunology, University Medical Centre Utrecht, the Netherlands
| | - Malin Becker
- Department of Developmental BioEngineering, TechMed Centre, University of Twente, the Netherlands
| | - Bas van Loo
- Department of Developmental BioEngineering, TechMed Centre, University of Twente, the Netherlands
| | - Bram Zoetebier
- Department of Developmental BioEngineering, TechMed Centre, University of Twente, the Netherlands
| | - Sanne Both
- Department of Developmental BioEngineering, TechMed Centre, University of Twente, the Netherlands
| | - Harrie Weinans
- Department of Orthopaedics, University Medical Centre Utrecht, the Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineering, TechMed Centre, University of Twente, the Netherlands
| | - Jeroen Leijten
- Department of Developmental BioEngineering, TechMed Centre, University of Twente, the Netherlands
| |
Collapse
|
9
|
Hammad M, Veyssiere A, Leclercq S, Patron V, Baugé C, Boumédiene K. Hypoxia Differentially Affects Chondrogenic Differentiation of Progenitor Cells from Different Origins. Int J Stem Cells 2023; 16:304-314. [PMID: 37105555 PMCID: PMC10465331 DOI: 10.15283/ijsc21242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 04/29/2023] Open
Abstract
Background and Objectives Ear cartilage malformations are commonly encountered problems in reconstructive surgery, since cartilage has low self-regenerating capacity. Malformations that impose psychological and social burden on one's life are currently treated using ear prosthesis, synthetic implants or autologous flaps from rib cartilage. These approaches are challenging because not only they request high surgical expertise, but also they lack flexibility and induce severe donor-site morbidity. Through the last decade, tissue engineering gained attention where it aims at regenerating human tissues or organs in order to restore normal functions. This technique consists of three main elements, cells, growth factors, and above all, a scaffold that supports cells and guides their behavior. Several studies have investigated different scaffolds prepared from both synthetic or natural materials and their effects on cellular differentiation and behavior. Methods and Results In this study, we investigated a natural scaffold (alginate) as tridimensional hydrogel seeded with progenitors from different origins such as bone marrow, perichondrium and dental pulp. In contact with the scaffold, these cells remained viable and were able to differentiate into chondrocytes when cultured in vitro. Quantitative and qualitative results show the presence of different chondrogenic markers as well as elastic ones for the purpose of ear cartilage, upon different culture conditions. Conclusions We confirmed that auricular perichondrial cells outperform other cells to produce chondrogenic tissue in normal oxygen levels and we report for the first time the effect of hypoxia on these cells. Our results provide updates for cartilage engineering for future clinical applications.
Collapse
Affiliation(s)
- Mira Hammad
- Normandy University, UNICAEN, EA 7451 BioConnecT, Caen, France
- Fédération Hospitalo Universitaire SURFACE, Amiens, Caen, France
| | - Alexis Veyssiere
- Normandy University, UNICAEN, EA 7451 BioConnecT, Caen, France
- Fédération Hospitalo Universitaire SURFACE, Amiens, Caen, France
- Service de chirurgie Maxillo-faciale, CHU de Caen, Caen, France
| | - Sylvain Leclercq
- Normandy University, UNICAEN, EA 7451 BioConnecT, Caen, France
- Clinique Saint Martin, Service de Chirurgie Orthopédique, Caen, France
| | - Vincent Patron
- Normandy University, UNICAEN, EA 7451 BioConnecT, Caen, France
- Service ORL et chirurgie cervico-faciale, CHU de Caen, Caen, France
| | - Catherine Baugé
- Normandy University, UNICAEN, EA 7451 BioConnecT, Caen, France
- Fédération Hospitalo Universitaire SURFACE, Amiens, Caen, France
| | - Karim Boumédiene
- Normandy University, UNICAEN, EA 7451 BioConnecT, Caen, France
- Fédération Hospitalo Universitaire SURFACE, Amiens, Caen, France
| |
Collapse
|
10
|
Fu Z, Zhang Y, Geng X, Chi K, Liu C, Song C, Cai G, Chen X, Hong Q. Optimization strategies of mesenchymal stem cell-based therapy for acute kidney injury. Stem Cell Res Ther 2023; 14:116. [PMID: 37122024 PMCID: PMC10150535 DOI: 10.1186/s13287-023-03351-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/20/2023] [Indexed: 05/02/2023] Open
Abstract
Considering the high prevalence and the lack of targeted pharmacological management of acute kidney injury (AKI), the search for new therapeutic approaches for it is in urgent demand. Mesenchymal stem cells (MSCs) have been increasingly recognized as a promising candidate for the treatment of AKI. However, clinical translation of MSCs-based therapies is hindered due to the poor retention and survival rates as well as the impaired paracrine ability of MSCs post-delivery. To address these issues, a series of strategies including local administration, three-dimensional culture, and preconditioning have been applied. Owing to the emergence and development of these novel biotechnologies, the effectiveness of MSCs in experimental AKI models is greatly improved. Here, we summarize the different approaches suggested to optimize the efficacy of MSCs therapy, aiming at promoting the therapeutic effects of MSCs on AKI patients.
Collapse
Affiliation(s)
- Zhangning Fu
- Medical School of Chinese PLA, Beijing, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Yifan Zhang
- Medical School of Chinese PLA, Beijing, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiaodong Geng
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
- Beidaihe Rehabilitation and Recuperation Center, Chinese People's Liberation Army Joint Logistics Support Force, Qinhuangdao, China
| | - Kun Chi
- Medical School of Chinese PLA, Beijing, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Chao Liu
- Department of Critical Care Medicine, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chengcheng Song
- Department of Nephrology, Beijing Electric Power Hospital, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China.
