1
|
Liu HH, Yang F, Zhang L, Zhang XL, Zhao N, Zhang ZY, Zhou JB, Wei TP, Qian LL, Ding LG, Wang RX. Decreased PLK2 promotes atrial fibrillation in diabetic mice through Nrf2/HO-1 pathway. Acta Diabetol 2025:10.1007/s00592-025-02480-9. [PMID: 40080197 DOI: 10.1007/s00592-025-02480-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/23/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is associated with an increased incidence of atrial fibrillation (AF). However, the exact mechanisms involved have not yet been fully elucidated. Dysregulation of cardiac potassium channels can trigger AF. This study aimed to investigate the mechanisms of abnormal expression of atrial potassium channel proteins Kv1.5, Kv4.2, and Kv4.3 in type 2 diabetic mice. METHODS The db/db mice and their control littermates were set as the T2DM group and the control (Con) group. Acetylcholine-calcium chloride was injected via the tail veins to induce AF. HL-1 cells were cultured with normal or high-glucose medium and treated with or without Dimethyl Fumarate (DMF) or hemin in vitro. The expression and cellular localization of proteins were evaluated by western blotting and immunofluorescence. RESULTS The results showed that high glucose impaired the expression of Kv1.5, Kv4.2 and Kv4.3 proteins both in vivo and in vitro, in parallel with a significant down-regulation of polo-like kinase 2 (PLK2), nuclear factor erythroid 2-related factor 2 (Nrf2), p-Nrf2 and heme oxygenase-1 (HO-1) proteins. Moreover, immunofluorescence revealed that both high glucose and PLK2 knockdown could result in reduced Nrf2 and p-Nrf2 expression and subsequent nuclear translocation. While overexpression of PLK2, treatment with DMF, an agonist of Nrf2, or hemin, an inducer of HO-1, could restore the reduction of Kv1.5, Kv4.2 and Kv4.3 proteins caused by high glucose. CONCLUSION Diabetes reduces the expression of Kv1.5, Kv4.2 and Kv4.3 proteins in atrial cells through inhibition of PLK2/Nrf2/HO-1 pathway, thereby leading to the increased susceptibility to AF in T2DM.
Collapse
Affiliation(s)
- Huan-Huan Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Fan Yang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Lei Zhang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Xiao-Lu Zhang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Ning Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Zhen-Ye Zhang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Jia-Bin Zhou
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Tian-Peng Wei
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Ling-Ling Qian
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China.
| | - Li-Gang Ding
- Cardiac Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Ru-Xing Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China.
| |
Collapse
|
2
|
Sheng Q, Yu Q, Lu S, Yang M, Fan X, Su H, Kong Z, Gao Y, Wang R, Lv Z. The inhibition of ZC3H13 attenuates G2/M arrest and apoptosis by alleviating NABP1 m6A modification in cisplatin-induced acute kidney injury. Cell Mol Life Sci 2025; 82:86. [PMID: 39985591 PMCID: PMC11846817 DOI: 10.1007/s00018-025-05596-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 12/22/2024] [Accepted: 01/15/2025] [Indexed: 02/24/2025]
Abstract
Acute kidney injury (AKI) is a clinical syndrome caused by various etiologies and causes a rapid decline in renal function in a short period of time. The most common internal modification of mRNAs is the N6-methyladenosine (m6A) modification, which is important for controlling gene expressions. However, the role of m6A modification in AKI is largely unknown. Here, we characterized the role of zinc finger CCCH-type containing 13 (ZC3H13), which is a type of m6A methyltransferases, in cisplatin-induced AKI mouse model and a cisplatin-treated human proximal tubular epithelial cell line (HK2 cells). The ZC3H13 knockdown attenuated the G2/M cell cycle arrest and apoptosis in HK2 cells. In the ZC3H13-overexpressed HK2 cells, the opposite was true. In the presence of cisplatin, mice with the AAV9-mediated silencing of ZC3H13 exhibited milder cell cycle arrest, apoptosis, and renal injury. In addition, we identified nucleic acid binding protein 1 (NABP1) as a target of ZC3H13, which was verified by knocking down and overexpressing ZC3H13 in HK2 cells. Moreover, we confirmed that the ZC3H13-mediated m6A modification stabilized NABP1 mRNA and was discriminated by insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1). In conclusion, ZC3H13 promoted the m6A modification of NABP1 and enhanced its mRNA stability through an IGF2BP1-dependent mechanism. The inhibition of ZC3H13 alleviated the G2/M cell cycle arrest, apoptosis and kidney injury by affecting the expression of NABP1. These results show that the ZC3H13/NABP1 axis is a promising AKI treatment target.
