1
|
Pozzi M, Vantaggiato C, Brivio F, Orso G, Bassi MT. Olanzapine, risperidone and ziprasidone differently affect lysosomal function and autophagy, reflecting their different metabolic risk in patients. Transl Psychiatry 2024; 14:13. [PMID: 38191558 PMCID: PMC10774340 DOI: 10.1038/s41398-023-02686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
The metabolic effects induced by antipsychotics in vitro depend on their action on the trafficking and biosynthesis of sterols and lipids. Previous research showed that antipsychotics with different adverse effects in patients cause similar alterations in vitro, suggesting the low clinical usefulness of cellular studies. Moreover, the inhibition of peripheral AMPK was suggested as potential aetiopathogenic mechanisms of olanzapine, and different effects on autophagy were reported for several antipsychotics. We thus assessed, in clinically-relevant culture conditions, the aetiopathogenic mechanisms of olanzapine, risperidone and ziprasidone, antipsychotics with respectively high, medium, low metabolic risk in patients, finding relevant differences among them. We highlighted that: olanzapine impairs lysosomal function affecting autophagy and autophagosome clearance, and increasing intracellular lipids and sterols; ziprasidone activates AMPK increasing the autophagic flux and reducing intracellular lipids; risperidone increases lipid accumulation, while it does not affect lysosomal function. These in vitro differences align with their different impact on patients. We also provided evidence that metformin add-on improved autophagy in olanzapine-treated cells and reduced lipid accumulation induced by both risperidone and olanzapine in an AMPK-dependent way; metformin also increased the production of bile acids to eliminate cholesterol accumulations caused by olanzapine. These results have different clinical implications. We demonstrated that antipsychotics with different metabolic impacts on patients actually have different mechanisms of action, thus supporting the possibility of a personalised antipsychotic treatment. Moreover, we found that metformin can fully revert the phenotype caused by risperidone but not the one caused by olanzapine, that still activates SREBP2.
Collapse
Affiliation(s)
- Marco Pozzi
- Scientific Institute IRCCS Eugenio Medea, Laboratory of Molecular Biology, Via D. L. Monza 20, 23842, Bosisio Parini, Lecco, Italy.
| | - Chiara Vantaggiato
- Scientific Institute IRCCS Eugenio Medea, Laboratory of Molecular Biology, Via D. L. Monza 20, 23842, Bosisio Parini, Lecco, Italy
| | - Francesca Brivio
- Scientific Institute IRCCS Eugenio Medea, Laboratory of Molecular Biology, Via D. L. Monza 20, 23842, Bosisio Parini, Lecco, Italy
| | - Genny Orso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo E. Meneghetti 2, Padova, Italy
| | - Maria Teresa Bassi
- Scientific Institute IRCCS Eugenio Medea, Laboratory of Molecular Biology, Via D. L. Monza 20, 23842, Bosisio Parini, Lecco, Italy
| |
Collapse
|
2
|
Han M, Lian J, Su Y, Deng C. Cevimeline co-treatment attenuates olanzapine-induced metabolic disorders via modulating hepatic M3 muscarinic receptor: AMPKα signalling pathway in female rats. J Psychopharmacol 2022; 36:202-213. [PMID: 34694173 DOI: 10.1177/02698811211050549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Olanzapine is one of the most commonly used antipsychotic drugs; however, its metabolic disorders are the main obstacle in the clinic. Olanzapine is a potent antagonist of the M3 acetylcholine muscarinic receptor (M3R), while the downregulated hepatic M3R-AMPKα signalling pathway is involved in metabolic disorders. AIM This study investigated the effects of chronic co-treatment with cevimeline (an agonist of M3Rs) in attenuating olanzapine-induced metabolic disorders and the underlying mechanisms. METHODS Forty-eight adult female Sprague-Dawley rats were treated orally with olanzapine (2 mg/kg, 3 times/day (t.i.d.)) and/or cevimeline (9 mg/kg, t.i.d.), or control (vehicle) for 9 weeks. RESULTS Cevimeline co-treatment significantly attenuated olanzapine-induced body weight gain and glucolipid metabolic disorders. Importantly, cevimeline co-treatment attenuated olanzapine-induced upregulation of M3Rs, while the co-treatment improved olanzapine-induced downregulation of AMPKα in the liver. Cevimeline co-treatment attenuated olanzapine-induced dyslipidaemia by modulating the hepatic M3R-AMPKα downstream pathways. Cevimeline co-treatment also improved lower activated AKT-GSK3β signalling to reverse impairment of glucose metabolism and insulin resistance caused by chronic olanzapine treatment. CONCLUSION These results not only support the important role of M3R antagonism and its related AMPKα and downstream pathways in antipsychotic-induced metabolic disorders but also indicate that these pathways might be promising targets for pharmacological intervention to control these side effects caused by antipsychotic therapy.
Collapse
Affiliation(s)
- Mei Han
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia.,School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Jiamei Lian
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia.,School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Yueqing Su
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia.,School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.,Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Chao Deng
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia.,School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
3
|
Samy DM, Mostafa DK, Abdelmonsif DA, Ismail CA, Hassaan PS. Crosstalk of hypothalamic chemerin, histamine, and AMPK in diet-and olanzapine-induced obesity in rats. Life Sci 2021; 284:119897. [PMID: 34450172 DOI: 10.1016/j.lfs.2021.119897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/01/2021] [Accepted: 08/06/2021] [Indexed: 11/29/2022]
Abstract
AIM Contradiction overwhelms chemerin link to feeding behavior. Neither the chemerin central role on appetite regulation nor its relation to hypothalamic histamine and AMPK is verified. MAIN METHODS Food intake, body weight and hypothalamic biochemical changes were assessed after a single intra-cerebroventricular or intraperitoneal injection (ip) (1 μg/kg or 16 μg/kg, respectively) or chronic ip administration (8 μg/kg/day) of chemerin for 14 or 28 days. Hypothalamic neurobiochemical changes in chemerin/histamine/AMPK induced by either 8-week high fat diet (HFD) or food restriction were also investigated. To confirm chemerin-histamine crosstalk, these neurobiochemical changes were assessed under settings of H1-receptor agonism and/or antagonism by betahistine and/or olanzapine, respectively for 3 weeks. KEY FINDINGS Chemerin-injected rats exhibited anorexigenic behavior in both acute and chronic studies that was associated with a decreased AMPK activity in the arcuate nucleus (ARC). However, with long-term administration, chemerin anorexigenic effect gradually ceased. Contrarily to food restriction, 8-week HFD increased ARC expression of chemerin and its receptor CMKLR1, reducing food intake via an interplay of H1-receptors and AMPK activity. Blockage of H1-receptors by olanzapine disrupted chemerin signaling pathway with an increased AMPK activity, augmenting food intake. These changes were reversed to normal by betahistine coadministration. SIGNIFICANCE Chemerin is an anorexigenic adipokine, whose dysregulation is implicated in diet, and olanzapine-induced obesity through a histamine/AMPK axis in the ARC. Hypothalamic chemerin/CMKLR1 expression is a dynamic time-dependent response to changes in body weight and/or food intake. Targeting chemerin as a novel therapeutic approach against antipsychotic- or diet-induced obesity is worth to be further delineated.