| |
Collapse
|
11
|
Nativel F, Smith A, Boulestreau J, Lépine C, Baron J, Marquis M, Vignes C, Le Guennec Y, Veziers J, Lesoeur J, Loll F, Halgand B, Renard D, Abadie J, Legoff B, Blanchard F, Gauthier O, Vinatier C, Rieux AD, Guicheux J, Le Visage C. Micromolding-based encapsulation of mesenchymal stromal cells in alginate for intraarticular injection in osteoarthritis. Mater Today Bio 2023; 19:100581. [PMID: 36896417 PMCID: PMC9988569 DOI: 10.1016/j.mtbio.2023.100581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/27/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Osteoarthritis (OA) is an inflammatory joint disease that affects cartilage, subchondral bone, and joint tissues. Undifferentiated Mesenchymal Stromal Cells are a promising therapeutic option for OA due to their ability to release anti-inflammatory, immuno-modulatory, and pro-regenerative factors. They can be embedded in hydrogels to prevent their tissue engraftment and subsequent differentiation. In this study, human adipose stromal cells are successfully encapsulated in alginate microgels via a micromolding method. Microencapsulated cells retain their in vitro metabolic activity and bioactivity and can sense and respond to inflammatory stimuli, including synovial fluids from OA patients. After intra-articular injection in a rabbit model of post-traumatic OA, a single dose of microencapsulated human cells exhibit properties matching those of non-encapsulated cells. At 6 and 12 weeks post-injection, we evidenced a tendency toward a decreased OA severity, an increased expression of aggrecan, and a reduced expression of aggrecanase-generated catabolic neoepitope. Thus, these findings establish the feasibility, safety, and efficacy of injecting cells encapsulated in microgels, opening the door to a long-term follow-up in canine OA patients.
Collapse
Affiliation(s)
- Fabien Nativel
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Audrey Smith
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France.,UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200, Bruxelles, Belgium
| | - Jeremy Boulestreau
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Charles Lépine
- Nantes Université, CHU Nantes, Department of Pathology, F-44000 Nantes, France
| | - Julie Baron
- Nantes Université, CHU Nantes, Department of Pathology, F-44000 Nantes, France
| | - Melanie Marquis
- UR1268 BIA (Biopolymères Interactions Assemblages), INRAE, F-44300 Nantes, France
| | - Caroline Vignes
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Yoan Le Guennec
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Joelle Veziers
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Julie Lesoeur
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - François Loll
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Boris Halgand
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Denis Renard
- UR1268 BIA (Biopolymères Interactions Assemblages), INRAE, F-44300 Nantes, France
| | - Jerome Abadie
- LabONIRIS, ONIRIS (Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering), F-44300 Nantes, France
| | - Benoit Legoff
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Frederic Blanchard
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Olivier Gauthier
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France.,ONIRIS Nantes-Atlantic College of Veterinary Medicine, Centre de Recherche et D'investigation Préclinique (CRIP), F-44300 Nantes, France
| | - Claire Vinatier
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Anne des Rieux
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200, Bruxelles, Belgium
| | - Jerome Guicheux
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Catherine Le Visage
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| |
Collapse
|
12
|
Boffa A, Perucca Orfei C, Sourugeon Y, Laver L, Magalon J, Sánchez M, Tischer T, de Girolamo L, Filardo G. Cell-based therapies have disease-modifying effects on osteoarthritis in animal models. A systematic review by the ESSKA Orthobiologic Initiative. Part 2: bone marrow-derived cell-based injectable therapies. Knee Surg Sports Traumatol Arthrosc 2023:10.1007/s00167-023-07320-3. [PMID: 36823238 DOI: 10.1007/s00167-023-07320-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/10/2023] [Indexed: 02/25/2023]
Abstract
PURPOSE Aim of this systematic review was to determine if bone marrow-derived cell-based injectable therapies induce disease-modifying effects in joints affected by osteoarthritis (OA) in animal models. METHODS A systematic review was performed on three electronic databases (PubMed, Web of Science, Embase) according to PRISMA guidelines. A synthesis of the results was performed investigating disease-modifying effects in preclinical animal studies comparing injectable bone marrow-derived products with OA controls or other products, different formulations or injection intervals, and the combination with other products. The risk of bias was assessed according to the SYRCLE's tool. RESULTS Fifty-three studies were included (1819 animals) with an increasing publication trend over time. Expanded cells were used in 48 studies, point-of-care products in 3 studies, and both approaches were investigated in 2 studies. Among the 47 studies presenting results on the disease-modifying effects, 40 studies (85%) reported better results with bone marrow-derived products compared to OA controls, with positive findings evident in 14 out of 20 studies (70%) in macroscopic assessment, in 30 out of 41 studies (73%) in histological assessment, and in 10 out of 13 studies (77%) in immunohistochemical evaluations. Clinical evaluations showed positive results in 7 studies out of 9 (78%), positive imaging results in 11 studies out of 17 (65%), and positive biomarker results in 5 studies out of 10 (50%). While 36 out of 46 studies (78%) reported positive results at the cartilage level, only 3 out of 10 studies (30%) could detect positive changes at the synovial level. The risk of bias was low in 42% of items, unclear in 50%, and high in 8%. CONCLUSION This systematic review of preclinical studies demonstrated that intra-articular injections of bone marrow-derived products can induce disease-modifying effects in the treatment of OA, slowing down the progression of cartilage damage with benefits at macroscopic, histological, and immunohistochemical levels. Positive results have been also observed in terms of clinical and imaging findings, as well as in the modulation of inflammatory and cartilage biomarkers, while poor effects have been described on the synovial membrane. These findings are important to understand the potential of bone marrow-derived products and to guide further research to optimise their use in the clinical practice. LEVEL OF EVIDENCE II.
Collapse
Affiliation(s)
- Angelo Boffa
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Carlotta Perucca Orfei
- Laboratorio di Biotecnologie Applicate all'Ortopedia, IRCCS Ospedale Galeazzi Sant'Ambrogio, Via Cristina Belgioioso 173, 20157, Milan, Italy.
