1
|
Tiwari A, Shukla A, Kumar Samal P. Evaluation of Anti-Hyperlipidemic and Anti-Atherogenic Activity of Asiatic Acid and Its Effect on Lipid Peroxidation in Hyperlipidemic Rats. J Biochem Mol Toxicol 2025; 39:e70255. [PMID: 40262048 DOI: 10.1002/jbt.70255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/06/2025] [Accepted: 03/31/2025] [Indexed: 04/24/2025]
Abstract
Atherosclerosis is associated with several illnesses, such as coronary heart disease (CHD), peripheral vascular disease, and ischemic cerebrovascular disease. Atherosclerosis development and accompanying complications are predominantly influenced by Hyperlipidemia, which plays a crucial role. These illnesses are the primary cause of most sickness and death among those who are in their middle age or older. The incidence of dyslipidemia among Chinese adults aged 18 and older is 18.6%, indicating that there are around 160 million individuals affected by this condition. This represents the smallest number of patients globally. This analysis was derived from research undertaken in the field of epidemiology. Hence, developing a comprehensive approach for early prevention and treatment of Hyperlipidemia is imperative. The reason for this is that Hyperlipidemia has the potential to deteriorate progressively. Despite the notable progress made in treating Hyperlipidemia with synthetic drugs, there has been a renewed interest in medicinal plants and phytoconstituents known for their therapeutic capabilities. Asiatic acid, primarily present in Centella asiatica (L.), is classified as one of the phytocompounds that can decrease plasma lipids and lipid peroxidation. This plant may include asiaticoside, asiatic acid, and other components. Asiatic acid has the potential to prevent Hyperlipidemia. The aim of our research is to explore the anti-Hyperlipidemic and anti-atherosclerosis potential of Asiatic acid, which will help to explore its potential mechanism of action and a possibility of its usefulness in this regard.
Collapse
Affiliation(s)
- Aarti Tiwari
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Amit Shukla
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | | |
Collapse
|
2
|
Meisen S, Schütte L, Balmayor E, Halbgebauer R, Huber-Lang M. TRAUMA AND THE ENTEROCYTE: DISTURBANCE OF COMMUNICATION AND DELINEATION. Shock 2025; 63:677-687. [PMID: 40239221 DOI: 10.1097/shk.0000000000002564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
ABSTRACT The enterocyte as major building stone of the intestinal barrier plays a central role in maintaining cellular homeostasis and mediating host-environment interactions. Trauma, whether direct or remote, disrupts enterocyte function through complex mechanisms including impaired oxygen delivery, disturbed intercellular communication, and compromised nutrient uptake and metabolite clearance. These changes may lead to barrier dysfunction and altered repair mechanisms, facilitating systemic inflammation and remote organ injury. The failure of communication pathways-both within enterocytes and across epithelial networks-undermines coordinated responses to injury. Understanding these multifaceted perturbations reveals the enterocyte not merely as a passive victim but as an active participant in trauma-induced pathology. Emerging therapeutic strategies focus on enhancing mucosal repair via sealing agents, promoting epithelial proliferation, and restoring metabolic and signaling homeostasis. This review delineates the dynamic response of the enterocyte to trauma, highlighting opportunities for targeted interventions aimed at restoring intestinal integrity and function.
Collapse
Affiliation(s)
- Sophie Meisen
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Lena Schütte
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Elizabeth Balmayor
- Experimental Orthopaedics and Trauma Surgery, Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Rebecca Halbgebauer
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
3
|
Vaidya B, Biswas S, Roy I, Sharma SS. HC070, a Transient Receptor Potential Canonical 5 (TRPC5) Channels Inhibitor Ameliorated α-synuclein Preformed Fibrils-Induced Parkinson's Disease: A Neurobehavioural and Mechanistic Study. J Biochem Mol Toxicol 2025; 39:e70207. [PMID: 40066713 DOI: 10.1002/jbt.70207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/19/2025] [Accepted: 03/02/2025] [Indexed: 05/13/2025]
Abstract
Alpha-synuclein pathology is a characteristic feature of Parkinson's disease (PD) and related synucleinopathies. As a result, reducing alpha-synuclein pathology is one of the mechanisms being looked at for the development of newer agents which target these diseases. In the present study, we investigated the potential of HC070, a transient receptor potential canonical 5 (TRPC5) channel inhibitor in reducing alpha-synuclein pathology in PD. TRPC5 channels are activated in response to oxidative stress and mediators of apoptosis (calpain), the processes are also closely linked to alpha-synuclein toxicity. Using exposure of alpha synuclein-preformed fibrils to the Sprague Dawley rats and SH-SY5Y cells, we induced PD in in vitro and in vivo model systems. It was followed by the estimation of behavioural deficits, molecular parameters and biochemical estimations. Results of our experiments revealed that animals treated intraperitoneally with HC070 exhibited reduced alpha-synuclein levels accompanied by improvement in tyrosine hydroxylase levels, mitochondrial health and reduction in oxidative stress and calpain signalling. Furthermore, HC070 administration also caused a reduction in the TRPC5 levels along with improvement seen in motor and cognitive deficits. Similar protection was observed with HC070 in SH-SY5Y cells exposed to alpha-synuclein PFF. Overall, our study demonstrates the novel role of inhibition of TRPC5 channels in the reversal of alpha-synuclein toxicity and associated PD pathology.