Collapse
Affiliation(s)
- Doaa M Samy
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Dalia Kamal Mostafa
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Doaa A Abdelmonsif
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt; Molecular Biology and Nanomedicine Labs, Centre of Excellence for Regenerative Medicine Research, University of Alexandria, Alexandria, Egypt
| | - Cherine A Ismail
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Passainte S Hassaan
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
4
|
Ashraf GM, Alghamdi BS, Alshehri FS, Alam MZ, Tayeb HO, Tarazi FI. Empagliflozin Effectively Attenuates Olanzapine-Induced Body Weight Gain in Female Wistar Rats. Front Pharmacol 2021; 12:578716. [PMID: 33953666 PMCID: PMC8089480 DOI: 10.3389/fphar.2021.578716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Atypical antipsychotic drugs are commonly associated with undesirable side effects including body weight gain (BWG) and metabolic deficits. Many pharmacological interventions have been tested in an attempt to minimize or prevent these side effects. Preliminary evidence suggests that antidiabetic drugs may be effective in attenuating antipsychotic-induced BWG. In the current study, we examined the effect of an antidiabetic drug empagliflozin (EMPA) on BWG induced by anatypical antipsychotic drug olanzapine (Ola) in female and male Wistar rats. Rats were divided into six groups based on the dose they received: group 1 (female control), group 2 (female EMPA, 20 mg/kg; IG), group 3 (female Ola, 4 mg/kg; IP), group 4 (female Ola, 4 mg/kg; IP + EMPA, 20 mg/kg; IG), group 5 (male control), and group 6 (male Ola, 4 mg/kg; IP). Ola induced sustained increase in BWG. The subsequent treatment of Group 3 and 4 with EMPA attenuated the Ola-induced BWG in female Wistar rats. In terms of the gender difference between female and male Wistar rats, the male control group 5 gained more weight throughout the study as compared to the female control group 1. Similarly, the male Ola group 6 gained more weight throughout the study as compared to the female Ola group 3. However, Ola did not cause any weight difference between male rats treated with Ola in comparison with male control group, thus showing a significant gender difference regarding body weight between male and female Wistar rats regardless of Ola administration. In addition, the present findings showed that EMPA effectively attenuates the Ola induced BWG in female Wistar rats. These novel findings should help to better understand the underlying molecular and behavioral mechanisms contributing to the observed increase in body weight after treatment with Ola and other atypical antipsychotic drugs across male and female rats.
Collapse
Affiliation(s)
- Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Badrah S Alghamdi
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad S Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammad Zubair Alam
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haythum O Tayeb
- Division of Neurology, Department of Internal Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Frank I Tarazi
- Department of Psychiatry and Neurology, Harvard Medical School and McLean Hospital, Belmont, MA, United States
| |
Collapse
|
5
|
Ashraf GM, Alghamdi BS, Alshehri FS, Alam MZ, Tayeb HO, Tarazi FI. Standardizing the Effective Correlated Dosage of Olanzapine and Empagliflozin in Female Wistar Rats. Curr Gene Ther 2021; 21:53-59. [PMID: 33183202 DOI: 10.2174/1566523220999201111195047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 11/22/2022]
Abstract
AIM The primary aim of this study was to standardize the correlated effective dosage of the antidiabetic drug empagliflozin (EMPA) and the antipsychotic drug olanzapine (Ola). BACKGROUND Atypical antipsychotics are associated with BWG and metabolic disturbances for which many approaches have been used to minimize these issues, including antidiabetic drugs. The antidiabetic drugs have been quite effective in reversing BWG induced by the administration of antipsychotic drugs in patients who have psychosis, schizophrenia and bipolar disorder. OBJECTIVE The objective of this study was to standardize the correlated effective dosage of EMPA and Ola. METHODS The study was carried out for 28 days to represent the chronic effect of Ola on female Wistar rats. Rats were divided into three groups based on the dose they received: control (vehicle), Ola-4 and Ola-8 (4 and 8 mg/kg/OD, respectively), and EMPA-10 and EMPA-20 (10 and 20 mg/kg/OD, respectively). RESULTS Both doses of Ola produced a significant increase in the percentage of BWG, however, Ola-4 produced a higher BWG. Also, both the doses of EMPA were able to reverse the effect of Ola-induced BWG; however, EMPA-20 produced a higher reversal in BWG and normalized the rat's body weight. CONCLUSION We conclude that Ola-4 and EMPA-20 were the most effective dosage for experimental purposes in female Wistar rats. The findings of this study standardized the effective correlated dosage of olanzapine and empagliflozin in female Wistar rats that will help understand the underlying molecular and behavioral mechanisms.
Collapse
Affiliation(s)
- Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Badrah S Alghamdi
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad S Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammad Z Alam
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haythum O Tayeb
- Division of Neurology, Department of Internal Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Frank I Tarazi
- Department of Psychiatry and Neurology, Harvard Medical School and McLean Hospital, Belmont, MA 02478, United States
| |
Collapse
|
6
|
Xiong YJ, Song YZ, Zhu Y, Zuo WQ, Zhao YF, Shen X, Wang WJ, Liu YL, Wu JC, Liang ZQ. Neuroprotective effects of olanzapine against rotenone-induced toxicity in PC12 cells. Acta Pharmacol Sin 2020; 41:508-515. [PMID: 32123301 PMCID: PMC7468335 DOI: 10.1038/s41401-020-0378-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/13/2020] [Indexed: 12/24/2022]
Abstract
Olanzapine is an antipsychotic drug used to treat patients with schizophrenia due to its lower incidence of extrapyramidal symptoms. Previous studies have shown that olanzapine activates AMP-activated protein kinase (AMPK), and induce autophagy in SH-SY5Y cell line. In this study, we investigated whether olanzapine protected against rotenone-induced neurotoxicity in PC12 cells. We showed that treatment with olanzapine increased the phosphorylation of AMPK in both dose- and time-dependent manners in PC12 cells. In addition, olanzapine activated autophagy and increased autophagic vacuoles. Furthermore, olanzapine pretreatment could protect PC12 cells from rotenone-induced apoptosis. Besides, olanzapine pretreatment could suppress the rotenone-induced depolarization of mitochondrial potential and thus protect the cells. Moreover, pretreatment with specific AMPK inhibitor compound C or with autophagy inhibitor 3-methyladenine impaired the protective effect of olanzapine on rotenone-treated PC12 cells. In summary, our results show for the first time that olanzapine ameliorates rotenone-induced injury by activating autophagy through AMPK pathway.