| | | | - Lior Laver
- Department of Orthopaedics, Hillel Yaffe Medical Center (HYMC), Hadera, Israel
- Arthrosport Clinic, Tel‑Aviv, Israel
- Rappaport Faculty of Medicine, Technion University Hospital (Israel Institute of Technology), Haifa, Israel
| | - Jérémy Magalon
- Cell Therapy Laboratory, Hôpital De La Conception, AP-HM, Marseille, France
- INSERM, NRA, C2VN, Aix Marseille Univ, Marseille, France
- SAS Remedex, Marseille, France
| | - Mikel Sánchez
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, Vitoria‑Gasteiz, Spain
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, Vitoria‑Gasteiz, Spain
| | - Thomas Tischer
- Department of Orthopaedic Surgery, University of Rostock, Rostock, Germany
- Department of Orthopaedic and Trauma Surgery, Malteser Waldkrankenhaus St. Marien, Erlangen, Germany
| | - Laura de Girolamo
- Laboratorio di Biotecnologie Applicate all'Ortopedia, IRCCS Ospedale Galeazzi Sant'Ambrogio, Via Cristina Belgioioso 173, 20157, Milan, Italy
| | - Giuseppe Filardo
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Service of Orthopaedics and Traumatology, Department of Surgery, EOC, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università Della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
13
|
In vitro evaluation of antibacterial activity and biocompatibility of synergistically cross-linked gelatin-alginate hydrogel beads as gentamicin carriers. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Gionet-Gonzales MA, Gresham RCH, Griffin KH, Casella A, Wohlgemuth RP, Ramos-Rodriguez DH, Lowen J, Smith LR, Leach JK. Mesenchymal stromal cell spheroids in sulfated alginate enhance muscle regeneration. Acta Biomater 2023; 155:271-281. [PMID: 36328130 PMCID: PMC11970561 DOI: 10.1016/j.actbio.2022.10.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/26/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
The therapeutic efficacy of mesenchymal stromal cells (MSCs) for tissue regeneration is critically linked to the potency of the complex mixture of growth factors, cytokines, exosomes, and other biological cues that they secrete. The duration of cell-based approaches is limited by rapid loss of cells upon implantation, motivating the need to prolong cell viability and extend the therapeutic influence of the secretome. We and others demonstrated that the secretome is upregulated when MSCs are formed into spheroids. Although the efficacy of the MSC secretome has been characterized in the literature, no studies have reported the therapeutic benefit of in situ sequestration of the secretome within a wound site using engineered biomaterials. We previously demonstrated the capacity of sulfated alginate hydrogels to sequester components of the MSC secretome for prolonged presentation in vitro, yet the efficacy of this platform has not been evaluated in vivo. In this study, we used sulfated alginate hydrogels loaded with MSC spheroids to aid in the regeneration of a rat muscle crush injury. We hypothesized that the use of sulfated alginate to bind therapeutically relevant growth factors from the MSC spheroid secretome would enhance muscle regeneration by recruiting host cells into the tissue site. The combination of sulfated alginate and MSC spheroids resulted in decreased collagen deposition, improved myogenic marker expression, and increased neuromuscular junctions 2 weeks after injury. These data indicate that MSC spheroids delivered in sulfated alginate represent a promising approach for decreased fibrosis and increased functional regeneration of muscle. STATEMENT OF SIGNIFICANCE: The therapeutic efficacy of mesenchymal stromal cells (MSCs) for tissue regeneration is attributed to the complex diversity of the secretome. Cell-based approaches are limited by rapid cell death, motivating the need to extend the availability of the secretome. We previously demonstrated that sulfated alginate hydrogels sequester components of the MSC secretome for prolonged presentation in vitro, yet no studies have reported the in situ sequestration of the secretome. Herein, we transplanted MSC spheroids in sulfated alginate hydrogels to promote muscle regeneration. MSC spheroids in sulfated alginate decreased collagen deposition, improved myogenic marker expression, and increased neuromuscular junctions. These data indicate that MSC spheroids delivered in sulfated alginate represent a promising approach for decreasing fibrosis and increasing functional muscle regeneration.
Collapse
Affiliation(s)
| | - Robert C H Gresham
- Department of Orthopaedic Surgery, School of Medicine, UC Davis Health, Sacramento, CA, USA
| | - Katherine H Griffin
- Department of Orthopaedic Surgery, School of Medicine, UC Davis Health, Sacramento, CA, USA; School of Veterinary Medicine, UC Davis, Davis, CA, USA
| | - Alena Casella
- Department of Orthopaedic Surgery, School of Medicine, UC Davis Health, Sacramento, CA, USA
| | - Ross P Wohlgemuth
- Department of Neurobiology, Physiology and Behavior, UC Davis, Davis, CA, USA
| | | | - Jeremy Lowen
- Department of Orthopaedic Surgery, School of Medicine, UC Davis Health, Sacramento, CA, USA
| | - Lucas R Smith
- Department of Neurobiology, Physiology and Behavior, UC Davis, Davis, CA, USA; Department of Physical Medicine and Rehabilitation, UC Davis Health, Sacramento, CA, USA
| | - J Kent Leach
- Department of Orthopaedic Surgery, School of Medicine, UC Davis Health, Sacramento, CA, USA; Department of Biomedical Engineering, UC Davis, Davis, CA, USA.
| |
Collapse
|
15
|
Moise S, Dolcetti L, Dazzi F, Roach P, Buttery L, MacNeil S, Medcalf N. Assessing the immunosuppressive activity of alginate-encapsulated mesenchymal stromal cells on splenocytes. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2022; 50:168-176. [PMID: 35726746 DOI: 10.1080/21691401.2022.2088547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/09/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Mesenchymal stromal cells (MSCs) show immunosuppressive effects both via cell-to-cell contact (direct) with immune cells and by producing paracrine factors and extracellular vesicles (indirect). A key challenge in delivering this therapeutic effect in vivo is retaining the MSCs at the site of injection. One way to address this is by encapsulating the MSCs within suitable biomaterial scaffolds. Here, we assess the immunosuppressive effect of alginate-encapsulated murine MSCs on proliferating murine splenocytes. Our results show that MSCs are able to significantly suppress splenocyte proliferation by ∼50% via the indirect mechanism and almost completely (∼98%) via the direct mechanism. We also show for the first time that MSCs as monolayers on tissue culture plastic or encapsulated within alginate, when physically isolated from the splenocytes via transwells, are able to sustain immunosuppressive activity with repeated exposure to fresh splenocytes, for as long as 9 days. These results indicate the need to identify design strategies to simultaneously deliver both modes of MSC immunosuppression. By designing cell-biomaterial constructs with tailored degradation profiles, we can achieve a more sustained (avoiding MSCs migration and apoptosis) and controlled release of both the paracrine signals and eventually the cells themselves enabling efficient MSC-based immunosuppressive therapies for wound healing.
