1
|
Varnaitė-Žuravliova S, Baltušnikaitė-Guzaitienė J. Properties, Production, and Recycling of Regenerated Cellulose Fibers: Special Medical Applications. J Funct Biomater 2024; 15:348. [PMID: 39590552 PMCID: PMC11595832 DOI: 10.3390/jfb15110348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/31/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Regenerated cellulose fibers are a highly adaptable biomaterial with numerous medical applications owing to their inherent biocompatibility, biodegradability, and robust mechanical properties. In the domain of wound care, regenerated cellulose fibers facilitate a moist environment conducive to healing, minimize infection risk, and adapt to wound topographies, making it ideal for different types of dressings. In tissue engineering, cellulose scaffolds provide a matrix for cell attachment and proliferation, supporting the development of artificial skin, cartilage, and other tissues. Furthermore, regenerated cellulose fibers, used as absorbable sutures, degrade within the body, eliminating the need for removal and proving advantageous for internal suturing. The medical textile industry relies heavily on regenerated cellulose fibers because of their unique properties that make them suitable for various applications, including wound care, surgical garments, and diagnostic materials. Regenerated cellulose fibers are produced by dissolving cellulose from natural sources and reconstituting it into fiber form, which can be customized for specific medical uses. This paper will explore the various types, properties, and applications of regenerated cellulose fibers in medical contexts, alongside an examination of its manufacturing processes and technologies, as well as associated challenges.
Collapse
Affiliation(s)
- Sandra Varnaitė-Žuravliova
- Department of Textile Technologies, Center for Physical Sciences and Technology, Demokratų Str. 53, LT-48485 Kaunas, Lithuania;
| | | |
Collapse
|
2
|
Liang P, Chen X, Wang J, Cai C, He M, Li X, Li Y, Koskela S, Xu D. Regenerated cellulose films with controllable microporous structure for enhanced seed germination. Int J Biol Macromol 2024; 279:135287. [PMID: 39233169 DOI: 10.1016/j.ijbiomac.2024.135287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/23/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
In this work, the preparation of high-performance and porous regenerated cellulose (RCNH) films for seed germination application were investigated. The films were prepared from bamboo-based cellulose carbamate-NaOH/ZnO/urea and coagulated using environmentally friendly aqueous solution of (NH4)2SO4. The results showed that the pore size of the films could be efficiently controlled by changing the concentration and temperature of the coagulation bath. In a mild environment, the system remains undisturbed, resulting in slow diffusion between the solvent and coagulation bath. This allows for the cellulose molecular chains to align in parallel and self-aggregate, forming a three-dimensional network structure. Therefore, the best mechanical properties were demonstrated by a film coagulated using 5 wt% (NH4)2SO4 solution at 10 °C. This film showed excellent tensile strength of 108 MPa and high elongation at break (35 %). As compared to a plastic wrap, the film demonstrated higher permeability for oxygen, and a moisture retaining ability. Due to these properties, it could be used as an agricultural film to encase and promote the growth of mung bean seeds. Moreover, the film was biodegradable with a short decomposition time, losing 90.75 % of its original mass after 63 days. In a summary, this work provides a route for robust, biodegradable, and permeable regenerated cellulose films with potential applications as biodegradable agricultural mulches.
Collapse
Affiliation(s)
- Pin Liang
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, PR China
| | - Xiaoping Chen
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, PR China
| | - Junmei Wang
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, PR China
| | - Chunsheng Cai
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, PR China.
| | - Meng He
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Xingxing Li
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, PR China
| | - Yibao Li
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, PR China
| | - Salla Koskela
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| | - Dingfeng Xu
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, PR China.