Collapse
|
7
|
Amada N, Akazawa H, Ohgi Y, Maeda K, Sugino H, Kurahashi N, Kikuchi T, Futamura T. Brexpiprazole has a low risk of dopamine D 2 receptor sensitization and inhibits rebound phenomena related to D 2 and serotonin 5-HT 2A receptors in rats. Neuropsychopharmacol Rep 2019; 39:279-288. [PMID: 31487433 PMCID: PMC7292306 DOI: 10.1002/npr2.12076] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/24/2019] [Accepted: 08/02/2019] [Indexed: 12/21/2022] Open
Abstract
Background Long‐term antipsychotic treatment in patients with schizophrenia can induce supersensitivity psychosis and tardive dyskinesia which is thought to be caused by dopamine D2 receptor sensitization. We evaluated the effects of brexpiprazole on D2 receptor sensitivity after subchronic treatment in rats. We also evaluated whether brexpiprazole could suppress enhanced response to D2 receptors in rats subchronically dosed with another atypical antipsychotic. Methods The maximum D2 receptor density (Bmax) and apomorphine (a D2 receptor agonist)‐induced stereotypy were measured in rats orally dosed with vehicle, haloperidol (1 mg/kg), or brexpiprazole (4 or 30 mg/kg for Bmax, 6 or 30 mg/kg for stereotypy) for 21 days. Then, effects of oral administrations of brexpiprazole (3 mg/kg), aripiprazole (10 mg/kg), and olanzapine (3 mg/kg) against increases in apomorphine‐induced hyperlocomotion and (±)‐2,5‐dimethoxy‐4‐iodoamphetamine hydrochloride (DOI: a 5‐HT2A receptor agonist)‐induced head twitches were evaluated in rats subcutaneously treated with risperidone (1.5 mg/kg/d) via minipumps for 21 days. Results Haloperidol and brexpiprazole (30 mg/kg: approximately tenfold ED50 of anti‐apomorphine‐induced stereotypy) but not brexpiprazole (4 or 6 mg/kg) significantly increased the Bmax and apomorphine‐induced stereotypy. Brexpiprazole (3 mg/kg) and olanzapine (3 mg/kg) significantly suppressed both increases in apomorphine‐induced hyperlocomotion and also DOI‐induced head twitches in rats subchronically treated with risperidone, but aripiprazole (10 mg/kg) significantly suppressed only apomorphine‐induced hyperlocomotion. Conclusion Brexpiprazole has a low risk of D2 receptor sensitization after a repeated administration and suppresses the rebound phenomena related to D2 and 5‐HT2A receptors after a repeated administration of risperidone. Brexpiprazole has less potential to evoke dopamine D2 receptor supersensitivity in rats after repeated administration compared to haloperidol. In addition, brexpiprazole may have a lower risk for producing rebound symptoms associated with D2 receptor, 5‐HT2A receptor sensitization when switching from other antipsychotics such as risperidone.![]()
Collapse
Affiliation(s)
- Naoki Amada
- Department of CNS Research, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Hitomi Akazawa
- Department of CNS Research, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Yuta Ohgi
- Department of CNS Research, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Kenji Maeda
- Department of Lead Discovery Research, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Haruhiko Sugino
- Global Business Development, Otsuka Pharmaceutical Development and Commercialization, Ltd., Princeton, New Jersey
| | - Nobuyuki Kurahashi
- Global CNS Business, Otsuka Pharmaceutical Development and Commercialization, Ltd., Princeton, New Jersey
| | - Tetsuro Kikuchi
- Pharmaceutical Division, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Takashi Futamura
- Department of CNS Research, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| |
Collapse
|
8
|
Kowalchuk C, Castellani LN, Chintoh A, Remington G, Giacca A, Hahn MK. Antipsychotics and glucose metabolism: how brain and body collide. Am J Physiol Endocrinol Metab 2019; 316:E1-E15. [PMID: 29969315 DOI: 10.1152/ajpendo.00164.2018] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Since the serendipitous discovery of the first antipsychotic (AP) drug in the 1950s, APs remain the cornerstone of treatment for schizophrenia. A shift over the past two decades away from first-generation, conventional APs to so-called "atypical" (or 2nd/3rd generation) APs parallels acknowledgment of serious metabolic side-effects associated in particular with these newer agents. As will be reviewed, AP drugs and type 2 diabetes are now inextricably linked, contributing to the three- to fivefold increased risk of type 2 diabetes observed in schizophrenia. However, this association is not straightforward. Biological and lifestyle-related illness factors contribute to the association between type 2 diabetes and metabolic disease independently of AP treatment. In addition, APs have a well-established weight gain propensity which could also account for elevated risk of insulin resistance and type 2 diabetes. However, compelling preclinical and clinical evidence now suggests that these drugs can rapidly and directly influence pathways of glucose metabolism independently of weight gain and even in absence of psychiatric illness. Mechanisms of these direct effects remain poorly elucidated but may involve central and peripheral antagonism of neurotransmitters implicated not only in the therapeutic effects of APs but also in glucose homeostasis, possibly via effects on the autonomic nervous system. The clinical relevance of studying "direct" effects of these drugs on glucose metabolism is underscored by the widespread use of these medications, both on and off label, for a growing number of mental illnesses, extending safety concerns well beyond schizophrenia.
Collapse
Affiliation(s)
- Chantel Kowalchuk
- Centre for Addiction and Mental Health , Toronto, Ontario , Canada
- Institute of Medical Sciences, University of Toronto , Toronto, Ontario , Canada
| | | | - Araba Chintoh
- Centre for Addiction and Mental Health , Toronto, Ontario , Canada
- Department of Psychiatry, University of Toronto , Toronto, Ontario , Canada
| | - Gary Remington
- Centre for Addiction and Mental Health , Toronto, Ontario , Canada
- Institute of Medical Sciences, University of Toronto , Toronto, Ontario , Canada
- Department of Psychiatry, University of Toronto , Toronto, Ontario , Canada
| | - Adria Giacca
- Institute of Medical Sciences, University of Toronto , Toronto, Ontario , Canada
- Banting and Best Diabetes Centre, University of Toronto , Toronto, Ontario , Canada
- Department of Physiology, University of Toronto , Toronto, Ontario , Canada
- Department of Medicine, University of Toronto , Toronto, Ontario Canada
| | - Margaret K Hahn
- Centre for Addiction and Mental Health , Toronto, Ontario , Canada
- Institute of Medical Sciences, University of Toronto , Toronto, Ontario , Canada
- Department of Psychiatry, University of Toronto , Toronto, Ontario , Canada
- Banting and Best Diabetes Centre, University of Toronto , Toronto, Ontario , Canada
| |
Collapse
|
9
|
del Campo A, Bustos C, Mascayano C, Acuña-Castillo C, Troncoso R, Rojo LE. Metabolic Syndrome and Antipsychotics: The Role of Mitochondrial Fission/Fusion Imbalance. Front Endocrinol (Lausanne) 2018; 9:144. [PMID: 29740394 PMCID: PMC5924798 DOI: 10.3389/fendo.2018.00144] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 03/16/2018] [Indexed: 12/18/2022] Open
Abstract
Second-generation antipsychotics (SGAs) are known to increase cardiovascular risk through several physiological mechanisms, including insulin resistance, hepatic steatosis, hyperphagia, and accelerated weight gain. There are limited prophylactic interventions to prevent these side effects of SGAs, in part because the molecular mechanisms underlying SGAs toxicity are not yet completely elucidated. In this perspective article, we introduce an innovative approach to study the metabolic side effects of antipsychotics through the alterations of the mitochondrial dynamics, which leads to an imbalance in mitochondrial fusion/fission ratio and to an inefficient mitochondrial phenotype of muscle cells. We believe that this approach may offer a valuable path to explain SGAs-induced alterations in metabolic homeostasis.