Collapse
Affiliation(s)
- Bhupesh Vaidya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, India
| | - Soumojit Biswas
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, India
| |
Collapse
|
4
|
Chen Y, Fan W, Lyu Y, Liao J, Zhou Y. METTL14 modulates the progression and ferroptosis of colitis by regulating the stability of m6A-modified GPX4. Eur J Med Res 2025; 30:88. [PMID: 39920858 PMCID: PMC11806865 DOI: 10.1186/s40001-025-02334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/26/2025] [Indexed: 02/09/2025] Open
Abstract
Ulcerative colitis (UC) is non-specific inflammatory bowel disease. UC development and progression were closely associated with epigenetic modifications. Nevertheless, the specific relationship between N6-methyladenosine (m6A) modification at RNA transcription levels and UC pathogenesis remains unclear. We established UC cell models and mouse models through dextran sulfate sodium (DSS) induction. The expression levels of METTL14 were analyzed via qRT-PCR and western blot. In vitro functional experiments evaluated the effects of METTL14 overexpression on the viability of DSS-induced NCM460 cells and ferroptosis markers. Use of the m6A methylation detection kit, MeRIP-qPCR, and RNA stability experiments confirmed the molecular mechanism controlled by METTL14. In vivo experiments with inflammatory mice models elucidated the interaction between METTL14 and GPX4. Findings from this study indicated a notable reduction in m6A methyltransferase METTL14 expression in DSS-induced NCM460 cells and DSS-induced mice models. METTL14 overexpression effectively suppressed ferroptosis in DSS-induced NCM460 cells. In addition, METTL14 enhanced GPX4 mRNA stability through mediating m6A modification, and the interplay between METTL14 and GPX4 through m6A modification introduced innovative therapeutic approaches for UC management.
Collapse
Affiliation(s)
- Yuhua Chen
- Anorectal Department, Dongguan Hospital of Traditional Chinese Medicine, 1st Floor, No. 3, Dongcheng Section, Songshanhu Avenue, Dongcheng Street, Dongguan, 523000, Guangdong, China
| | - Weicong Fan
- Anorectal Department, Dongguan Hospital of Traditional Chinese Medicine, 1st Floor, No. 3, Dongcheng Section, Songshanhu Avenue, Dongcheng Street, Dongguan, 523000, Guangdong, China
| | - Ying Lyu
- Anorectal Department, Dongguan Hospital of Traditional Chinese Medicine, 1st Floor, No. 3, Dongcheng Section, Songshanhu Avenue, Dongcheng Street, Dongguan, 523000, Guangdong, China
| | - Jingsheng Liao
- Medical Oncology, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), No. 78 Wandao Road, Dongguan, 523059, Guangdong, China.
| | - Ying Zhou
- Anorectal Department, Dongguan Hospital of Traditional Chinese Medicine, 1st Floor, No. 3, Dongcheng Section, Songshanhu Avenue, Dongcheng Street, Dongguan, 523000, Guangdong, China.