Collapse
Affiliation(s)
- Qinghao Sheng
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Qun Yu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Shangwei Lu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Meilin Yang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xiaoting Fan
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Hong Su
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Zhijuan Kong
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Ying Gao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
| |
Collapse
|
3
|
Dagar N, Jadhav HR, Gaikwad AB. Network pharmacology combined with molecular docking and dynamics to assess the synergism of esculetin and phloretin against acute kidney injury-diabetes comorbidity. Mol Divers 2025; 29:1-19. [PMID: 38578376 DOI: 10.1007/s11030-024-10829-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/21/2024] [Indexed: 04/06/2024]
Abstract
Acute kidney injury (AKI) is a global health concern with high incidence and mortality, where diabetes further worsens the condition. The available treatment options are not uniformly effective against the complex pathogenesis of AKI-diabetes comorbidity. Hence, combination therapies based on the multicomponent, multitarget approach can tackle more than one pathomechanism and can aid in AKI-diabetes comorbidity management. This study aimed to investigate the therapeutic potential of esculetin and phloretin combination against AKI-diabetes comorbidity by network pharmacology followed by validation by molecular docking and dynamics. The curative targets for diabetes, AKI, esculetin, and phloretin were obtained from DisGeNET, GeneCards, SwissTargetPrediction database. Further, the protein-protein interaction of the potential targets of esculetin and phloretin against AKI-diabetes comorbidity was investigated using the STRING database. Gene ontology and pathway enrichment analysis were performed with the help of the DAVID and KEGG databases, followed by network construction and analysis via Cytoscape. Molecular docking and dynamic simulations were performed to validate the targets of esculetin and phloretin against AKI-diabetes comorbidity. We obtained 6341 targets for AKI-diabetes comorbidity. Further, a total of 54 and 44 targets of esculetin and phloretin against AKI-diabetes comorbidity were retrieved. The top 10 targets for esculetin selected based on the degree value were AKR1B1, DAO, ESR1, PLK1, CA3, CA2, CCNE1, PRKN, HDAC2, and MAOA. Similarly, phloretin's 10 key targets were ACHE, CDK1, MAPK14, APP, CDK5R1, CCNE1, MAOA, MAOB, HDAC6, and PRKN. These targets were enriched in 58 pathways involved in the pathophysiology of AKI-diabetes comorbidity. Further, esculetin and phloretin showed an excellent binding affinity for these critical targets. The findings of this study suggest that esculetin and phloretin combination as a multicomponent multitarget therapy has the potential to prevent AKI-diabetes comorbidity.
Collapse
Affiliation(s)
- Neha Dagar
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, 333031, Rajasthan, India
| | - Hemant R Jadhav
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, 333031, Rajasthan, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, 333031, Rajasthan, India.