Collapse
Affiliation(s)
- Andrea del Campo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Escuela de Química y Farmacia, Facultad de Ingeniería, Ciencia y Tecnología, Universidad Bernardo O’Higgins, Santiago, Chile
- Programa de Biología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Catalina Bustos
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Carolina Mascayano
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Claudio Acuña-Castillo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, Santiago, Chile
| | - Rodrigo Troncoso
- Laboratorio de Investigación en Nutrición y Actividad Física, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Leonel E. Rojo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, Santiago, Chile
- *Correspondence: Leonel E. Rojo,
| |
Collapse
|
10
|
He M, Zhang Q, Deng C, Jin T, Song X, Wang H, Huang XF. Time-dependent effects of olanzapine treatment on the expression of histidine decarboxylase, H1 and H3 receptor in the rat brain: The roles in olanzapine-induced obesity. Psychoneuroendocrinology 2017; 85:190-199. [PMID: 28886461 DOI: 10.1016/j.psyneuen.2017.08.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/24/2017] [Accepted: 08/18/2017] [Indexed: 12/28/2022]
Abstract
Antipsychotic treatment, particularly olanzapine and clozapine, induces severe obesity. The Histamine H1 receptor is considered to be an important contributor to olanzapine-induced obesity, however how olanzapine modulates the histaminergic system is not sufficiently understood. This study examined the effect of olanzapine on key molecules of the histaminergic system, including histidine decarboxylase (HDC), H1 receptor (H1R) and H3 receptor (H3R), in the brain at different stages of olanzapine-induced obesity. During short-term treatment (8-day), olanzapine increased hypothalamic HDC mRNA expression and H1R binding in the arcuate nucleus (Arc) and ventromedial hypothalamus (VMH), without changing H3R binding density. HDC mRNA and Arc H1R binding were positively correlated with increased food intake, feeding efficiency and weight gain. When the treatment was extended to 16 and 36 days, H1R binding was increased not only in the hypothalamic Arc and VMH but also in the brainstem dorsal vagal complex (DVC). The H1R bindings in the Arc, VMH and DVC were positively correlated with weight gain induced by olanzapine treatment. However, the expression of HDC and H3R mRNA was not increased. These results suggest that olanzapine time-dependently modulates histamine neurotransmission, which suggested the different neuronal mechanisms underlying different stages of weight gain development. Treatment targeting the H1R may be effective for both short- and long-term olanzapine-induced weight gain.
Collapse
Affiliation(s)
- Meng He
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei, China; Illawarra Health and Medical Research Institute and Centre for Translational Neuroscience, School of Medicine, University of Wollongong, NSW 2522, Australia
| | - Qingsheng Zhang
- Illawarra Health and Medical Research Institute and Centre for Translational Neuroscience, School of Medicine, University of Wollongong, NSW 2522, Australia
| | - Chao Deng
- Illawarra Health and Medical Research Institute and Centre for Translational Neuroscience, School of Medicine, University of Wollongong, NSW 2522, Australia
| | - Tiantian Jin
- Illawarra Health and Medical Research Institute and Centre for Translational Neuroscience, School of Medicine, University of Wollongong, NSW 2522, Australia
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Hongqing Wang
- Illawarra Health and Medical Research Institute and Centre for Translational Neuroscience, School of Medicine, University of Wollongong, NSW 2522, Australia
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute and Centre for Translational Neuroscience, School of Medicine, University of Wollongong, NSW 2522, Australia; Department of Psychiatry, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
11
|
Razavi BM, Lookian F, Hosseinzadeh H. Protective effects of green tea on olanzapine-induced-metabolic syndrome in rats. Biomed Pharmacother 2017; 92:726-731. [DOI: 10.1016/j.biopha.2017.05.113] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 05/16/2017] [Accepted: 05/24/2017] [Indexed: 12/20/2022] Open
|
12
|
Ameliorating antipsychotic-induced weight gain by betahistine: Mechanisms and clinical implications. Pharmacol Res 2016; 106:51-63. [DOI: 10.1016/j.phrs.2016.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/08/2016] [Accepted: 02/11/2016] [Indexed: 01/08/2023]
|
13
|
Machida M, Miyamura Y, Machida T, Koyama K, Iizuka K, Hirafuji M. Administration of olanzapine as an antiemetic agent changes glucose homeostasis in cisplatin-treated rats. Biol Pharm Bull 2016; 38:587-93. [PMID: 25832638 DOI: 10.1248/bpb.b14-00745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the effects of olanzapine on cisplatin-induced pica (the consumption of non-nutrient materials such as kaolin) and glucose homeostasis in rats to clarify the effects of olanzapine when used as an anti-emetic drug. Rats were injected intraperitoneally (i.p.) with either 5 mg/kg cisplatin or saline. Additionally, 2 or 10 mg/kg olanzapine were administered i.p. to the rats 10 min before the administration of cisplatin and subsequently administered every 24 h for 3 d. Kaolin and food intake was measured using an automatic monitoring apparatus. Plasma glucose levels were measured by an enzyme electrode method. The plasma levels of insulin and intact proinsulin were measured by enzyme-linked immunosorbent assay (ELISA). The proinsulin-to-insulin (P/I) ratio was calculated. Cisplatin significantly increased kaolin intake, but decreased food intake and body weight up to 72 h. Olanzapine had no effect on these parameters. Neither olanzapine nor cisplatin alone had a significant effect on the plasma levels of glucose, insulin, or proinsulin. However, a combination of olanzapine and cisplatin significantly decreased plasma insulin levels, but increased plasma intact proinsulin levels and the P/I ratio. Our results suggest that an additive deterioration of insulin-secreting beta-cell function and disturbance of glucose homeostasis should be considered during treatment of patients with olanzapine for cisplatin-induced nausea and vomiting.