| |
Collapse
|
5
|
Gao F, Zhang X, Xu Z, Zhang K, Quan F. Goat milk derived small extracellular vesicles ameliorate LPS-induced intestinal epithelial barrier dysfunction, oxidative stress, and apoptosis by inhibiting the MAPK signaling pathway. Food Funct 2024; 15:11590-11607. [PMID: 39508525 DOI: 10.1039/d4fo04067h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Intestinal injury is often accompanied by epithelial barrier dysfunction, oxidative stress, and apoptosis. Previous research studies have demonstrated that small extracellular vesicles (sEVs) from animal milk play a crucial role in regulating intestinal injury. Nonetheless, there has been limited research on the impact of goat milk sEVs on intestinal damage. This study aims to explore the functional differences between proteins in colostrum-derived sEVs (CME) and mature milk-derived sEVs (MME) from goat and elucidate their effects and mechanisms on lipopolysaccharide (LPS)-induced injury in IEC-6. Proteomic analysis revealed that both CME and MME are rich in various bioactive proteins that have regulatory effects on cell damage. CME and MME significantly improved LPS-induced IEC-6 barrier dysfunction and oxidative stress. Additionally, CME and MME alleviated LPS-induced IEC-6 proliferation inhibition and apoptosis. Notably, CME exhibited a more significant improvement effect. RNA-Seq analysis indicated that CME ameliorates IEC-6 injury by inhibiting multiple genes and signaling pathways associated with cell damage, particularly the MAPK signaling pathway. In summary, goat milk-derived sEVs improve LPS-induced IEC-6 injury by targeting the MAPK signaling pathway, significantly restoring the intestinal epithelial barrier function, reducing oxidative stress, and alleviating apoptosis. These findings offer scientific evidence supporting the potential application of goat milk-derived sEVs as protective agents against intestinal injury.
Collapse
Affiliation(s)
- Feng Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Xin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Zhiming Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Kang Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
6
|
Deng Z, Li D, Wang L, Lan J, Wang J, Ma Y. Activation of GABA BR Attenuates Intestinal Inflammation by Reducing Oxidative Stress through Modulating the TLR4/MyD88/NLRP3 Pathway and Gut Microbiota Abundance. Antioxidants (Basel) 2024; 13:1141. [PMID: 39334800 PMCID: PMC11428452 DOI: 10.3390/antiox13091141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/28/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Oxidative stress emerges as a prominent factor in the onset and progression of intestinal inflammation, primarily due to its critical role in damaging cells and tissues. GABAergic signaling is important in the occurrence and development of various intestinal disorders, yet its effect on oxidative stress remains unclear. We attempted to assess whether GABAergic signaling participated in the regulation of oxidative stress during enteritis. The results showed that lipopolysaccharide (LPS) significantly decreased γ-aminobutyric acid (GABA) levels in the ileal tissues of mice. Interestingly, the application of GABA significantly repressed the shedding of intestinal mucosal epithelial cells and inflammatory cell infiltration, inhibited the expressions of proinflammatory factors, including granulocyte colony-stimulating factor and granulocyte-macrophage colony stimulating factor, and enhanced the levels of anti-inflammatory cytokines interleukin (IL)-4 and IL-10, indicating that GABA could alleviate enteritis in mice. This observation was further supported by transcriptome sequencing, revealing a total of 271 differentially expressed genes, which exhibited a marked enrichment of inflammatory and immune-related pathways, alongside a prominent enhancement of GABA B receptor (GABABR) signaling following GABA administration. Effectively, Baclofen pretreatment alleviated intestinal mucosal damage in LPS-induced mice, suppressed proinflammatory cytokines IL-1β, IL-6, and tumor necrosis factor alpha expressions, and boosted total antioxidant capacity, superoxide dismutase (SOD), and glutathione (GSH) levels. Moreover, Baclofen notably enhanced the viability of LPS-stimulated IPEC-J2 cells, contracted the proinflammatory secretion factors, and reinforced SOD, GSH, and catalase levels, emphasizing the anti-inflammatory and antioxidant effects associated with GABABR activation. Mechanistically, Baclofen restrained the mRNA and protein levels of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3 (NLRP3), and inducible nitric oxide synthase, while elevating nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 in both mice and IPEC-J2 cells, indicating that activating GABABR strengthened antioxidant abilities by interrupting the TLR4/MyD88/NLRP3 pathway. Furthermore, 16S rDNA analysis demonstrated that Baclofen increased the relative abundance of probiotic, particularly Lactobacillus, renowned for its antioxidant properties, while reducing the relative richness of harmful bacteria, predominantly Enterobacteriaceae, suggesting that GABABR signaling may have contributed to reversing intestinal flora imbalances to relieve oxidative stress in LPS-induced mice. Our study identified previously unappreciated roles for GABABR signaling in constricting oxidative stress to attenuate enteritis, thus offering novel insights for the treatment of intestinal inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | - Yunfei Ma
- State Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Z.D.); (D.L.); (L.W.); (J.L.); (J.W.)