| |
Collapse
|
4
|
Fei X, Chen L, Gao J, Jiang X, Sun W, Cheng X, Zhao T, Zhao M, Zhu L. p53 lysine-lactylated modification contributes to lipopolysaccharide-induced proinflammatory activation in BV2 cell under hypoxic conditions. Neurochem Int 2024; 178:105794. [PMID: 38908518 DOI: 10.1016/j.neuint.2024.105794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
p53 has diversity functions in regulation of transcription, cell proliferation, cancer metastasis, etc. Recent studies have shown that p53 and nuclear factor-κB (NF-κB) co-regulate proinflammatory responses in macrophages. However, the role of p53 lysine lactylation (p53Kla) in mediating proinflammatory phenotypes in microglia under hypoxic conditions remains unclear. In the current study, we investigated the proinflammatory activation exacerbated by hypoxia and the levels of p53Kla in microglial cells. BV2 cells, an immortalized mouse microglia cell line, were divided into control, lipopolysaccharide (LPS)-induced, hypoxia (Hy), and LPS-Hy groups. The protein expression levels of p53 and p53Kla and the activation of microglia were compared among the four groups. Sodium oxamate and mutant p53 plasmids were transfected into BV2 cells to detect the effect of p53Kla on microglial proinflammatory activation. LPS-Hy stimulation significantly upregulated p53Kla levels in both the nucleus and the cytoplasm of BV2 cells. In contrast, the p53 protein levels were downregulated. LPS-Hy stimulation upregulated phosphorylated p65 protein levels in nuclear and activated the NF-κB pathway in BV2 cells, resulting in increased expression of pro-inflammatory cytokines (iNOS, IL6, IL1β, TNFα), enhanced cell viability, and concomitantly, increased cytotoxicity. In conclusion, p53 lysine-lactylated modification contributes to LPS-induced proinflammatory activation in BV2 cells under hypoxia through NF-κB pathway and inhibition of lactate production may alleviate neuroinflammatory injury.
Collapse
Affiliation(s)
- Xuechao Fei
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Lu Chen
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China; Hengyang Medical School, University of South China, Hunan, 421001, China
| | - Jiayue Gao
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Xiufang Jiang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Wen Sun
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Xiang Cheng
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Tong Zhao
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Ming Zhao
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| | - Lingling Zhu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China; Hengyang Medical School, University of South China, Hunan, 421001, China.
| |
Collapse
|
5
|
Kulkarni H, Dagar N, Gaikwad AB. Targeting polo-like kinase 1 to treat kidney diseases. Cell Biochem Funct 2024; 42:e4099. [PMID: 39016459 DOI: 10.1002/cbf.4099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/20/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
Globally, ∼850 million individuals suffer from some form of kidney disease. This staggering figure underscores the importance of continued research and innovation in the field of nephrology to develop effective treatments and improve overall global kidney health. In current research, the polo-like kinase (Plk) family has emerged as a group of highly conserved enzyme kinases vital for proper cell cycle regulation. Plks are defined by their N-terminal kinase domain and C-terminal polo-box domain, which regulate their catalytic activity, subcellular localization, and substrate recognition. Among the Plk family members, Plk1 has garnered significant attention due to its pivotal role in regulating multiple mitotic processes, particularly in the kidneys. It is a crucial serine-threonine (Ser-Thr) kinase involved in cell division and genomic stability. In this review, we delve into the types and functions of Plks, focusing on Plk1's significance in processes such as cell proliferation, spindle assembly, and DNA damage repair. The review also underscores Plk1's vital contributions to maintaining kidney homeostasis, elucidating its involvement in nuclear envelope breakdown, anaphase-promoting complex/cyclosome activation, and the regulation of mRNA translation machinery. Furthermore, the review discusses how Plk1 contributes to the development and progression of kidney diseases, emphasizing its overexpression in conditions such as acute kidney injury, chronic kidney disease, and so forth. It also highlights the importance of exploring Plk1 modulators as targeted therapies for kidney diseases in future. This review will help in understanding the role of Plk1 in kidney disease development, paving the way for the discovery and development of novel therapeutic approaches to manage kidney diseases effectively.