Collapse
Affiliation(s)
- Maiko Machida
- Division of Pharmacotherapy, Hokkaido Pharmaceutical University School of Pharmacy
| | | | | | | | | | | |
Collapse
|
14
|
Carboni L, Domenici E. Proteome effects of antipsychotic drugs: Learning from preclinical models. Proteomics Clin Appl 2015; 10:430-41. [PMID: 26548651 DOI: 10.1002/prca.201500087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/27/2015] [Accepted: 11/03/2015] [Indexed: 02/02/2023]
Abstract
Proteome-wide expression analyses are performed in the brain of schizophrenia patients to understand the biological basis of the disease and discover molecular paths for new clinical interventions. A major issue with postmortem analysis is the lack of tools to discern molecular modulation related to the disease from dysregulation due to medications. We review available proteome-wide analysis of antipsychotic treatment in rodents, highlighting shared dysregulated pathways that may contribute to an extended view of molecular processes underlying their pharmacological activity. Fourteen proteomic studies conducted with typical and atypical antipsychotic treatments were examined; hypothesis-based approaches are also briefly discussed. Treatment with antipsychotics mainly affects proteins belonging to metabolic pathways involved in energy generation, both in glycolytic and oxidative phosphorylation pathways, suggesting antipsychotics-induced impairments in metabolism. Nevertheless, schizophrenic patients show impaired glucose metabolism and mitochondrial dysfunctions independent of therapy. Other antipsychotics-induced changes shared by different studies implicate cytoskeletal and synaptic function proteins. The mechanism can be related to the reorganization of dendritic spines resulting from neural plasticity events induced by treatments affecting neurotransmitter circuitry. However, metabolic and plasticity pathways activated by antipsychotics can also play an authentic role in the etiopathological basis of schizophrenia.
Collapse
Affiliation(s)
- Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Enrico Domenici
- Roche Pharmaceutical Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases Discovery & Translational Medicine Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| |
Collapse
|
15
|
He M, Zhang Q, Deng C, Wang H, Huang XF. Olanzapine-activated AMPK signaling in the dorsal vagal complex is attenuated by histamine H1 receptor agonist in female rats. Endocrinology 2014; 155:4895-904. [PMID: 25264935 DOI: 10.1210/en.2014-1326] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Weight gain and its related metabolic disorders are major side effects associated with second generation antipsychotic drug treatment. The dorsal vagal complex (DVC) and AMP-activated protein kinase (AMPK) are implicated in the regulation of food intake and body weight. Blocking the histamine H1 receptor contributes to antipsychotic-induced weight gain. The present study investigated the time-dependent effect of olanzapine treatment (8, 16, and 36 d) on DVC AMPK signaling in olanzapine-induced weight gain and whether these changes are associated with olanzapine-induced H1 receptor antagonism. During the 8-day olanzapine treatment, the rats were hyperphagic and rapidly gained weight. The phosphorylation of AMPK (pAMPK) (activated AMPK) as well as its directly downstream phospho-acetyl-coenzyme A carboxylase was significantly increased. The pAMPK/AMPK ratio, an indicator of AMPK activity, was significantly positively correlated with feeding efficiency and weight gain. As treatment was prolonged (16 and 36 d of olanzapine treatment), the rats were no longer hyperphagic, and there were no longer any changes in DVC AMPK signaling. Although the DVC H1 receptor protein expression was not significantly altered by olanzapine, the pAMPK expression was significantly positively correlated with the H1 receptor level after the 8-, 16-, and 36-day olanzapine treatments. Moreover, we showed that an H1 receptor agonist, 2-(3-trifluoromethylphenyl) histamine, significantly inhibited the olanzapine-induced hyperphagia and DVC AMPK activation in a dose-dependent manner. These results suggest a time-dependent role of DVC AMPK in olanzapine-induced obesity. Thus, olanzapine-induced DVC AMPK activation may be at least partially related to olanzapine's antagonistic effect on the H1 receptor.
Collapse
Affiliation(s)
- Meng He
- Centre for Translational Neuroscience (M.H., Q.Z., C.D., H.W., X.-F.H.), School of Medicine and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2522, New South Wales, Australia; and Schizophrenia Research Institute (C.D., X.-F.H.), Darlinghurst 2010, New South Wales, Australia
| | | | | | | | | |
Collapse
|
16
|
Lian J, Huang XF, Pai N, Deng C. Betahistine ameliorates olanzapine-induced weight gain through modulation of histaminergic, NPY and AMPK pathways. Psychoneuroendocrinology 2014; 48:77-86. [PMID: 24992721 DOI: 10.1016/j.psyneuen.2014.06.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/04/2014] [Accepted: 06/11/2014] [Indexed: 12/11/2022]
Abstract
Olanzapine is widely used to treat schizophrenia and other disorders, but causes adverse obesity and other metabolic side-effects. Both animal and clinical studies have shown that co-treatment with betahistine (a histaminergic H1 receptor agonist and H3 receptor antagonist) is effective for ameliorating olanzapine-induced weight gain/obesity. To reveal the mechanisms underlying these effects, this study investigated the effects of co-treatment of olanzapine and betahistine (O+B) on expressions of histaminergic H1 receptor (H1R), AMP-activated protein kinase (AMPK), neuropeptide Y (NPY), and proopiomelanocortin (POMC) in the hypothalamus associated with reducing olanzapine-induced weight gain. Olanzapine significantly upregulated the mRNA and protein expressions of H1R, while O+B co-treatment significantly downregulated the H1R levels, compared to the olanzapine-only treatment group. The NPY mRNA expression was significantly enhanced by olanzapine, but it was significantly reversed by O+B co-treatment. The hypothalamic H1R expression was positively correlated with total food intake, and NPY expression. Olanzapine also increased AMPKα activation measured by the AMPKα phosphorylation (pAMPKα)/AMPKα ratio compared with controls, whereas O+B co-treatment decreased the pAMPKα/AMPKα ratio, compared with olanzapine only treatment. The pAMPKα/AMPKα ratio was positively correlated with total food intake and H1R expression. Although olanzapine administration decreased the POMC mRNA level, this level was not affected by O+B co-treatment. Therefore, these results suggested that co-treatment with betahistine may reverse olanzapine-induced body weight gain via the H1R-NPY and H1R-pAMPKα pathways.
Collapse
Affiliation(s)
- Jiamei Lian
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, 2522 NSW, Australia; Centre for Translational Neuroscience, School of Medicine, University of Wollongong, Wollongong, 2522 NSW, Australia
| | - Xu-Feng Huang
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong, Wollongong, 2522 NSW, Australia; Schizophrenia Research Institute, 384 Victoria Street, Darlinghurst, 2010 NSW, Australia
| | - Nagesh Pai
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong, Wollongong, 2522 NSW, Australia
| | - Chao Deng
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, 2522 NSW, Australia; Centre for Translational Neuroscience, School of Medicine, University of Wollongong, Wollongong, 2522 NSW, Australia; Schizophrenia Research Institute, 384 Victoria Street, Darlinghurst, 2010 NSW, Australia.