| |
Collapse
|
7
|
Meijnikman AS, Nieuwdorp M, Schnabl B. Endogenous ethanol production in health and disease. Nat Rev Gastroenterol Hepatol 2024; 21:556-571. [PMID: 38831008 DOI: 10.1038/s41575-024-00937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 06/05/2024]
Abstract
The gut microbiome exerts metabolic actions on distal tissues and organs outside the intestine, partly through microbial metabolites that diffuse into the circulation. The disruption of gut homeostasis results in changes to microbial metabolites, and more than half of the variance in the plasma metabolome can be explained by the gut microbiome. Ethanol is a major microbial metabolite that is produced in the intestine of nearly all individuals; however, elevated ethanol production is associated with pathological conditions such as metabolic dysfunction-associated steatotic liver disease and auto-brewery syndrome, in which the liver's capacity to metabolize ethanol is surpassed. In this Review, we describe the mechanisms underlying excessive ethanol production in the gut and the role of ethanol catabolism in mediating pathogenic effects of ethanol on the liver and host metabolism. We conclude by discussing approaches to target excessive ethanol production by gut bacteria.
Collapse
Affiliation(s)
| | - Max Nieuwdorp
- Department of Internal Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, Netherlands
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, Netherlands
- Diabeter Centrum Amsterdam, Amsterdam, Netherlands
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA.
- Center for Innovative Phage Applications and Therapeutics, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
8
|
Du Y, He C, An Y, Huang Y, Zhang H, Fu W, Wang M, Shan Z, Xie J, Yang Y, Zhao B. The Role of Short Chain Fatty Acids in Inflammation and Body Health. Int J Mol Sci 2024; 25:7379. [PMID: 39000498 PMCID: PMC11242198 DOI: 10.3390/ijms25137379] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Short chain fatty acids (SCFAs), mainly including acetate, propionate and butyrate, are produced by intestinal bacteria during the fermentation of partially digested and indigestible polysaccharides. SCFAs play an important role in regulating intestinal energy metabolism and maintaining the homeostasis of the intestinal environment and also play an important regulatory role in organs and tissues outside the gut. In recent years, many studies have shown that SCFAs can regulate inflammation and affect host health, and two main signaling mechanisms have also been identified: the activation of G-protein coupled receptors (GPCRs) and inhibition of histone deacetylase (HDAC). In addition, a growing body of evidence highlights the importance of every SCFA in influencing health maintenance and disease development. In this review, we summarized the recent advances concerning the biological properties of SCFAs and their signaling pathways in inflammation and body health. Hopefully, it can provide a systematic theoretical basis for the nutritional prevention and treatment of human diseases.
Collapse
Affiliation(s)
- Yuhang Du
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Changhao He
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yongcheng An
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yan Huang
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huilin Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wanxin Fu
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Menglu Wang
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ziyi Shan
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiamei Xie
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yang Yang
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
9
|
Zhang M, Liu J, Yu Y, Liu X, Shang X, Du Z, Xu ML, Zhang T. Recent Advances in the Inhibition of Membrane Lipid Peroxidation by Food-Borne Plant Polyphenols via the Nrf2/GPx4 Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12340-12355. [PMID: 38776233 DOI: 10.1021/acs.jafc.4c00523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Lipid peroxidation (LP) leads to changes in the fluidity and permeability of cell membranes, affecting normal cellular function and potentially triggering apoptosis or necrosis. This process is closely correlated with the onset of many diseases. Evidence suggests that the phenolic hydroxyl groups in food-borne plant polyphenols (FPPs) make them effective antioxidants capable of preventing diseases triggered by cell membrane LP. Proper dietary intake of FPPs can attenuate cellular oxidative stress, especially damage to cell membrane phospholipids, by activating the Nrf2/GPx4 pathway. Nuclear factor E2-related factor 2 (Nrf2) is an oxidative stress antagonist. The signaling pathway regulated by Nrf2 is a defense transduction pathway of the organism against external stimuli such as reactive oxygen species and exogenous chemicals. Glutathione peroxidase 4 (GPx4), under the regulation of Nrf2, is the only enzyme that reduces cell membrane lipid peroxides with specificity, thus playing a pivotal role in regulating cellular ferroptosis and counteracting oxidative stress. This study explored the Nrf2/GPx4 pathway mechanism, antioxidant activity of FPPs, and mechanism of LP. It also highlighted the bioprotective properties of FPPs against LP and its associated mechanisms, including (i) activation of the Nrf2/GPx4 pathway, with GPx4 potentially serving as a central target protein, (ii) regulation of antioxidant enzyme activities, leading to a reduction in the production of ROS and other peroxides, and (iii) antioxidant effects on LP and downstream phospholipid structure. In conclusion, FPPs play a crucial role as natural antioxidants in preventing LP. However, further in-depth analysis of FPPs coregulation of multiple signaling pathways is required, and the combined effects of these mechanisms need further evaluation in experimental models. Human trials could provide valuable insights into new directions for research and application.