Collapse
Affiliation(s)
- Sandhya Moise
- Centre for Integrated Bioprocessing Research (CIBR), Department of Chemical Engineering, University of Bath, Bath, UK
- Centre for Therapeutic Innovation (CTI), University of Bath, Bath, UK
| | - Luigi Dolcetti
- Department of Medicine and Pharmaceutical Science, King's College London, London, UK
| | - Francesco Dazzi
- Department of Haematological malignancies and stem cell transplant, Kings College hospital NHS trust, London, UK
| | - Paul Roach
- Department of Chemistry, Loughborough University, Loughborough, UK
| | - Lee Buttery
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Sheila MacNeil
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, UK
| | - Nick Medcalf
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough, UK
| |
Collapse
|
16
|
Ding SL, Liu X, Zhao XY, Wang KT, Xiong W, Gao ZL, Sun CY, Jia MX, Li C, Gu Q, Zhang MZ. Microcarriers in application for cartilage tissue engineering: Recent progress and challenges. Bioact Mater 2022; 17:81-108. [PMID: 35386447 PMCID: PMC8958326 DOI: 10.1016/j.bioactmat.2022.01.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/11/2022] Open
Abstract
Successful regeneration of cartilage tissue at a clinical scale has been a tremendous challenge in the past decades. Microcarriers (MCs), usually used for cell and drug delivery, have been studied broadly across a wide range of medical fields, especially the cartilage tissue engineering (TE). Notably, microcarrier systems provide an attractive method for regulating cell phenotype and microtissue maturations, they also serve as powerful injectable carriers and are combined with new technologies for cartilage regeneration. In this review, we introduced the typical methods to fabricate various types of microcarriers and discussed the appropriate materials for microcarriers. Furthermore, we highlighted recent progress of applications and general design principle for microcarriers. Finally, we summarized the current challenges and promising prospects of microcarrier-based systems for medical applications. Overall, this review provides comprehensive and systematic guidelines for the rational design and applications of microcarriers in cartilage TE.
Collapse
Affiliation(s)
- Sheng-Long Ding
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Xin Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xi-Yuan Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ke-Tao Wang
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Wei Xiong
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Zi-Li Gao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cheng-Yi Sun
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Min-Xuan Jia
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cheng Li
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Qi Gu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regeneration, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Ming-Zhu Zhang
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| |
Collapse
|
17
|
Poursafavi Z, Abroun S, Kaviani S, Roodbari NH. Differentiation of Alginate-Encapsulated Wharton Jelly-Derived Mesenchymal Stem Cells into Insulin Producing Cells. CELL JOURNAL 2022; 24:449-457. [PMID: 36093804 PMCID: PMC9468719 DOI: 10.22074/cellj.2022.8081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Indexed: 12/03/2022]
Abstract
<strong>Objective:</strong> Insulin insufficiency due to the reduced pancreatic beta cell number is the hallmark of diabetes, resulting in<br />an intense focus on the development of beta-cell replacement options. One approach to overcome the problem is to<br />search for alternative sources to induce insulin-producing cells (IPCs), the advent of mesenchymal stem cells (MSCs)<br />holds great promise for producing ample IPCs. Encapsulate the MSCs with alginate improved anti-inflammatory effects<br />of MSC treatment. This study aimed to evaluate the differentiation of wharton jelly-derived MScs into insulin producing<br />cells using alginate encapsulation.<br /><strong>Materials and Methods:</strong> In this experimental study, we established an efficient IPCs differentiation strategy of human<br />MSCs derived from the umbilical cord's Wharton jelly with lentiviral transduction of Pancreas/duodenum homeobox<br />protein 1 (PDX1) in a 21-day period using alginate encapsulation by poly-L-lysine (PLL) and poly-L-ornithine (PLO)<br />outer layer. During differentiation, the expression level of PDX1 and secretion of insulin proteins were increased.<br /><strong>Results:</strong> Results showed that during time, the cell viability remained high at 87% at day 7. After 21 days, the differentiated beta-like cells in microcapsules were morphologically similar to primary beta cells. Evaluation of the expression of PDX1 and INS by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) on days 7, 14 and 21 of differentiation exhibited the highest expression on day 14. At the protein level, the expression of these two pancreatic markers was observed after PDX1 transduction. Results showed that the intracellular and extracellular insulin levels in the cells receiving PDX1 is higher than the control group. The current data showed that encapsulation with alginate by PLL and PLO outer layer permitted to increase the microcapsules' beta cell differentiation.<br /><strong>Conclusion</strong>: Encapsulate the transduced-MSCs with alginate can be applied in an in vivo model in order to do the further analysis.
Collapse
Affiliation(s)
- Zahra Poursafavi
- Biology Department, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Saeid Abroun
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modarres University, Tehran, Iran,Department of HematologyFaculty of Medical SciencesTarbiat Modarres UniversityTehranIran
| | - Saeid Kaviani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modarres University, Tehran, Iran
| | - Nasim Hayati Roodbari
- Biology Department, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
18
|
Sivan SS, Bonstein I, Marmor YN, Pelled G, Gazit Z, Amit M. Encapsulation of Human-Bone-Marrow-Derived Mesenchymal Stem Cells in Small Alginate Beads Using One-Step Emulsification by Internal Gelation: In Vitro, and In Vivo Evaluation in Degenerate Intervertebral Disc Model. Pharmaceutics 2022; 14:pharmaceutics14061179. [PMID: 35745752 PMCID: PMC9228465 DOI: 10.3390/pharmaceutics14061179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/21/2022] Open
Abstract
Cell microencapsulation in gel beads contributes to many biomedical processes and pharmaceutical applications. Small beads (<300 µm) offer distinct advantages, mainly due to improved mass transfer and mechanical strength. Here, we describe, for the first time, the encapsulation of human-bone-marrow-derived mesenchymal stem cells (hBM-MSCs) in small-sized microspheres, using one-step emulsification by internal gelation. Small (127−257 µm) high-mannuronic-alginate microspheres were prepared at high agitation rates (800−1000 rpm), enabling control over the bead size and shape. The average viability of encapsulated hBM-MSCs after 2 weeks was 81 ± 4.3% for the higher agitation rates. hBM-MSC-loaded microspheres seeded within a glycosaminoglycan (GAG) analogue, which was previously proposed as a mechanically equivalent implant for degenerate discs, kept their viability, sphericity, and integrity for at least 6 weeks. A preliminary in vivo study of hBM-MSC-loaded microspheres implanted (via a GAG-analogue hydrogel) in a rat injured intervertebral disc model demonstrated long-lasting viability and biocompatibility for at least 8 weeks post-implantation. The proposed method offers an effective and reproducible way to maintain long-lasting viability in vitro and in vivo. This approach not only utilizes the benefits of a simple, mild, and scalable method, but also allows for the easy control of the bead size and shape by the agitation rate, which, overall, makes it a very attractive platform for regenerative-medicine applications.