| |
Collapse
|
17
|
Phosphorylation of hypothalamic AMPK on serine(485/491) related to sustained weight loss by alpha-lipoic acid in mice treated with olanzapine. Psychopharmacology (Berl) 2014; 231:4059-69. [PMID: 24733236 DOI: 10.1007/s00213-014-3540-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/14/2014] [Indexed: 12/17/2022]
Abstract
RATIONALE Alpha-lipoic acid (ALA) was shown to suppress atypical antipsychotic drug (AAPD)-induced weight gain. However, its mode of action has remained unidentified. OBJECTIVE We aimed to identify mechanisms underlying anti-obesity effects of ALA in mice treated with olanzapine. METHODS We compared body weight and food intake among vehicle-, olanzapine-, and olanzapine plus ALA-treated mice, and measured hypothalamic AMP-activated protein kinase (AMPK) activity by detecting levels of Thr(172) and Ser(485/491) phosphorylation, which indicate activation and inhibition of AMPK, respectively. RESULTS Body weights were increased by olanzapine in parallel with increased levels of Thr(172) phosphorylation of hypothalamic AMPK. Initially increased rate of weight gain was diminished as Thr(172) phosphorylation levels were decreased to control levels after 10 days of olanzapine treatment. ALA successfully not only prevented olanzapine-induced weight gain but also induced additional weight loss even relative to control levels throughout the treatment period. During the initial stage, ALA's action was indicated by both suppression of olanzapine-induced Thr(172) phosphorylation and an increase in Ser(485/491) phosphorylation levels. However, in the later stage when no more increases in Thr(172) phosphorylation and weight gain by olanzapine were observed, ALA's action was only indicated by increased levels of Ser(485/491) phosphorylation. CONCLUSIONS Our data suggest that anti-obesity effects of ALA may be related to modulation of both Ser(485/491) phosphorylation and Thr(172) phosphorylation of hypothalamic AMPK, while olanzapine-induced weight gain may be only associated with increase in Thr(172) phosphorylation. This might be an important mechanistic clue for the future development of anti-obesity drugs beyond control of AAPD-induced weight gain.
Collapse
|
18
|
Lian J, Huang XF, Pai N, Deng C. Preventing olanzapine-induced weight gain using betahistine: a study in a rat model with chronic olanzapine treatment. PLoS One 2014; 9:e104160. [PMID: 25084453 PMCID: PMC4118967 DOI: 10.1371/journal.pone.0104160] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/11/2014] [Indexed: 12/19/2022] Open
Abstract
Olanzapine is the one of first line antipsychotic drug for schizophrenia and other serious mental illness. However, it is associated with troublesome metabolic side-effects, particularly body weight gain and obesity. The antagonistic affinity to histamine H1 receptors (H1R) of antipsychotic drugs has been identified as one of the main contributors to weight gain/obesity side-effects. Our previous study showed that a short term (2 weeks) combination treatment of betahistine (an H1R agonist and H3R antagonist) and olanzapine (O+B) reduced (−45%) body weight gain induced by olanzapine in drug-naïve rats. A key issue is that clinical patients suffering with schizophrenia, bipolar disease and other mental disorders often face chronic, even life-time, antipsychotic treatment, in which they have often had previous antipsychotic exposure. Therefore, we investigated the effects of chronic O+B co-treatment in controlling body weight in female rats with chronic and repeated exposure of olanzapine. The results showed that co-administration of olanzapine (3 mg/kg, t.i.d.) and betahistine (9.6 mg/kg, t.i.d.) significantly reduced (−51.4%) weight gain induced by olanzapine. Co-treatment of O+B also led to a decrease in feeding efficiency, liver and fat mass. Consistently, the olanzapine-only treatment increased hypothalamic H1R protein levels, as well as hypothalamic pAMPKα, AMPKα and NPY protein levels, while reducing the hypothalamic POMC, and UCP1 and PGC-1α protein levels in brown adipose tissue (BAT). The olanzapine induced changes in hypothalamic H1R, pAMPKα, BAT UCP1 and PGC-1α could be reversed by co-treatment of O+B. These results supported further clinical trials to test the effectiveness of co-treatment of O+B for controlling weight gain/obesity side-effects in schizophrenia with chronic antipsychotic treatment.
Collapse
Affiliation(s)
- Jiamei Lian
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Centre for Translational Neuroscience, School of Medicine, and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Xu-Feng Huang
- Centre for Translational Neuroscience, School of Medicine, and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Schizophrenia Research Institute, Sydney, NSW, Australia
| | - Nagesh Pai
- Centre for Translational Neuroscience, School of Medicine, and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Chao Deng
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Centre for Translational Neuroscience, School of Medicine, and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Schizophrenia Research Institute, Sydney, NSW, Australia
- * E-mail:
| |
Collapse
|
19
|
He M, Zhang Q, Deng C, Wang H, Lian J, Huang XF. Hypothalamic histamine H1 receptor-AMPK signaling time-dependently mediates olanzapine-induced hyperphagia and weight gain in female rats. Psychoneuroendocrinology 2014; 42:153-64. [PMID: 24636512 DOI: 10.1016/j.psyneuen.2014.01.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 01/22/2014] [Accepted: 01/23/2014] [Indexed: 01/08/2023]
Abstract
Although second-generation antipsychotics induce severe weight gain and obesity, there is a lack of detailed knowledge about the progressive development of antipsychotic-induced obesity. This study examined the hypothalamic histamine H1 receptor and AMP-activated protein kinase (H1R-AMPK) signaling at three distinctive stages of olanzapine-induced weight gain (day 1-12: early acceleration, day 13-28: middle new equilibrium, and day 29-36: late heavy weight maintenance). At the early acceleration stage, the rats were hyperphagic with an underlying mechanism of olanzapine-increased H1R mRNA expression and AMPK phosphorylation (pAMPK), in which pAMPK levels positively correlated with H1R mRNA expression and food intake. At the middle stage, when the rats were no longer hyperphagic, the changes in H1R-AMPK signaling vanished. At the late stage, olanzapine increased H1R mRNA expression but decreased pAMPK which were positively and negatively correlated with weight gain, respectively. These data suggest a time-dependent change of H1R-AMPK signaling, where olanzapine activates AMPK by blocking the H1Rs and causing hyperphagia in the acute phase. The chronic blockade of H1R may contribute to the late stage of olanzapine-induced heavy weight maintenance. However, pAMPK was no longer elevated and actually decreased. This indicates that AMPK acts as an energy sensor and negatively responds to the positive energy balance induced by olanzapine. Furthermore, we showed that an H1R agonist, 2-(3-trifluoromethylphenyl) histamine, can significantly inhibit olanzapine-induced hyperphagia and AMPK activation in the mediobasal hypothalamus in a dose dependent manner. Therefore, lowering H1R-AMPK signaling is an effective treatment for the olanzapine-induced hyperphagia associated with the development of obesity.