Collapse
Affiliation(s)
- Hrushikesh Kulkarni
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Neha Dagar
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| |
Collapse
|
6
|
Xu Z, Zhang M, Wang W, Zhou S, Yu M, Qiu X, Jiang S, Wang X, Tang C, Li S, Wang CH, Zhu R, Peng WX, Zhao L, Fu X, Patzak A, Persson PB, Zhao L, Mao J, Shu Q, Lai EY, Zhang G. Dihydromyricetin attenuates cisplatin-induced acute kidney injury by reducing oxidative stress, inflammation and ferroptosis. Toxicol Appl Pharmacol 2023; 473:116595. [PMID: 37328118 DOI: 10.1016/j.taap.2023.116595] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Cisplatin is effective against various types of cancers. However, its clinical application is limited owing to its adverse effects, especially acute kidney injury (AKI). Dihydromyricetin (DHM), a flavonoid derived from Ampelopsis grossedentata, has varied pharmacological activities. This research aimed to determine the molecular mechanism for cisplatin-induced AKI. METHODS A murine model of cisplatin-induced AKI (22 mg/kg, I.P.) and a HK-2 cell model of cisplatin-induced damage (30 μM) were established to evaluate the protective function of DHM. Renal dysfunction markers, renal morphology and potential signaling pathways were investigated. RESULTS DHM decreased the levels of renal function biomarkers (blood urea nitrogen and serum creatinine), mitigated renal morphological damage, and downregulated the protein levels of kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin. It upregulated the expression levels of antioxidant enzymes (superoxide dismutase and catalase expression), nuclear factor-erythroid-2-related factor 2 (Nrf2) and its downstream proteins, including heme oxygenase-1 (HO-1), glutamate-cysteine ligase catalytic (GCLC) and modulatory (GCLM) subunits, thus eventually reducing cisplatin-induced reactive oxygen species (ROS) production. Moreover, DHM partially inhibited the phosphorylation of the active fragments of caspase-8 and -3 and mitogen-activated protein kinase and restored glutathione peroxidase 4 expression, which attenuated renal apoptosis and ferroptosis in cisplatin-treated animals. DHM also mitigated the activation of NLRP3 inflammasome and nuclear factor (NF)-κB, attenuating the inflammatory response. In addition, it reduced cisplatin-induced HK-2 cell apoptosis and ROS production, both of which were blocked by the Nrf2 inhibitor ML385. CONCLUSIONS DHM suppressed cisplatin-induced oxidative stress, inflammation and ferroptosis probably through regulating of Nrf2/HO-1, MAPK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Zheming Xu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Minjing Zhang
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Wenwen Wang
- Department of Pathology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310051, China
| | - Suhan Zhou
- Department of Physiology, School of Basic Medical Sciences, and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Minghua Yu
- Department of Pathology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xingyu Qiu
- Department of Physiology, School of Basic Medical Sciences, and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shan Jiang
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaohua Wang
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Chun Tang
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Shuijie Li
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Chih-Hong Wang
- Tulane Hypertension and Renal Center of Excellence, Department of Physiology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Runzhi Zhu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Wan Xin Peng
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Lin Zhao
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Xiaodong Fu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 510260, China
| | - Andreas Patzak
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Translational Physiology, Berlin, Germany
| | - Pontus B Persson
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Translational Physiology, Berlin, Germany
| | - Liang Zhao
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China; Children's Hospital, Zhejiang University School of Medicine, Pediatric Nephrology & Urology Medical Research Center, Hangzhou 310052, China
| | - Jianhua Mao
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China; Children's Hospital, Zhejiang University School of Medicine, Pediatric Nephrology & Urology Medical Research Center, Hangzhou 310052, China
| | - Qiang Shu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China.
| | - En Yin Lai
- Department of Physiology, School of Basic Medical Sciences, and Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Translational Physiology, Berlin, Germany.
| | - Gensheng Zhang
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China; Children's Hospital, Zhejiang University School of Medicine, Pediatric Nephrology & Urology Medical Research Center, Hangzhou 310052, China.