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Yiding Yu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Xiaomin Shang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Meng Lei Xu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food/College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| |
Collapse
|
10
|
Liang H, Tao S, Wang Y, Zhao J, Yan C, Wu Y, Liu N, Qin Y. Astragalus polysaccharide: implication for intestinal barrier, anti-inflammation, and animal production. Front Nutr 2024; 11:1364739. [PMID: 38757131 PMCID: PMC11096541 DOI: 10.3389/fnut.2024.1364739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Intestine is responsible for nutrients absorption and plays a key role in defending against various dietary allergens, antigens, toxins, and pathogens. Accumulating evidence reported a critical role of intestine in maintaining animal and human health. Since the use of antibiotics as growth promoters in animal feed has been restricted in many countries, alternatives to antibiotics have been globally investigated, and polysaccharides are considered as environmentally friendly and promising alternatives to improve intestinal health, which has become a research hotspot due to its antibiotic substitution effect. Astragalus polysaccharide (APS), a biological macromolecule, is extracted from astragalus and has been reported to exhibit complex biological activities involved in intestinal barrier integrity maintenance, intestinal microbiota regulation, short-chain fatty acids (SCFAs) production, and immune response regulation, which are critical for intestine health. The biological activity of APS is related to its chemical structure. In this review, we outlined the source and structure of APS, highlighted recent findings on the regulation of APS on physical barrier, biochemical barrier, immunological barrier, and immune response as well as the latest progress of APS as an antibiotic substitute in animal production. We hope this review could provide scientific basis and new insights for the application of APS in nutrition, clinical medicine and health by understanding particular effects of APS on intestine health, anti-inflammation, and animal production.
Collapse
Affiliation(s)
- Hui Liang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Siming Tao
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Yanya Wang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Jing Zhao
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Chang Yan
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Yingjie Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Ning Liu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Yinghe Qin
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Hu L, Cheng Z, Chu H, Wang W, Jin Y, Yang L. TRIF-dependent signaling and its role in liver diseases. Front Cell Dev Biol 2024; 12:1370042. [PMID: 38694821 PMCID: PMC11061444 DOI: 10.3389/fcell.2024.1370042] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/08/2024] [Indexed: 05/04/2024] Open
Abstract
TIR domain-containing adaptor inducing IFN-β (TRIF) is a crucial adaptor molecule downstream of toll-like receptors 3 (TLR3) and 4 (TLR4). TRIF directly binds to TLR3 through its TIR domain, while it associates with TLR4 indirectly through the bridge adaptor molecule TRIF-related adaptor molecule (TRAM). TRIF plays a pivotal role in regulating interferon beta 1 (IFN-β) response, nuclear factor kappa B (NF-κB) signaling, apoptosis, and necroptosis signaling mediated by TLR3 and TLR4. It accomplishes these by recruiting and activating various kinases or transcription factors via its distinct domains. In this review, we comprehensively summarize the TRIF-dependent signaling pathways mediated by TLR3 and TLR4, elucidating key target molecules and downstream pathways. Furthermore, we provide an overview of TRIF's impact on several liver disorders, including drug-induced liver injury, ischemia-reperfusion liver injury, autoimmune hepatitis, viral hepatitis, alcohol-associated liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH). We also explore its effects on liver steatosis, inflammation, fibrosis, and carcinogenesis. A comprehensive understanding of the TRIF-dependent signaling pathways, as well as the intricate relationship between TRIF and liver diseases, can facilitate the identification of potential drug targets and the development of novel and effective therapeutics against hepatic disorders.