| |
Collapse
|
3
|
Zhang G, Li Y, Ke Q, Bai J, Luo F, Zhang J, Ding Y, Chen J, Liu P, Wang S, Gao C, Yang M. Preparation of Rechargeable Antibacterial Polypropylene/N-Halamine Materials Based on Melt Blending and Surface Segregation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47531-47540. [PMID: 37787377 DOI: 10.1021/acsami.3c10257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Polypropylene (PP) has been widely used in health care and food packaging fields, however, it lacks antibacterial properties. Herein, we prepared the polymeric antibacterial agents (MPP-NDAM) by an in situ amidation reaction between 2,4-diamino-6-dialkylamino-1,3,5-triazine (NDAM) and maleic anhydride grafted polypropylene (MPP) using the melt grafting method. The effects of reaction time and monomer content on the grafting degree of N-halamine were investigated, and a grafting degree of 4.86 wt % was achieved under the optimal reaction conditions. PP/MPP-NDAM composites were further obtained by a melt blending process between PP and MPP-NDAM. With the adoption of surface segregation technology, the content of N-halamine structure on the surface of PP/MPP-NDAM composites was significantly increased. The antibacterial tests showed that the PP/MPP-NDAM composite could achieve 99.9% bactericidal activity against 1.0 × 107 CFU/mL of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) within 10 and 5 min of contact, respectively. The antibacterial effect became more pronounced with the prolongation of chlorinated time, and it could achieve 99.9% bactericidal activity against E. coli within merely 1 min of contact.
Collapse
Affiliation(s)
- Ge Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastic, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuke Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Qining Ke
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastic, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Junchen Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastic, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Fushuai Luo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastic, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiacheng Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastic, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yanfen Ding
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastic, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Juan Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastic, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Peng Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastic, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Chong Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastic, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Mingshu Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastic, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
4
|
Soliman AIA, Díaz Baca JA, Fatehi P. One-pot synthesis of magnetic cellulose nanocrystal and its post-functionalization for doxycycline adsorption. Carbohydr Polym 2023; 308:120619. [PMID: 36813331 DOI: 10.1016/j.carbpol.2023.120619] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 01/29/2023]
Abstract
The composite of magnetite (Fe3O4) and cellulose nanocrystal (CNC) is considered a potential adsorbent for water treatment and environmental remediation. In the current study, a one-pot hydrothermal procedure was utilized for magnetic cellulose nanocrystal (MCNC) development from microcrystalline cellulose (MCC) in the presence of ferric chloride, ferrous chloride, urea, and hydrochloric acid. The x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), and Fourier-transform infrared spectroscopy analysis confirmed the presence of CNC and Fe3O4, while transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis verified their respective sizes (< 400 nm and ≤ 20 nm) in the generated composite. To have an efficient adsorption activity for doxycycline hyclate (DOX), the produced MCNC was post-treated using chloroacetic acid (CAA), chlorosulfonic acid (CSA), or iodobenzene (IB). The introduction of carboxylate, sulfonate, and phenyl groups in the post-treatment was confirmed by FTIR and XPS analysis. Such post treatments decreased the crystallinity index and thermal stability of the samples but improved their DOX adsorption capacity. The adsorption analysis at different pHs revealed the increase in the adsorption capacity by reducing the basicity of the medium due to decreasing electrostatic repulsions and inducing strong attractions.
Collapse
Affiliation(s)
- Ahmed I A Soliman
- Biorefining Research Institute and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B5E1, Canada; Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Jonathan A Díaz Baca
- Biorefining Research Institute and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B5E1, Canada
| | - Pedram Fatehi
- Biorefining Research Institute and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B5E1, Canada.