| |
Collapse
|
7
|
Tan S, Zhao J, Wang P. DYRK1A-mediated PLK2 phosphorylation regulates the proliferation and invasion of glioblastoma cells. Int J Oncol 2023; 63:94. [PMID: 37387444 PMCID: PMC10552692 DOI: 10.3892/ijo.2023.5542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
Polo-like kinases (PLKs) are a family of serine-threonine kinases that exert regulatory effects on diverse cellular processes. Dysregulation of PLKs has been implicated in multiple cancers, including glioblastoma (GBM). Notably, PLK2 expression in GBM tumor tissue is lower than that in normal brains. Notably, high PLK2 expression is significantly correlated with poor prognosis. Thus, it can be inferred that PLK2 expression alone may not be sufficient for accurate prognosis evaluation, and there are unknown mechanisms underlying PLK2 regulation. In the present study, it was demonstrated that dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) interacts with and phosphorylates PLK2 at Ser358. DYRK1A-mediated phosphorylation of PLK2 increases its protein stability. Moreover, PLK2 kinase activity was markedly induced by DYRK1A, which was exemplified by the upregulation of alpha-synuclein S129 phosphorylation. Furthermore, it was found that phosphorylation of PLK2 by DYRK1A contributes to the proliferation, migration and invasion of GBM cells. DYRK1A further enhances the inhibition of the malignancy of GBM cells already induced by PLK2. The findings of the present study indicate that PLK2 may play a crucial role in GBM pathogenesis partially in a DYRK1A-dependent manner, suggesting that PLK2 Ser358 may serve as a therapeutic target for GBM.
Collapse
Affiliation(s)
- Shichuan Tan
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission (NHC) Key Laboratory of Otorhinolaryngology, Shandong University
- Department of Emergency Neurosurgical Intensive Care Unit, Qilu Hospital of Shandong University
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Juan Zhao
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission (NHC) Key Laboratory of Otorhinolaryngology, Shandong University
| | - Pin Wang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission (NHC) Key Laboratory of Otorhinolaryngology, Shandong University
| |
Collapse
|
8
|
Acidosis Activates the Nrf2 Pathway in Renal Proximal Tubule-Derived Cells through a Crosstalk with Renal Fibroblasts. Antioxidants (Basel) 2023; 12:antiox12020412. [PMID: 36829971 PMCID: PMC9952787 DOI: 10.3390/antiox12020412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Crosstalk of renal epithelial cells with interstitial fibroblasts plays an important role in kidney pathophysiology. A previous study showed that crosstalk between renal epithelial cells and renal fibroblasts protects against acidosis-induced damage. In order to gain further mechanistic insight into this crosstalk, we investigated the effect of acidosis on the transcriptome of renal epithelial cells (NRK-52E) and renal fibroblasts (NRK-49F) in co-culture by RNASeq, bioinformatics analysis and experimental validation. Cells were exposed to acidic media or control media for 48 h. RNA and protein from whole cell lysate were isolated. In addition, cells were fractionated into cytosol, nucleus and chromatin. RNASeq data were analyzed for differential expression and pathway enrichment (ingenuity pathway analysis, IPA, QIAGEN). Total and phosphorylated protein expression was assessed by Western blot (WB). Transcription factor activity was assessed by luciferase reporter assay. Bioinformatic analysis using differentially expressed genes according to RNASeq (7834 for NRK-52E and 3197 for NRK-49F) predicted the antioxidant and cell-protective Nrf2 pathway as acidosis-induced in NRK-52E and NRK-49F cells. Activation of Nrf2 comprises enhanced Nrf2 phosphorylation, nuclear translocation, DNA binding and initiation of a cell protective transcriptional program. Our data show that acidosis enhances chromatin-associated Nrf2 expression and the abundance of phosphorylated Nrf2 in the chromatin fraction of NRK-52E cells in co-culture but not in monoculture. Furthermore, acidosis enhances the activity of a reporter for Nrf2 (ARE-luciferase). Despite the bioinformatics prediction, NRK-49F cells did not respond with Nrf2 activation. Transketolase (TKT) is an important regulator of antioxidant and homeostatic responses in the kidney and a canonical Nrf2 target gene. We show that protein and mRNA expression of TKT is increased in NRK-52E cells under co-culture but not under monoculture conditions. In conclusion, our data show that extracellular acidosis activates the cytoprotective transcription factor Nrf2 in renal epithelial cells co-cultivated with renal fibroblasts, thereby enhancing the expression of cytoprotective TKT. This protective response is not observed in monoculture. Activation of the Nrf2 pathway represents a co-operative cellular strategy of protection against acidosis.
Collapse
|