Collapse
Affiliation(s)
| | | | | | | | - Yu Jin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Zhang H, Li C, Han L, Xiao Y, Bian J, Liu C, Gong L, Liu Z, Wang M. MUP1 mediates urolithin A alleviation of chronic alcohol-related liver disease via gut-microbiota-liver axis. Gut Microbes 2024; 16:2367342. [PMID: 38889450 PMCID: PMC11188796 DOI: 10.1080/19490976.2024.2367342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
Alcohol-related liver disease (ALD) is recognized as a global health crisis, contributing to approximately 20% of liver cancer-associated fatalities. Dysbiosis of the gut microbiome is associated with the development of ALD, with the gut microbial metabolite urolithin A (UA) exhibiting a potential for alleviating liver symptoms. However, the protective efficacy of UA against ALD and its underlying mechanism mediated by microbiota remain elusive. In this study, we provide evidence demonstrating that UA effectively ameliorates alcohol-induced metabolic disorders and hepatic endoplasmic reticulum (ER) stress through a specific gut-microbiota-liver axis mediated by major urinary protein 1 (MUP1). Moreover, UA exhibited the potential to restore alcohol-induced dysbiosis of the intestinal microbiota by enriching the abundance of Bacteroides sartorii (B. sartorii), Parabacteroides distasonis (P. distasonis), and Akkermansia muciniphila (A. muciniphila), along with their derived metabolite propionic acid. Partial attenuation of the hepatoprotective effects exerted by UA was observed upon depletion of gut microbiota using antibiotics. Subsequently, a fecal microbiota transplantation (FMT) experiment was conducted to evaluate the microbiota-dependent effects of UA in ALD. FMT derived from mice treated with UA exhibited comparable efficacy to direct UA treatment, as it effectively attenuated ER stress through modulation of MUP1. It was noteworthy that strong associations were observed among the hepatic MUP1, gut microbiome, and metabolome profiles affected by UA. Intriguingly, oral administration of UA-enriched B. sartorii, P. distasonis, and A. muciniphila can enhance propionic acid production to effectively suppress ER stress via MUP1, mimicking UA treatment. Collectively, these findings elucidate the causal mechanism that UA alleviated ALD through the gut-microbiota-liver axis. This unique mechanism sheds light on developing novel microbiome-targeted therapeutic strategies against ALD.
Collapse
Affiliation(s)
- Hongbo Zhang
- College of Food Science and Engineering, Northwest A&F University, Yang ling, Shaanxi, China
| | - Chaoyue Li
- College of Food Science and Engineering, Northwest A&F University, Yang ling, Shaanxi, China
| | - Lin Han
- College of Food Science and Engineering, Northwest A&F University, Yang ling, Shaanxi, China
| | - Yao Xiao
- College of Food Science and Engineering, Northwest A&F University, Yang ling, Shaanxi, China
| | - Ji Bian
- Kolling Institute, Sydney Medical School, Royal North Shore Hospital, University of Sydney, Sydney, Australia
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, P.R. China
| | - Lan Gong
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campus, University of New South Wales, Sydney, Australia
| | - Zhigang Liu
- College of Food Science and Engineering, Northwest A&F University, Yang ling, Shaanxi, China
| | - Min Wang
- College of Food Science and Engineering, Northwest A&F University, Yang ling, Shaanxi, China
| |
Collapse
|
13
|
Chen Y, Zhu S, Lin Z, Zhang Y, Jin C, He S, Chen X, Zhou X. Metformin alleviates ethanol-induced cardiomyocyte injury by activating AKT/Nrf2 signaling in an ErbB2-dependent manner. Mol Biol Rep 2023; 50:3469-3478. [PMID: 36765018 DOI: 10.1007/s11033-023-08310-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/26/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND Metformin, a first-line oral anti-diabetic drug, has recently been reported to exert protective effect on various cardiovascular diseases. However, the potential role of metformin in ethanol-induced cardiomyocyte injury is still unknown. Therefore, this study was aimed to investigate the effect of metformin on ethanol-induced cardiomyocyte injury and its underlying mechanism. METHODS AND RESULTS H9c2 cardiomyocytes were exposed to ethanol for 24 h to establish an ethanol-induced cardiomyocyte injury model, and followed by treatment with metformin in the presence or absence of Lapatinib (an ErbB2 inhibition). CCK8 and LDH assays demonstrated that metformin improved cell viability in cardiomyocytes exposed to ethanol. Furthermore, metformin suppressed cardiomyocyte apoptosis and reduced the expressions of apoptosis-related proteins (Bax and C-CAS-3). In addition, our results showed that metformin activated the AKT/Nrf2 pathway, and then promoted Nrf2 nuclear translocation and the transcription of its downstream antioxidant genes (HO-1, CAT and SOD2), thereby inhibiting oxidative stress. Interestingly, we found that ErbB2 protein expression was significantly inhibited in ethanol-treated cardiomyocytes, which was markedly reversed by metformin. In contrast, Lapatinib largely abrogated the activation of AKT/Nrf2 signaling by metformin, accompanied by the increases in oxidative stress and cardiomyocyte apoptosis, indicating that metformin prevented ethanol-induced cardiomyocyte injury in an ErbB2-dependent manner. CONCLUSION In summary, our study provides the first evidence that metformin protects cardiomyocyte against ethanol-induced oxidative stress and apoptosis by activating ErbB2-mediated AKT/Nrf2 signaling. Thus, metformin may be a potential novel treatment approach for alcoholic cardiomyopathy.