Collapse
Affiliation(s)
- Sarit S. Sivan
- Department of Biotechnology Engineering, Braude College of Engineering, P.O. Box 78, Karmiel 2161002, Israel; (I.B.); (M.A.)
- Correspondence: ; Tel.: +972-4-990-1855
| | - Iris Bonstein
- Department of Biotechnology Engineering, Braude College of Engineering, P.O. Box 78, Karmiel 2161002, Israel; (I.B.); (M.A.)
| | - Yariv N. Marmor
- Department of Industrial Engineering and Management, Braude College of Engineering, P.O. Box 78, Karmiel 2161002, Israel;
| | - Gadi Pelled
- Skeletal Biotech Laboratory, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O. Box 12272, Jerusalem 91120, Israel; (G.P.); (Z.G.)
| | - Zulma Gazit
- Skeletal Biotech Laboratory, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O. Box 12272, Jerusalem 91120, Israel; (G.P.); (Z.G.)
| | - Michal Amit
- Department of Biotechnology Engineering, Braude College of Engineering, P.O. Box 78, Karmiel 2161002, Israel; (I.B.); (M.A.)
| |
Collapse
|
19
|
McKinney JM, Pucha KA, Doan TN, Wang L, Weinstock LD, Tignor BT, Fowle KL, Levit RD, Wood LB, Willett NJ. Sodium alginate microencapsulation of human mesenchymal stromal cells modulates paracrine signaling response and enhances efficacy for treatment of established osteoarthritis. Acta Biomater 2022; 141:315-332. [PMID: 34979327 PMCID: PMC11898789 DOI: 10.1016/j.actbio.2021.12.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 01/15/2023]
Abstract
Mesenchymal stromal cells (MSCs) have shown promise as osteoarthritis (OA) treatments; however, effective translation has been limited by high variability and heterogeneity of MSCs, suboptimal delivery strategies, and poor understanding of critical quality and potency attributes. Furthermore, most pre-clinical studies of MSC therapeutics for OA have focused on delaying OA development and not on treating established OA, which brings added clinical relevance. Thus, the objective of the current study was to assess the effects of sodium alginate microencapsulation on human MSC (hMSC) secretion of immunomodulatory cytokines in an OA microenvironment and therapeutic efficacy in treating established OA. A Medial Meniscal Transection (MMT) pre-clinical model of OA was implemented. Three weeks post-surgery, after OA was established, intra-articular injections of encapsulated hMSCs or nonencapsulated hMSCs were administered. Six weeks post-surgery, microstructural changes in the knee joint were quantified using microCT. Encapsulated hMSCs reduced articular cartilage degeneration and subchondral bone remodeling. A multiplexed immunoassay panel was used to profile the in vitro secretome of hMSCs in response to IL-1β. Nonencapsulated hMSCs showed an indiscriminate increase in all cytokines in response to IL-1β while encapsulated hMSCs showed a targeted secretory response with increased expression of pro-inflammatory (IL-1β, IL-6, IL-7, IL-8), anti-inflammatory (IL-1RA), and chemotactic (G-CSF, MDC, IP10) cytokines. These data show that sodium alginate microencapsulation can modulate hMSC paracrine signaling and enhance the therapeutic efficacy of the hMSCs in treating established OA. This cytokine profile provides a foundation for the identification of key factors affecting the overall potency of hMSC therapeutics for OA. STATEMENT OF SIGNIFICANCE: While there has been considerable interest in material based MSC encapsulation for treatment of OA, there are critical gaps in our translational understanding of these biomaterial-based technologies for OA. More specifically, previous studies have several important limitations: (1) they have been largely focused on preventing OA development, which limits their translational utility and (2) little prior work has been done to delineate potential routes/mechanisms by which material encapsulation alters MSC therapeutic action. In our manuscript, we aimed to fill these gaps in knowledge by testing the hypotheses that: (1) hMSC encapsulation can attenuate established disease progression, which is a more clinically relevant scenario and (2) hMSC encapsulation significantly changes the secreted paracrine factors from hMSCs.
Collapse
Affiliation(s)
- Jay M McKinney
- Research Division, VA Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, USA; Department of Orthopaedics, Emory University, 49 Jesse Hill Jr Dr SE, Atlanta, GA 30303, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Krishna A Pucha
- Research Division, VA Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, USA
| | - Thanh N Doan
- Research Division, VA Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, USA; Department of Orthopaedics, Emory University, 49 Jesse Hill Jr Dr SE, Atlanta, GA 30303, USA
| | - Lanfang Wang
- Department of Medicine, Division of Cardiology, Emory University, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | - Laura D Weinstock
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, Atlanta, GA 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Benjamin T Tignor
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Kelsey L Fowle
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Rebecca D Levit
- Department of Medicine, Division of Cardiology, Emory University, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | - Levi B Wood
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, Atlanta, GA 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, North Ave NW, Atlanta, GA 30332, USA.
| | - Nick J Willett
- Research Division, VA Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, USA; Department of Orthopaedics, Emory University, 49 Jesse Hill Jr Dr SE, Atlanta, GA 30303, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, Atlanta, GA 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; Phil and Penny Knight Campus for Accelerating Scientific Impact, 6231 University of Oregon, Eugene, Oregon, USA.