Collapse
Affiliation(s)
- Meng He
- Centre for Translational Neuroscience, School of Medicine and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2522, NSW, Australia
| | - Qingsheng Zhang
- Centre for Translational Neuroscience, School of Medicine and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2522, NSW, Australia
| | - Chao Deng
- Centre for Translational Neuroscience, School of Medicine and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2522, NSW, Australia; Schizophrenia Research Institute, 384 Victoria Street, Darlinghurst 2010, NSW, Australia
| | - Hongqin Wang
- Centre for Translational Neuroscience, School of Medicine and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2522, NSW, Australia
| | - Jiamei Lian
- Centre for Translational Neuroscience, School of Medicine and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2522, NSW, Australia
| | - Xu-Feng Huang
- Centre for Translational Neuroscience, School of Medicine and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2522, NSW, Australia; Schizophrenia Research Institute, 384 Victoria Street, Darlinghurst 2010, NSW, Australia.
| |
Collapse
|
20
|
Hu Y, Young AJ, Ehli EA, Nowotny D, Davies PS, Droke EA, Soundy TJ, Davies GE. Metformin and berberine prevent olanzapine-induced weight gain in rats. PLoS One 2014; 9:e93310. [PMID: 24667776 PMCID: PMC3965561 DOI: 10.1371/journal.pone.0093310] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 02/28/2014] [Indexed: 02/04/2023] Open
Abstract
Olanzapine is a first line medication for the treatment of schizophrenia, but it is also one of the atypical antipsychotics carrying the highest risk of weight gain. Metformin was reported to produce significant attenuation of antipsychotic-induced weight gain in patients, while the study of preventing olanzapine-induced weight gain in an animal model is absent. Berberine, an herbal alkaloid, was shown in our previous studies to prevent fat accumulation in vitro and in vivo. Utilizing a well-replicated rat model of olanzapine-induced weight gain, here we demonstrated that two weeks of metformin or berberine treatment significantly prevented the olanzapine-induced weight gain and white fat accumulation. Neither metformin nor berberine treatment demonstrated a significant inhibition of olanzapine-increased food intake. But interestingly, a significant loss of brown adipose tissue caused by olanzapine treatment was prevented by the addition of metformin or berberine. Our gene expression analysis also demonstrated that the weight gain prevention efficacy of metformin or berberine treatment was associated with changes in the expression of multiple key genes controlling energy expenditure. This study not only demonstrates a significant preventive efficacy of metformin and berberine treatment on olanzapine-induced weight gain in rats, but also suggests a potential mechanism of action for preventing olanzapine-reduced energy expenditure.
Collapse
Affiliation(s)
- Yueshan Hu
- Avera Institute for Human Genetics, Avera McKennan Hospital & University Health Center, Sioux Falls, South Dakota, United States of America; Department of Psychiatry, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, United States of America
| | - Alan J Young
- Department of Veterinary and Biomedical Sciences, College of Agriculture & Biological Sciences, South Dakota State University, Brookings, South Dakota, United States of America
| | - Erik A Ehli
- Avera Institute for Human Genetics, Avera McKennan Hospital & University Health Center, Sioux Falls, South Dakota, United States of America; Department of Psychiatry, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, United States of America
| | - Dustin Nowotny
- Avera Institute for Human Genetics, Avera McKennan Hospital & University Health Center, Sioux Falls, South Dakota, United States of America
| | - Paige S Davies
- Avera Institute for Human Genetics, Avera McKennan Hospital & University Health Center, Sioux Falls, South Dakota, United States of America
| | - Elizabeth A Droke
- Department of Health and Nutritional Sciences, College of Education & Human Sciences, South Dakota State University, Brookings, South Dakota, United States of America
| | - Timothy J Soundy
- Department of Psychiatry, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, United States of America
| | - Gareth E Davies
- Avera Institute for Human Genetics, Avera McKennan Hospital & University Health Center, Sioux Falls, South Dakota, United States of America; Department of Psychiatry, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, United States of America; Department of Pharmacy Practice, College of Pharmacy, South Dakota State University, Brookings, South Dakota, United States of America
| |
Collapse
|
21
|
Abstract
The second-generation antipsychotic drug olanzapine has become a widely prescribed drug in the treatment of schizophrenia and bipolar disorder. Unfortunately, its therapeutic benefits are partly outweighed by significant weight gain and other metabolic side effects, which increase the risk for diabetes and cardiovascular disease. Because olanzapine remains superior to other antipsychotic drugs that show less weight gain liability, insight into the mechanisms responsible for olanzapine-induced weight gain is crucial if it is to be effectively addressed. Over the past few decades, several groups have investigated the effects of olanzapine on energy balance using rat models. Unfortunately, results from different studies have not always been consistent and it remains to be determined which paradigms should be used in order to model olanzapine-induced weight gain most accurately. This review summarizes the effects of olanzapine on energy balance observed in different rat models and discusses some of the factors that appear to contribute to the inconsistencies in observed effects. In addition it compares the effects reported in rats with clinical findings to determine the predictive validity of different paradigms.
Collapse
|
22
|
Olanzapine depot formulation in rat: a step forward in modelling antipsychotic-induced metabolic adverse effects. Int J Neuropsychopharmacol 2014; 17:91-104. [PMID: 23919889 DOI: 10.1017/s1461145713000862] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Rats are used as animal models in the study of antipsychotic-induced metabolic adverse effects, with oral drug administration yielding hyperphagia, weight gain and, in some cases, lipogenic effects. However, the rapid half-life of these drugs in rats, in combination with development of drug tolerance after a few weeks of treatment, has limited the validity of the model. In order to prevent fluctuating drug serum concentrations seen with daily repeated administrations, we injected female rats with a single intramuscular dose of long-acting olanzapine formulation. The olanzapine depot injection yielded plasma olanzapine concentrations in the range of those achieved in patients, and induced changes in metabolic parameters similar to those previously observed with oral administration, including increased food intake, weight gain and elevated plasma triglycerides. Moreover, the sensitivity to olanzapine was maintained beyond the 2-3 wk of weight gain observed with oral administration. In a separate olanzapine depot experiment, we aimed to clarify the role of hypothalamic AMP-activated protein kinase (AMPK) in olanzapine-induced weight gain, which has been subject to debate. Adenovirus-mediated inhibition of AMPK was performed in the arcuate (ARC) or the ventromedial hypothalamic (VMH) nuclei in female rats, with subsequent injection of olanzapine depot solution. Inhibition of AMPK in the ARC, but not in the VMH, attenuated the weight-inducing effect of olanzapine, suggesting an important role for ARC-specific AMPK activation in mediating the orexigenic potential of olanzapine. Taken together, olanzapine depot formulation provides an improved mode of drug administration, preventing fluctuating plasma concentrations, reducing handling stress and opening up possibilities to perform complex mechanistic studies.