| |
Collapse
|
5
|
Feng Z, Xu D, Shao Z, Zhu P, Qiu J, Zhu L. Rice straw cellulose microfiber reinforcing PVA composite film of ultraviolet blocking through pre-cross-linking. Carbohydr Polym 2022; 296:119886. [DOI: 10.1016/j.carbpol.2022.119886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 11/02/2022]
|
6
|
Chen X, Niu K, Xue Z, Liu X, Liu B, Zhang B, Zeng H, Lv W, Zhang Y, Wu Y. Ultrafine platinum nanoparticles supported on N,S-codoped porous carbon nanofibers as efficient multifunctional materials for noticeable oxygen reduction reaction and water splitting performance. NANOSCALE ADVANCES 2022; 4:1639-1648. [PMID: 36134368 PMCID: PMC9417137 DOI: 10.1039/d2na00014h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/11/2022] [Indexed: 05/30/2023]
Abstract
The design of highly active, stable and durable platinum-based electrocatalysts towards the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and hydrogen adsorption has a high and urgent demand in fuel cells, water splitting and hydrogen storage. Herein, ultrafine platinum nanoparticles (Pt NPs) supported on N,S-codoped porous carbon nanofibers (Pt-N,S-pCNFs) hybrids were prepared through the electrospinning method coupled with hydrothermal and carbonation processes. The ultrafine Pt NPs are sufficiently dispersed and loaded on pCNFs and codoped with N and S, which can improve oxygen adsorption, afford more active sites, and greatly enhance electron mobility. The Pt-N,S-pCNFs hybrid achieves excellent activity and stability for ORR with ∼70 mV positive shift of onset potential compared to the commercial Pt/C-20 wt% electrocatalyst. The long-term catalytic durability with 89.5% current retention after a 10 000 s test indicates its remarkable ORR behavior. Pt-N,S-pCNFs also exhibits excellent HER and OER performance, and can be used as an efficient catalyst for water splitting. In addition, Pt-N,S-pCNFs exhibits an excellent hydrogen storage capacity of 0.76 wt% at 20 °C and 10 MPa. This work provides novel design strategies for the development of multifunctional materials as high-performance ORR catalysts, water splitting electrocatalysts and hydrogen storage materials.
Collapse
Affiliation(s)
- Xiaohong Chen
- Institute of Advanced Materials, North China Electric Power University Beijing
| | - Kai Niu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University No. 800 Dongchuan Rd. Minhang District Shanghai 200240 China
| | - Zhiyong Xue
- Institute of Advanced Materials, North China Electric Power University Beijing
| | - Xundao Liu
- School of Materials Science and Engineering, University of Jinan Jinan 250022 China
| | - Bogu Liu
- Institute of Advanced Materials, North China Electric Power University Beijing
| | - Bao Zhang
- Institute of Advanced Materials, North China Electric Power University Beijing
| | - Hong Zeng
- Institute of Advanced Materials, North China Electric Power University Beijing
| | - Wei Lv
- Institute of Advanced Materials, North China Electric Power University Beijing
| | - Yongming Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University No. 800 Dongchuan Rd. Minhang District Shanghai 200240 China
| | - Ying Wu
- Institute of Advanced Materials, North China Electric Power University Beijing
| |
Collapse
|
7
|
Chen X, Xue Z, Zheng Y, Liu X, Zhang Y. Uniformly dispersed platinum nanoparticles over nitrogen-doped reduced graphene oxide as an efficient electrocatalyst for the oxygen reduction reaction. RSC Adv 2021; 11:34125-34131. [PMID: 35497304 PMCID: PMC9042399 DOI: 10.1039/d1ra04857k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/14/2021] [Indexed: 11/21/2022] Open
Abstract
Oxygen reduction reaction (ORR) with efficient activity and stability is significant for fuel cells. Herein, platinum (Pt) nanoparticles dispersed on nitrogen-doped reduced graphene oxide (N-rGO) were prepared by a hydrothermal and carbonized approach for the electrocatalysis of ORR. Polyvinylpyrrolidone plays a significant role in the reduction and dispersion of platinum particles (about 2 nm). The obtained Pt–N-rGO hybrids exhibited superior activity with an electron transfer number of ∼4.0, onset potential 0.90 eV of ORR, good stability and methanol tolerance in alkaline media. These results reveal the interactions between Pt–N-rGO and oxygen molecules, which may represent an oxygen modified growth in catalyst preparation. The excellent electrocatalysis may lead to the decreased consumption of expensive Pt and open up new opportunities for applications in lithium air batteries. We developed a facile, yet general approach to prepare ultrafine Pt nanoparticles loaded on N-doped reduced graphene (Pt–N-rGO) composites, which showed excellent oxygen reduction reaction performance.![]()
Collapse
Affiliation(s)
- Xiaohong Chen
- Institute for Advanced Materials, North China Electric Power University, Beijing, China
| | - Zhiyong Xue
- Institute for Advanced Materials, North China Electric Power University, Beijing, China
| | - Yafei Zheng
- Institute for Advanced Materials, North China Electric Power University, Beijing, China
| | - Xundao Liu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Yongming Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai 200240, China
| |
Collapse
|