1
|
Klein AH, Alam S, Johnson K, Kriner C, Beck B, Nelson B, Hill C, Meyer B, Mellang J, Watts VJ. Inhibition of adenylyl cyclase 1 (AC1) and exchange protein directly activated by cAMP (EPAC) restores ATP-sensitive potassium (K ATP) channel activity after chronic opioid exposure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636278. [PMID: 39974972 PMCID: PMC11838493 DOI: 10.1101/2025.02.03.636278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Prolonged exposure to Gαi/o receptor agonists such as opioids can lead to a sensitization of adenylyl cyclases (ACs), resulting in heterologous sensitization or cyclic AMP (cAMP) overshoot. The molecular consequences of cAMP overshoot are not well understood, but this adaptive response is suggested to play a critical role in the development of opioid tolerance and withdrawal. We found that genetic reduction of AC1 and simultaneous upregulation of ATP-sensitive potassium (KATP) channel subunits, SUR1 or Kir6.2, significantly attenuated morphine tolerance and reduced naloxone-precipitated withdrawal. In vitro models utilized an EPAC2-GFP-cAMP biosensor to investigate sensitization of adenylyl cyclase in SH-SY5Y neuroblastoma cells and HEKΔAC3/6 knockout cells. Acute application of DAMGO significantly decreased the cAMP signal from the EPAC2-GFP-cAMP biosensor, while chronic DAMGO administration resulted in enhanced cAMP production following AC stimulation. Inhibition of cAMP overshoot was observed with naloxone (NAL), pertussis toxin (PTX), and the neddylation inhibitor, MLN4924 (Pevonedistat), as well as co-expression of β-adrenergic receptor kinase C-terminus (β-ARKCT). After establishment of the AC1-EPAC sensitization in the in vitro models, we found that inhibition of AC1 or EPAC enhanced potassium channel activity after chronic morphine treatment, using a thallium-based assay in SH-SY5Y cells. Similar data were obtained in mouse dorsal root ganglia (DRG) after chronic morphine treatment. This study presents evidence for investigating further AC1 signaling as a target for opioid tolerance and withdrawal, by increasing EPAC activity and affecting potassium channels downstream of opioid receptors.
Collapse
Affiliation(s)
- Amanda H. Klein
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN
| | - Sabbir Alam
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette IN
| | - Kayla Johnson
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN
| | - Christian Kriner
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY
| | - Brie Beck
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY
| | - Bethany Nelson
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN
| | - Cassidy Hill
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN
| | - Belle Meyer
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN
| | - Jonas Mellang
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN
| | - Val J. Watts
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette IN
- Purdue Institutes for Integrative Neuroscience (PIIN), Drug Discovery (PIDD), Cancer Research (PICR), and Inflammation, Immunology and Infectious Disease (PI4D), Purdue University, West Lafayette IN
| |
Collapse
|
2
|
Pourhassanali N, Zarbakhsh S, Miladi-Gorji H. Morphine dependence and withdrawal-induced changes in mouse Sertoli cell (TM4) line: Evaluation of apoptotic, inflammatory and oxidative stress biomarkers. Reprod Toxicol 2021; 105:175-183. [PMID: 34517100 DOI: 10.1016/j.reprotox.2021.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 12/01/2022]
Abstract
Chronic morphine exerts deleterious effects on testicular function through either suppression of germ cells or somatic including Sertoli cells, probably through the activation of inflammatory, oxidative, and apoptosis biomarkers. Thus, the present study aimed to investigate whether the damaging effects of morphine dependence were reversed by the spontaneous morphine withdrawal or incubation with methadone and/or naloxone in Sertoli (TM4) cells using an in- vitro cell model of morphine dependence. Morphine dependence in TM4 cells was induced by increasing daily doses of morphine for 10 days and then maintained for two weeks in 5 μM. The cAMP levels were measured for an evaluation of morphine dependence. The cell viability and inflammatory, oxidative, apoptosis biomarkers, and glial cell-derived neurotrophic factor (GDNF) were measured after the end of treatment following the incubation of cells with methadone and naloxone and spontaneous withdrawal from morphine. We found that morphine dependence decreased cell viability, GDNF level and increased the levels of pro-oxidant, pro-inflammatory, and apoptotic biomarkers in TM4 cells, while spontaneous withdrawal from morphine and by naloxone decreased the levels of the biomarkers of pro-inflammatory and apoptotic in TM4 cells. Also, despite the low levels of pro-inflammatory factors following morphine withdrawal by methadone, it increased the cleaved/pro-caspase3 ratio in TM4 cells. This study showed that morphine dependence increased apoptosis probably via oxidative stress and inflammation pathways in TM4 cells. Also, it seems likely that spontaneous and naloxone withdrawal have beneficial consequences in the treatment of morphine dependence than methadone therapy, although they may require longer incubation periods.