| |
Collapse
|
20
|
Wan Q, Li X, Ren Y, Cao Y, Ju K, Yang G, Sun Y, Zhang X. Preparation and Characterization of Temperature/pH Dual-Responsive Gel Spheres for Immobilizing Nitro Bacteria. ACS OMEGA 2022; 7:5646-5656. [PMID: 35224326 PMCID: PMC8867481 DOI: 10.1021/acsomega.1c04469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The temperature/pH dual-responsive gel spheres were prepared by orthogonal experiments and response surface methodology, and finally, the optimal synthesis conditions were obtained by a composite score, including swelling, mechanical properties, mass transfer properties, and so forth. The results showed that a sodium alginate concentration of 3% (w/v), CaCl2 concentration of 2% (w/v), gelling time of 40 h, drop height of 14 cm, NaCl concentration of 0.6% (w/v), N-isopropylacrylamide concentration of 0.03% (w/v), and acrylic acid concentration of 4.06% (w/v) were optimal synthesis conditions. The environmental change tolerance experiments showed that the nitrogen removal of the dual-response nitrifying gel spheres was better than the domesticated sludge at low temperatures (4 °C) and in alkaline (pH 9 and 10) conditions. The as-obtained gel spheres can respond intelligently to the changes in ambient temperature and pH. It is hoped that this study will provide technical parameters for the development and application of microbial immobilization carriers.
Collapse
Affiliation(s)
- Qiong Wan
- School
of Architecture and Civil Engineering, Xi’an
University of Science and Technology, Xi’an 710054, China
| | - Xuan Li
- School
of Architecture and Civil Engineering, Xi’an
University of Science and Technology, Xi’an 710054, China
| | - Yingchun Ren
- Yihai
Kerry (Zhoukou) Biotechnology Co., Ltd., Zhoukou 466000, China
| | - Yixi Cao
- Shaanxi
Water Affair Water Ecology Comprehensive Development Group Co., Ltd., 11801, New Century Building, 2 Gaoxin
Road, Xi ‘an 710075, China
| | - Kai Ju
- School
of Architecture and Civil Engineering, Xi’an
University of Science and Technology, Xi’an 710054, China
| | - Guohong Yang
- School
of Architecture and Civil Engineering, Xi’an
University of Science and Technology, Xi’an 710054, China
| | - Yongqing Sun
- School
of Architecture and Civil Engineering, Xi’an
University of Science and Technology, Xi’an 710054, China
| | - Xinyan Zhang
- School
of Architecture and Civil Engineering, Xi’an
University of Science and Technology, Xi’an 710054, China
| |
Collapse
|
21
|
Xu Z, Chen L, Wang C, Zhang L, Xu W. MicroRNA-1287-5p promotes ferroptosis of osteosarcoma cells through inhibiting GPX4. Free Radic Res 2022; 55:1119-1129. [PMID: 35038953 DOI: 10.1080/10715762.2021.2024816] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Osteosarcoma is the most prevalent primary bone malignancy in adolescents, and ferroptosis is implicated in its pathogenesis. MicroRNA (miR)-1287-5p plays critical roles in multiple human cancers, and the present study aims to investigate the role and underlying mechanisms of miR-1287-5p in regulating ferroptosis and osteosarcoma progression. Human osteosarcoma cell lines were treated with the mimic, inhibitor or matched controls of miR-1287-5p. Cell viability, colony formation, cell death ratio and ferroptosis were determined. miR-1287-5p expression was downregulated in human osteosarcoma, but upregulated upon ferroptotic stimulation. Overexpression of miR-1287-5p significantly induced, while inhibition of miR-1287-5p suppressed ferroptosis of osteosarcoma cells, thereby modulating cell viability and colony formation. Mechanistic studies indicated that miR-1287-5p directly bound to the 3'-untranslated region of glutathione peroxidase 4 (GPX4) to inhibit its protein level and activity, and that GPX4 overexpression completely abolished the miR-1287-5p mimic-mediated ferroptotic induction and tumor suppression. Moreover, the miR-1287-5p mimic dramatically sensitized human osteosarcoma cells to cisplatin chemotherapy. Our findings prove that miR-1287-5p promotes ferroptosis of osteosarcoma cells through inhibiting GPX4, identifying an adjuvant and even alternative method for the treatment of human osteosarcoma.
Collapse
Affiliation(s)
- Zhengquan Xu
- Department of Spine Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, P.R. China.,Trauma Medical Center of Fujian Province, Fuzhou, Fujian, P.R. China
| | - Lanhua Chen
- Department of Emergency, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Changsheng Wang
- Department of Spine Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, P.R. China.,Trauma Medical Center of Fujian Province, Fuzhou, Fujian, P.R. China
| | - Liqun Zhang
- Department of Spine Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, P.R. China.,Trauma Medical Center of Fujian Province, Fuzhou, Fujian, P.R. China
| | - Weihong Xu
- Department of Spine Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, P.R. China.,Trauma Medical Center of Fujian Province, Fuzhou, Fujian, P.R. China
| |
Collapse
|
22
|
Dudun AA, Akoulina EA, Zhuikov VA, Makhina TK, Voinova VV, Belishev NV, Khaydapova DD, Shaitan KV, Bonartseva GA, Bonartsev AP. Competitive Biosynthesis of Bacterial Alginate Using Azotobacter vinelandii 12 for Tissue Engineering Applications. Polymers (Basel) 2021; 14:131. [PMID: 35012152 PMCID: PMC8747204 DOI: 10.3390/polym14010131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
This study investigated the effect of various cultivation conditions (sucrose/phosphate concentrations, aeration level) on alginate biosynthesis using the bacterial producing strain Azotobacter vinelandii 12 by the full factorial design (FFD) method and physicochemical properties (e.g., rheological properties) of the produced bacterial alginate. We demonstrated experimentally the applicability of bacterial alginate for tissue engineering (the cytotoxicity testing using mesenchymal stem cells (MSCs)). The isolated synthesis of high molecular weight (Mw) capsular alginate with a high level of acetylation (25%) was achieved by FFD method under a low sucrose concentration, an increased phosphate concentration, and a high aeration level. Testing the viscoelastic properties and cytotoxicity showed that bacterial alginate with a maximal Mw (574 kDa) formed the densest hydrogels (which demonstrated relatively low cytotoxicity for MSCs in contrast to bacterial alginate with low Mw). The obtained data have shown promising prospects in controlled biosynthesis of bacterial alginate with different physicochemical characteristics for various biomedical applications including tissue engineering.