Collapse
|
23
|
Ikegami M, Ikeda H, Ishikawa Y, Ohsawa M, Ohashi T, Kai M, Kamei A, Kamei J. Olanzapine induces glucose intolerance through the activation of AMPK in the mouse hypothalamus. Eur J Pharmacol 2013; 718:376-82. [PMID: 23973646 DOI: 10.1016/j.ejphar.2013.08.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/23/2013] [Accepted: 08/14/2013] [Indexed: 12/31/2022]
Abstract
Treatment with atypical antipsychotic drugs is known to increase the risk of glucose intolerance and diabetes. However, the mechanism of this effect is unclear. Since central adenosine 5'-monophosphate-activated protein kinase (AMPK) plays an important role in regulating nutrient homeostasis, the present study was performed to examine the involvement of central AMPK in the glucose intolerance induced by olanzapine, an atypical antipsychotic drug, in mice. Acute intraperitoneal treatment with olanzapine dose-dependently increased blood glucose levels in the glucose tolerance test. Intracerebroventricular administration of olanzapine also increased blood glucose levels in the glucose tolerance test. The glucose intolerance induced by both intraperitoneal and intracerebroventricular treatment with olanzapine was significantly attenuated by intracerebroventricular pretreatment with the AMPK inhibitor compound C. Intracerebroventricular treatment with the AMPK activator AICAR increased blood glucose levels in the glucose tolerance test, and this increase was inhibited by compound C. Moreover, the hypothalamic level of phosphorylated AMPK after glucose injection was significantly increased by intracerebroventricular pretreatment with olanzapine. Olanzapine did not affect plasma glucagon and insulin levels. Our results indicate that acute treatment with olanzapine causes glucose intolerance through the activation of hypothalamic AMPK. The present study suggests that the inhibition of central AMPK activity may have a therapeutic effect on the metabolic disturbance induced by atypical antipsychotic drugs.
Collapse
Affiliation(s)
- Megumi Ikegami
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
He M, Deng C, Huang XF. The role of hypothalamic H1 receptor antagonism in antipsychotic-induced weight gain. CNS Drugs 2013; 27:423-34. [PMID: 23640535 DOI: 10.1007/s40263-013-0062-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Treatment with second generation antipsychotics (SGAs), notably olanzapine and clozapine, causes severe obesity side effects. Antagonism of histamine H1 receptors has been identified as a main cause of SGA-induced obesity, but the molecular mechanisms associated with this antagonism in different stages of SGA-induced weight gain remain unclear. This review aims to explore the potential role of hypothalamic histamine H1 receptors in different stages of SGA-induced weight gain/obesity and the molecular pathways related to SGA-induced antagonism of these receptors. Initial data have demonstrated the importance of hypothalamic H1 receptors in both short- and long-term SGA-induced obesity. Blocking hypothalamic H1 receptors by SGAs activates AMP-activated protein kinase (AMPK), a well-known feeding regulator. During short-term treatment, hypothalamic H1 receptor antagonism by SGAs may activate the AMPK-carnitine palmitoyltransferase 1 signaling to rapidly increase caloric intake and result in weight gain. During long-term SGA treatment, hypothalamic H1 receptor antagonism can reduce thermogenesis, possibly by inhibiting the sympathetic outflows to the brainstem rostral raphe pallidus and rostral ventrolateral medulla, therefore decreasing brown adipose tissue thermogenesis. Additionally, blocking of hypothalamic H1 receptors by SGAs may also contribute to fat accumulation by decreasing lipolysis but increasing lipogenesis in white adipose tissue. In summary, antagonism of hypothalamic H1 receptors by SGAs may time-dependently affect the hypothalamus-brainstem circuits to cause weight gain by stimulating appetite and fat accumulation but reducing energy expenditure. The H1 receptor and its downstream signaling molecules could be valuable targets for the design of new compounds for treating SGA-induced weight gain/obesity.
Collapse
Affiliation(s)
- Meng He
- Centre for Translational Neuroscience, School of Health Sciences, 32.305, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | | | | |
Collapse
|
25
|
Boyda HN, Procyshyn RM, Tse L, Hawkes E, Jin CH, Pang CC, Honer WG, Barr AM. Differential effects of 3 classes of antidiabetic drugs on olanzapine-induced glucose dysregulation and insulin resistance in female rats. J Psychiatry Neurosci 2012; 37:407-15. [PMID: 22640703 PMCID: PMC3493097 DOI: 10.1503/jpn.110140] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The second-generation antipsychotic drug olanzapine is an effective pharmacological treatment for psychosis. However, use of the drug is commonly associated with a range of metabolic side effects, including glucose intolerance and insulin resistance. These symptoms have been accurately modelled in rodents. METHODS We compared the effects of 3 distinct classes of antidiabetic drugs, metformin (100 and 500 mg/kg, oral), rosiglitazone (6 and 30 mg/kg, oral) and glyburide (2 and 10 mg/kg, oral), on olanzapineinduced metabolic dysregulation. After acutely treating female rats with lower (7.5 mg/kg) or higher (15 mg/kg) doses of olanzapine, we assessed glucose intolerance using the glucose tolerance test and measured insulin resistance using the homeostatic model assessment of insulin resistance equation. RESULTS Both doses of olanzapine caused pronounced glucose dysregulation and insulin resistance, which were significantly reduced by treatment with metformin and rosiglitazone; however, glucose tolerance did not fully return to control levels. In contrast, glyburide failed to reverse the glucose intolerance caused by olanzapine despite increasing insulin levels. LIMITATIONS We evaluated a single antipsychotic drug, and it is unknown whether other antipsychotic drugs are similarly affected by antidiabetic treatments. CONCLUSION The present study indicates that oral hypoglycemic drugs that influence hepatic glucose metabolism, such as metformin and rosiglitazone, are more effective in regulating olanzapine-induced glucose dysregulation than drugs primarily affecting insulin release, such as glyburide. The current model may be used to better understand the biological basis of glucose dysregulation caused by olanzapine and how it can be reversed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alasdair M. Barr
- Correspondence to: A.M. Barr, Department of Anesthesiology and Pharmacology, University of British Columbia, 2176 Health Sciences Mall, Vancouver BC V6T 1Z3;
| |
Collapse
|
26
|
Faure J, Lefaucheur L, Bonhomme N, Ecolan P, Meteau K, Coustard SM, Kouba M, Gilbert H, Lebret B. Consequences of divergent selection for residual feed intake in pigs on muscle energy metabolism and meat quality. Meat Sci 2012; 93:37-45. [PMID: 22910803 DOI: 10.1016/j.meatsci.2012.07.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 06/25/2012] [Accepted: 07/03/2012] [Indexed: 02/07/2023]
Abstract
Selection to decrease Residual Feed Intake (RFI) is a relevant way to improve feed efficiency in growing pigs. However, RFI criterion is correlated with body composition and muscle characteristics. Present study evaluated adaptive responses to divergent selection on RFI on muscle metabolism and homeostasis through AMP-activated protein kinase pathway. Consequences on technological and sensory meat quality were also analyzed in two lines of Large White pigs after six generations of divergent selection on RFI. RFI(-) pigs (n=60) exhibited similar growth rate but lower feed intake and conversion ratio, and were leaner than RFI(+) pigs (n=57). Despite higher glycogen content, metabolic enzyme capacities involved in glycolytic, fatty acid oxidation pathway and energy balance were reduced in the Longissimus muscle of the RFI(-) pigs. Reduced muscle homeostasis in the RFI(-) line influenced post-mortem metabolism and impaired technological quality traits of loin and ham but had only slight effects on meat eating quality.
Collapse
Affiliation(s)
- J Faure
- INRA, UMR1348 Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Elevage, F-35590 Saint-Gilles, France.
| | | | | | | | | | | | | | | | | |
Collapse
|