Collapse
Affiliation(s)
- Nazila Pourhassanali
- Research Center of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran; Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Sam Zarbakhsh
- Department of Anatomical Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hossein Miladi-Gorji
- Research Center of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran; Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
3
|
Yuan L, Luo L, Ma X, Wang W, Yu K, Shi H, Chen J, Chen D, Xu T. Chronic morphine induces cyclic adenosine monophosphate formation and hyperpolarization-activated cyclic nucleotide-gated channel expression in the spinal cord of mice. Neuropharmacology 2020; 176:108222. [PMID: 32659289 DOI: 10.1016/j.neuropharm.2020.108222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/31/2020] [Accepted: 06/23/2020] [Indexed: 12/23/2022]
Abstract
Chronic morphine exposure persistently activates Gαi/o protein-coupled receptors and enhances adenylyl cyclase (AC) activity, which can increase cyclic adenosine monophosphate (cAMP) production. Direct binding of cAMP to the cytoplasmic site on hyperpolarization-activated cyclic nucleotide-gated (HCN) channels increases the probability of channel opening. HCN channels play a prominent role in chronic pain the disease that shares some common mechanisms with opioid tolerance. This compensatory AC activation may be responsible for the induction of morphine-induced analgesic tolerance. We investigated spinal cAMP formation and expression of HCN2 in the spinal cord, and observed the effect of AC inhibition on the induction of morphine analgesic tolerance. We found that chronic morphine-induced antinociceptive tolerance increased spinal cAMP formation and the expression of spinal HCN2. Inhibition of spinal AC partially blocked chronic morphine-induced cAMP formation and prevented the induction of morphine-induced analgesic tolerance. Inhibition of HCN2 also showed a partial preventive effect on morphine-induced tolerance, hypothermia tolerance and also the right-shift of the dose-response curve. We conclude that repeated morphine treatment increases AC activity and cAMP formation, and also spinal HCN2 expression, blockade of AC or HCN2 can prevent the development of morphine-induced analgesic tolerance.
Collapse
Affiliation(s)
- Lin Yuan
- Department of Anesthesiology, Tongzhou People's Hospital, Nantong, 226300, China
| | - Limin Luo
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Xiaqing Ma
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Wenying Wang
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Kangkang Yu
- Department of Pathology, Tongzhou People's Hospital, Nantong, 226300, China
| | - Haibo Shi
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China
| | - Jian Chen
- Department of Orthopaedics, Tongzhou People's Hospital, Nantong, 226300, China.
| | - Dake Chen
- Department of Oncology, Tongzhou People's Hospital, Nantong, 226300, China.
| | - Tao Xu
- Department of Anesthesiology, Tongzhou People's Hospital, Nantong, 226300, China; Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China.