Collapse
Affiliation(s)
- Andrei A. Dudun
- Research Center of Biotechnology of the Russian Academy of Sciences Leninsky Ave, 33, Bld. 2, 119071 Moscow, Russia; (A.A.D.); (V.A.Z.); (T.K.M.); (G.A.B.)
| | - Elizaveta A. Akoulina
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; (E.A.A.); (V.V.V.); (N.V.B.); (K.V.S.)
| | - Vsevolod A. Zhuikov
- Research Center of Biotechnology of the Russian Academy of Sciences Leninsky Ave, 33, Bld. 2, 119071 Moscow, Russia; (A.A.D.); (V.A.Z.); (T.K.M.); (G.A.B.)
| | - Tatiana K. Makhina
- Research Center of Biotechnology of the Russian Academy of Sciences Leninsky Ave, 33, Bld. 2, 119071 Moscow, Russia; (A.A.D.); (V.A.Z.); (T.K.M.); (G.A.B.)
| | - Vera V. Voinova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; (E.A.A.); (V.V.V.); (N.V.B.); (K.V.S.)
| | - Nikita V. Belishev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; (E.A.A.); (V.V.V.); (N.V.B.); (K.V.S.)
| | - Dolgor D. Khaydapova
- Department of Soil Physics and Reclamation, Soil Science Faculty, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia;
| | - Konstantin V. Shaitan
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; (E.A.A.); (V.V.V.); (N.V.B.); (K.V.S.)
| | - Garina A. Bonartseva
- Research Center of Biotechnology of the Russian Academy of Sciences Leninsky Ave, 33, Bld. 2, 119071 Moscow, Russia; (A.A.D.); (V.A.Z.); (T.K.M.); (G.A.B.)
| | - Anton P. Bonartsev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; (E.A.A.); (V.V.V.); (N.V.B.); (K.V.S.)
| |
Collapse
|
23
|
Nguyen TPT, Li F, Shrestha S, Tuan RS, Thissen H, Forsythe JS, Frith JE. Cell-laden injectable microgels: Current status and future prospects for cartilage regeneration. Biomaterials 2021; 279:121214. [PMID: 34736147 DOI: 10.1016/j.biomaterials.2021.121214] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/19/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022]
Abstract
Injectable hydrogels have been employed extensively as versatile materials for cartilage regeneration due to their excellent biocompatibility, tunable structure, and ability to accommodate bioactive factors, as well as their ability to be locally delivered via minimally invasive injection to fill irregular defects. More recently, in vitro and in vivo studies have revealed that processing these materials to produce cell-laden microgels can enhance cell-cell and cell-matrix interactions and boost nutrient and metabolite exchange. Moreover, these studies have demonstrated gene expression profiles and matrix regeneration that are superior compared to conventional injectable bulk hydrogels. As cell-laden microgels and their application in cartilage repair are moving closer to clinical translation, this review aims to present an overview of the recent developments in this field. Here we focus on the currently used biomaterials and crosslinking strategies, the innovative fabrication techniques being used for the production of microgels, the cell sources used, the signals used for induction of chondrogenic differentiation and the resultant biological responses, and the ability to create three-dimensional, functional cartilage tissues. In addition, this review also covers the current clinical approaches for repairing cartilage as well as specific challenges faced when attempting the regeneration of damaged cartilage tissue. New findings related to the macroporous nature of the structures formed by the assembled microgel building blocks and the novel use of microgels in 3D printing for cartilage tissue engineering are also highlighted. Finally, we outline the challenges and future opportunities for employing cell-laden microgels in clinical applications.
Collapse
Affiliation(s)
- Thuy P T Nguyen
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Fanyi Li
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Surakshya Shrestha
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Rocky S Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Helmut Thissen
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC, 3168, Australia
| | - John S Forsythe
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC, 3800, Australia; Monash Institute of Medical Engineering, Monash University, Clayton, VIC, 3800, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Clayton, VIC 3800, Australia.
| | - Jessica E Frith
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC, 3800, Australia; Monash Institute of Medical Engineering, Monash University, Clayton, VIC, 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Clayton, VIC 3800, Australia.
| |
Collapse
|
24
|
The Effects of Mesenchymal Stem Cell on Colorectal Cancer. Stem Cells Int 2021; 2021:9136583. [PMID: 34349805 PMCID: PMC8328693 DOI: 10.1155/2021/9136583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/13/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor of the gastrointestinal tract with nonobvious early symptoms and late symptoms of anemia, weight loss, and other systemic symptoms. Its morbidity and fatality rate are next only to gastric cancer, esophageal cancer, and primary liver cancer among digestive malignancies. In addition to the conventional surgical intervention, other therapies such as radiotherapy and chemotherapy and new treatment methods such as biologics and microbiological products have been introduced. As a promising cell therapy, mesenchymal stem cell (MSC) has attracted extensive research attention. MSCs are early undifferentiated pluripotent stem cells, which have the common features of stem cells, including self-replication, self-division, self-renewal, and multidirectional differentiation. MSCs come from a wide range of sources and can be extracted from a variety of tissues such as the bone marrow, umbilical cord, and fat. Current studies have shown that MSCs have a variety of biological functions such as immune regulation, tissue damage repair, and therapeutic effects on tumors such as CRC. This review outlines the overview of MSCs and CRC and summarizes the role of MSC application in CRC.
Collapse
|
25
|
Attia N, Mashal M, Puras G, Pedraz JL. Mesenchymal Stem Cells as a Gene Delivery Tool: Promise, Problems, and Prospects. Pharmaceutics 2021; 13:843. [PMID: 34200425 PMCID: PMC8229096 DOI: 10.3390/pharmaceutics13060843] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022] Open
Abstract
The cell-based approach in gene therapy arises as a promising strategy to provide safe, targeted, and efficient gene delivery. Owing to their unique features, as homing and tumor-tropism, mesenchymal stem cells (MSCs) have recently been introduced as an encouraging vehicle in gene therapy. Nevertheless, non-viral transfer of nucleic acids into MSCs remains limited due to various factors related to the main stakeholders of the process (e.g., nucleic acids, carriers, or cells). In this review, we have summarized the main types of nucleic acids used to transfect MSCs, the pros and cons, and applications of each. Then, we have emphasized on the most efficient lipid-based carriers for nucleic acids to MSCs, their main features, and some of their applications. While a myriad of studies have demonstrated the therapeutic potential for engineered MSCs therapy in various illnesses, optimization for clinical use is an ongoing challenge. On the way of improvement, genetically modified MSCs have been combined with various novel techniques and tools (e.g., exosomes, spheroids, 3D-Bioprinting, etc.,) aiming for more efficient and safe applications in biomedicine.