Collapse
Affiliation(s)
- Yunjie Chen
- Department of Pharmacy, Ningbo first Hospital, 315010, Ningbo, People's Republic of China.,Central Laboratory of the Medical Research Center, Ningbo First Hospital, 315010, Ningbo, People's Republic of China
| | - Suyan Zhu
- Department of Pharmacy, Ningbo first Hospital, 315010, Ningbo, People's Republic of China
| | - Zhu Lin
- Department of Pharmacy, Ningbo first Hospital, 315010, Ningbo, People's Republic of China
| | - Yuanbin Zhang
- Department of Pharmacy, Ningbo first Hospital, 315010, Ningbo, People's Republic of China.,Central Laboratory of the Medical Research Center, Ningbo First Hospital, 315010, Ningbo, People's Republic of China
| | - Cheng Jin
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China
| | - Shengqu He
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, People's Republic of China
| | - Xueqin Chen
- Department of Traditional Chinese Medicine, Ningbo First Hospital, 315010, Ningbo, People's Republic of China.
| | - Xuan Zhou
- Department of Pharmacy, Ningbo first Hospital, 315010, Ningbo, People's Republic of China.
| |
Collapse
|
14
|
Chen L, Yang P, Hu L, Yang L, Chu H, Hou X. Modulating phenylalanine metabolism by L. acidophilus alleviates alcohol-related liver disease through enhancing intestinal barrier function. Cell Biosci 2023; 13:24. [PMID: 36739426 PMCID: PMC9899391 DOI: 10.1186/s13578-023-00974-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/27/2023] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Impaired metabolic functions of gut microbiota have been demonstrated in alcohol-related liver disease (ALD), but little is known about changes in phenylalanine metabolism. METHODS Bacterial genomics and fecal metabolomics analysis were used to recognize the changes of phenylalanine metabolism and its relationship with intestinal flora. Intestinal barrier function was detected by intestinal alkaline phosphatase (IAP) activity, levels of tight junction protein expression, colonic inflammation and levels of serum LPS. Lactobacillus acidophilus was chosen to correct phenylalanine metabolism of ALD mice by redundancy analysis and Pearson correlation analysis. RESULTS Using 16S rRNA sequencing and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) methods, we identified elevated levels of phenylalanine and its' metabolites in the gut of alcohol-fed mice compared to control mice and were negatively correlated with the abundance of Lactobacillus, which mainly metabolized phenylalanine. The intestinal phenylalanine level was positively correlated with the colon inflammatory factors TNF-α and IL-6, and negatively correlated with ZO-1 and Occludin. While intestinal alkaline phosphatase (IAP) activity was negatively correlated with the colon inflammatory factors TNF-α, IL-6 and MCP-1, and positively correlated with ZO-1 and Occludin. Increased phenylalanine inhibited IAP activity, blocked LPS dephosphorylation, increased colonic inflammation and bacterial translocation. Phenylalanine supplementation aggravated alcohol-induced liver injury and intestinal barrier dysfunction. Among the 37 Lactobacillus species, the abundance of Lactobacillus acidophilus was most significantly decreased in ALD mice. Supplementation with L. acidophilus recovered phenylalanine metabolism and protected mice from alcohol-induced steatohepatitis. CONCLUSIONS Recovery of phenylalanine metabolism through the oral supplementation of L. acidophilus boosted intestinal barrier integrity and ameliorated experimental ALD.
Collapse
Affiliation(s)
- Liuying Chen
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Pengcheng Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Lilin Hu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|