| |
Collapse
|
4
|
Shirooie S, Esmaeili J, Sureda A, Esmaeili N, Mirzaee Saffari P, Yousefi-Manesh H, Dehpour AR. Evaluation of the effects of metformin administration on morphine tolerance in mice. Neurosci Lett 2020; 716:134638. [PMID: 31756370 DOI: 10.1016/j.neulet.2019.134638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/10/2019] [Accepted: 11/18/2019] [Indexed: 01/30/2023]
Abstract
Opioids are used in clinical practice to relieve moderate to severe pain. Prolonged use of opioids can lead to a situation of analgesic tolerance and dependence. Several mechanisms are involved in the tolerance to analgesic opioids, including desensitization or internalization of the opioid receptor, elevation of cAMP levels, microglial activation and neuroinflammation, elevation of spinal mTOR activity and change in the expression of some proteins involved in tolerance, such as nNOS. Activation of the AMPK pathway inhibits mTOR and p38 MAPK ameliorating neuroinflammation and tolerance induced by morphine. Metformin, a potent antidiabetic agent, can also activate AMPK. Morphine tolerance was induced in mice by intraperitoneal administration three times daily at 08:00, 11.00 and 16.00 h of 50, 50 and 75 mg/kg morphine, respectively during four days. On the fifth day mice received a single injection of morphine 50 mg/kg. To evaluate the effects of metformin in development of morphine-induced analgesic tolerance a group of mice received metformin (10 mg/kg) 45 min before each morphine administration. Tail flick and hot plate tests were performed to estimate analgesic latency on days 1, 3 and 5. At five days, the animals were sacrificed, the brain dissected and nitrite levels determined. Chronic metformin administration significantly increased the analgesic latency on days 3 and 5 compared to the morphine group in hot plate test and in tail flick test. Chronic and acute metformin administration significantly decreased nitric oxide level compare to morphine group. The present results revealed that metformin attenuated analgesic tolerance induced by repeated intraperitoneal injections of morphine in mice.
Collapse
Affiliation(s)
- Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Jamileh Esmaeili
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX) and CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), University of Balearic Islands, Palma de Mallorca E-07122, Balearic Islands, Spain
| | - Nafiseh Esmaeili
- Department of Chemistry, Faculty of Sciences, Semnan University, Semnan, Iran
| | - Partow Mirzaee Saffari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hasan Yousefi-Manesh
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Valentino RJ, Koroshetz W, Volkow ND. Translating Opioid Pharmacology From Bench to Bedside, and Back. Biol Psychiatry 2020; 87:4-5. [PMID: 31806084 DOI: 10.1016/j.biopsych.2019.05.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023]
Affiliation(s)
| | - Walter Koroshetz
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| | - Nora D Volkow
- National Institute on Drug Abuse, Bethesda, Maryland
| |
Collapse
|
6
|
Wilson RB. Morpheus and the Underworld-Interventions to Reduce the Risks of Opioid Use After Surgery: ORADEs, Dependence, Cancer Progression, and Anastomotic Leakage. J Gastrointest Surg 2019; 23:1240-1249. [PMID: 30937715 DOI: 10.1007/s11605-019-04167-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/08/2019] [Indexed: 01/31/2023]
Abstract
BACKGROUND Perioperative pain management is a key element of enhanced recovery after surgery (ERAS) programs. A multimodal approach to analgesia as part of a coordinated ERAS includes the reduction of opioid use. This review aims to discuss opioid-related adverse events, strategies to reduce opioid use after surgery, and the relevance to the present "opioid crisis" in North America. METHODS A literature review of the pharmacology of opioid drugs, perioperative opioid reduction strategies, and the potential public health benefit was performed. This included current ERAS guidelines on multimodal analgesia, randomized controlled trials on perioperative analgesia, and intervention studies to decrease opioid use, misuse, and diversion in North America. RESULTS Reduction of perioperative opioid usage has been endorsed by joint clinical practice guidelines on the management of postoperative pain from the American Pain Society, the American Society of Regional Anesthesia and Pain Medicine, and the American Society of Anesthesiologists. Interventions as part of an "opioid bundle" that can be incorporated into ERAS protocols include multimodal analgesia, regional anesthesia, opioid sparing drugs, carbon dioxide humidification during laparoscopy, changing opioid prescription practices, patient and physician education, and proper disposal of unused opioid medications. CONCLUSION There are substantial benefits in incorporating opioid reduction strategies into ERAS and clinical practice guidelines. These include faster return of function and mobility, and decreased opioid-related adverse drug events (ORADEs), postoperative morbidity and mortality, and length of hospital stay. Improved oncological outcomes after cancer surgery may be an additional benefit. Evidence-based interventions can also reduce opioid abuse and diversion in the community.