Collapse
Affiliation(s)
- Noha Attia
- Laboratory of Pharmaceutics, NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (N.A.); (M.M.)
- Department of Basic Sciences, The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda
- The Center of Research and Evaluation, The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda
- Histology and Cell Biology Department, Faculty of Medicine, University of Alexandria, Alexandria 21561, Egypt
| | - Mohamed Mashal
- Laboratory of Pharmaceutics, NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (N.A.); (M.M.)
- The Center of Research and Evaluation, The American University of Antigua-College of Medicine, Coolidge 1451, Antigua and Barbuda
| | - Gustavo Puras
- Laboratory of Pharmaceutics, NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (N.A.); (M.M.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Laboratory of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Jose Luis Pedraz
- Laboratory of Pharmaceutics, NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (N.A.); (M.M.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Laboratory of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
26
|
Wang X, Li Z, Wang C, Bai H, Wang Z, Liu Y, Bao Y, Ren M, Liu H, Wang J. Enlightenment of Growth Plate Regeneration Based on Cartilage Repair Theory: A Review. Front Bioeng Biotechnol 2021; 9:654087. [PMID: 34150725 PMCID: PMC8209549 DOI: 10.3389/fbioe.2021.654087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/10/2021] [Indexed: 01/21/2023] Open
Abstract
The growth plate (GP) is a cartilaginous region situated between the epiphysis and metaphysis at the end of the immature long bone, which is susceptible to mechanical damage because of its vulnerable structure. Due to the limited regeneration ability of the GP, current clinical treatment strategies (e.g., bone bridge resection and fat engraftment) always result in bone bridge formation, which will cause length discrepancy and angular deformity, thus making satisfactory outcomes difficult to achieve. The introduction of cartilage repair theory and cartilage tissue engineering technology may encourage novel therapeutic approaches for GP repair using tissue engineered GPs, including biocompatible scaffolds incorporated with appropriate seed cells and growth factors. In this review, we summarize the physiological structure of GPs, the pathological process, and repair phases of GP injuries, placing greater emphasis on advanced tissue engineering strategies for GP repair. Furthermore, we also propose that three-dimensional printing technology will play a significant role in this field in the future given its advantage of bionic replication of complex structures. We predict that tissue engineering strategies will offer a significant alternative to the management of GP injuries.
Collapse
Affiliation(s)
- Xianggang Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China.,Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Zuhao Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China.,Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Chenyu Wang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, China
| | - Haotian Bai
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China.,Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Zhonghan Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China.,Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Yuzhe Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China.,Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Yirui Bao
- Department of Orthopedics, Chinese PLA 965 Hospital, Jilin, China
| | - Ming Ren
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China.,Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China.,Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Jincheng Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China.,Orthopaedic Research Institute of Jilin Province, Changchun, China
| |
Collapse
|
27
|
Abstract
Regenerative medicine is a novel scientific field that employs the use of stem cells as cell-based therapy for the regeneration and functional restoration of damaged tissues and organs. Stem cells bear characteristics such as the capacity for self-renewal and differentiation towards specific lineages and, therefore, serve as a backup reservoir in case of tissue injuries. Therapeutically, they can be autologously or allogeneically transplanted for tissue regeneration; however, allogeneic stem cell transplantation can provoke host immune responses leading to a host-versus-transplant reaction. A probable solution to this problem is stem cell encapsulation, a technique that utilizes various biomaterials for the creation of a semi-permeable membrane that encases the stem cells. Stem cell encapsulation can be accomplished by employing a great variety of natural and/or synthetic hydrogels and offers many benefits in regenerative medicine, including protection from the host’s immune system and mechanical stress, improved cell viability, proliferation and differentiation, cryopreservation and controlled and continuous delivery of the stem-cell-secreted therapeutic agents. Here, in this review, we report and discuss almost all natural and synthetic hydrogels used in stem cell encapsulation, along with the benefits that these materials, alone or in combination, could offer to cell therapy through functional cell encapsulation.
Collapse
|
28
|
Attia N, Mashal M. Mesenchymal Stem Cells: The Past Present and Future. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1312:107-129. [PMID: 33159306 DOI: 10.1007/5584_2020_595] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The biomedical applications of mesenchymal stem cells (MSCs) have gained expanding attention over the past three decades. MSCs are easily obtained from various tissue types (e.g. bone marrow, fat, cord blood, etc.), are capable of self-renewal, and could be induced to differentiate into several cell lineages for countless biomedical applications. In addition, when transplanted, MSCs are not detected by immune surveillance, thus do not lead to graft rejection. Moreover, they can home towards affected tissues and induce their therapeutic effect in a cell-base and/or a cell-free manner. These properties, and many others, have made MSCs appealing therapeutic cell candidates (for cell and/or gene therapy) in myriad clinical conditions. However, similar to any other therapeutic tool, MSCs still have their own limitations and grey areas that entail more research for better understanding and optimization. Herein, we present a brief overview of various pre-clinical/clinical applications of MSCs in regenerative medicine and discuss limitations and future challenges.
Collapse
Affiliation(s)
- Noha Attia
- Department of Basic Sciences, The American University of Antigua-College of Medicine, Coolidge, Antigua and Barbuda. .,The Center of research and evaluation, The American University of Antigua-College of Medicine, Coolidge, Antigua and Barbuda. .,Histology and Cell Biology Department, Faculty of Medicine, University of Alexandria, Alexandria, Egypt. .,NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.
| | - Mohamed Mashal
- The Center of research and evaluation, The American University of Antigua-College of Medicine, Coolidge, Antigua and Barbuda.,NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| |
Collapse
|