1
|
Rahmanian-Devin P, Baradaran Rahimi V, Jaafari MR, Golmohammadzadeh S, Sanei-far Z, Askari VR. Noscapine, an Emerging Medication for Different Diseases: A Mechanistic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8402517. [PMID: 34880922 PMCID: PMC8648453 DOI: 10.1155/2021/8402517] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/08/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022]
Abstract
Noscapine is a benzylisoquinoline alkaloid isolated from poppy extract, used as an antitussive since the 1950s, and has no addictive or euphoric effects. Various studies have shown that noscapine has excellent anti-inflammatory effects and potentiates the antioxidant defences by inhibiting nitric oxide (NO) metabolites and reactive oxygen species (ROS) levels and increasing total glutathione (GSH). Furthermore, noscapine has indicated antiangiogenic and antimetastatic effects. Noscapine induces apoptosis in many cancerous cell types and provides favourable antitumour activities and inhibitory cell proliferation in solid tumours, even drug-resistant strains, via mitochondrial pathways. Moreover, this compound attenuates the dynamic properties of microtubules and arrests the cell cycle in the G2/M phase. Noscapine can reduce endothelial cell migration in the brain by inhibiting endothelial cell activator interleukin 8 (IL-8). In fact, this study aimed to elaborate on the possible mechanisms of noscapine against different disorders.
Collapse
Affiliation(s)
- Pouria Rahmanian-Devin
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shiva Golmohammadzadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Sanei-far
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Hsieh YS, Kwon S, Lee HS, Seol GH. Linalyl acetate prevents hypertension-related ischemic injury. PLoS One 2018; 13:e0198082. [PMID: 29799836 PMCID: PMC5969747 DOI: 10.1371/journal.pone.0198082] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/14/2018] [Indexed: 01/01/2023] Open
Abstract
Ischemic stroke remains an important cause of disability and mortality. Hypertension is a critical risk factor for the development of ischemic stroke. Control of risk factors, including hypertension, is therefore important for the prevention of ischemic stroke. Linalyl acetate (LA) has been reported to have therapeutic effects in ischemic stroke by modulating intracellular Ca2+ concentration and having anti-oxidative properties. The preventive efficacy of LA has not yet been determined. This study therefore investigated the preventive efficacy of LA in rat aortas exposed to hypertension related-ischemic injury, and the mechanism of action of LA.Hypertension was induced in vivo following ischemic injury to the aorta induced by oxygen-glucose deprivation and reoxygenation in vitro. Effects of LA were assayed by western blotting, by determining concentrations of lactate dehydrogenase (LDH) and reactive oxygen species (ROS) and by vascular contractility assays. LA significantly reduced systolic blood pressure in vivo. In vitro, LA suppressed ischemic injury-induced expression of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit p47phox, as well as ROS production, LDH release, and ROS-induced endothelial nitric oxide synthase suppression. These findings indicate that LA has anti-hypertensive properties that can prevent hypertension-related ischemic injury and can prevent NADPH oxidase-induced production of ROS.
Collapse
Affiliation(s)
- Yu Shan Hsieh
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul, Republic of Korea
| | - Soonho Kwon
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul, Republic of Korea
| | - Hui Su Lee
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul, Republic of Korea
| | - Geun Hee Seol
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Kolesár D, Kolesárová M, Pavel J, Dávidová A, Maršala J, Lukáčová N. Region-specific sensitivity of the spinal cord to ischemia/reperfusion: the dynamic of changes in catalytic NOS activity. J Physiol Sci 2009; 59:97-103. [PMID: 19340549 PMCID: PMC10717880 DOI: 10.1007/s12576-008-0013-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 11/21/2008] [Indexed: 01/21/2023]
Abstract
This study was designed in order to consider whether the release of neuronally derived nitric oxide (NO) in the lumbosacral spinal cord during ischemia/reperfusion is region-specific and whether changes in Ca(2+)-dependent NO synthase (cNOS) activity paralell with functional outcome. The cNOS activity was measured in the spinal cord regions after 13-, 15- and 17-min ischemia alone and that followed by 24 h of reperfusion. In addition, the Tarlov's criteria were applied to define the neurological consequences of ischemia/reperfusion in experimental animals. Based on the results, it is evident that only the 17-min ischemia alone was quite sufficient to cause changes in cNOS activity, however, without alterations in functional outcomes. On the other hand, the ischemic episodes followed by reperfusion caused dynamic, region-specific alterations in cNOS activity and consequently led to deterioration of motor function of hindlimbs in affected animals. Our results indicate that the motoneurons in the ventral horns respond more sensitively to ischemia/reperfusion than do neurons localized in the other spinal cord regions and that changes in cNOS activity may also influence the axonal conductance in the white matter and account for the impairment of motoneuronal activity in affected animals.
Collapse
Affiliation(s)
- D. Kolesár
- Institute of Neurobiology, Slovak Academy of Sciences, Šoltésovej 4, 040 01 Košice, Slovak Republic
- Department of Research and Science, Office of Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - M. Kolesárová
- Institute of Neurobiology, Slovak Academy of Sciences, Šoltésovej 4, 040 01 Košice, Slovak Republic
| | - J. Pavel
- Institute of Neurobiology, Slovak Academy of Sciences, Šoltésovej 4, 040 01 Košice, Slovak Republic
| | - A. Dávidová
- Institute of Neurobiology, Slovak Academy of Sciences, Šoltésovej 4, 040 01 Košice, Slovak Republic
| | - J. Maršala
- Institute of Neurobiology, Slovak Academy of Sciences, Šoltésovej 4, 040 01 Košice, Slovak Republic
| | - N. Lukáčová
- Institute of Neurobiology, Slovak Academy of Sciences, Šoltésovej 4, 040 01 Košice, Slovak Republic
| |
Collapse
|
5
|
Sivonová M, Kaplán P, Duracková Z, Dobrota D, Drgová A, Tatarková Z, Pavlíková M, Halasová E, Lehotský J. Time course of peripheral oxidative stress as consequence of global ischaemic brain injury in rats. Cell Mol Neurobiol 2008; 28:431-41. [PMID: 18058017 PMCID: PMC11515441 DOI: 10.1007/s10571-007-9246-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Accepted: 11/17/2007] [Indexed: 10/22/2022]
Abstract
Free radicals play an important role in the pathogenesis of brain injury. This study evaluates the potential relationship between ischaemia/reperfusion (I/R)-induced brain injury, peripheral oxidative stress (lymphocyte DNA damage), plasma antioxidant potential and uric acid levels. We observed that 15 min of ischaemia were sufficient to significantly increase lymphocyte DNA damage that remained elevated at the end of early (3 h) reperfusion and at later (72 h) reperfusion time; this parameter was not significantly increased, when compared to preoperated levels. In parallel, antioxidant potential was elevated after 15 min of ischaemia, remained high at early (3 h) reperfusion and decreased again with longer (72 h) reperfusion. A close association between the plasma antioxidant status and the uric acid content has been confirmed by findings that changes in TRAP values positively correlate with uric acid concentration in rat plasma after ischaemic injury. Moreover, results of in vitro experiments with extra uric acid addition to control plasma have shown that uric acid contributes to a greater part of TRAP values. These results indicate a similar time course of brain I/R-associated oxidative stress and peripheral antioxidant defence status and/or oxidative stress in animal experiments.
Collapse
Affiliation(s)
- Monika Sivonová
- Jessenius Faculty of Medicine, Department of Medical Biochemistry, Comenius University, Malá hora 4, 036 01, Martin, Slovakia.
| | | | | | | | | | | | | | | | | |
Collapse
|