Collapse
Affiliation(s)
- Robert Beaumont Wilson
- Department of Upper Gastrointestinal Surgery, Liverpool Hospital, Suite 6, Level 2, 171 Bigge St, Liverpool, Sydney, NSW, 2170, Australia.
| |
Collapse
|
7
|
Spahn V, Del Vecchio G, Labuz D, Rodriguez-Gaztelumendi A, Massaly N, Temp J, Durmaz V, Sabri P, Reidelbach M, Machelska H, Weber M, Stein C. A nontoxic pain killer designed by modeling of pathological receptor conformations. Science 2017; 355:966-969. [PMID: 28254944 DOI: 10.1126/science.aai8636] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/30/2017] [Indexed: 12/12/2022]
Abstract
Indiscriminate activation of opioid receptors provides pain relief but also severe central and intestinal side effects. We hypothesized that exploiting pathological (rather than physiological) conformation dynamics of opioid receptor-ligand interactions might yield ligands without adverse actions. By computer simulations at low pH, a hallmark of injured tissue, we designed an agonist that, because of its low acid dissociation constant, selectively activates peripheral μ-opioid receptors at the source of pain generation. Unlike the conventional opioid fentanyl, this agonist showed pH-sensitive binding, heterotrimeric guanine nucleotide-binding protein (G protein) subunit dissociation by fluorescence resonance energy transfer, and adenosine 3',5'-monophosphate inhibition in vitro. It produced injury-restricted analgesia in rats with different types of inflammatory pain without exhibiting respiratory depression, sedation, constipation, or addiction potential.
Collapse
Affiliation(s)
- V Spahn
- Department of Anesthesiology and Critical Care Medicine, Charité-Universitätsmedizin Berlin Campus Benjamin Franklin, Freie Universität Berlin, Hindenburgdamm 30, Berlin 12203, Germany
| | - G Del Vecchio
- Department of Anesthesiology and Critical Care Medicine, Charité-Universitätsmedizin Berlin Campus Benjamin Franklin, Freie Universität Berlin, Hindenburgdamm 30, Berlin 12203, Germany
| | - D Labuz
- Department of Anesthesiology and Critical Care Medicine, Charité-Universitätsmedizin Berlin Campus Benjamin Franklin, Freie Universität Berlin, Hindenburgdamm 30, Berlin 12203, Germany
| | - A Rodriguez-Gaztelumendi
- Department of Anesthesiology and Critical Care Medicine, Charité-Universitätsmedizin Berlin Campus Benjamin Franklin, Freie Universität Berlin, Hindenburgdamm 30, Berlin 12203, Germany
| | - N Massaly
- Department of Anesthesiology and Critical Care Medicine, Charité-Universitätsmedizin Berlin Campus Benjamin Franklin, Freie Universität Berlin, Hindenburgdamm 30, Berlin 12203, Germany
| | - J Temp
- Department of Anesthesiology and Critical Care Medicine, Charité-Universitätsmedizin Berlin Campus Benjamin Franklin, Freie Universität Berlin, Hindenburgdamm 30, Berlin 12203, Germany
| | - V Durmaz
- Computational Molecular Design, Zuse-Institut Berlin, Takustrasse 7, Berlin, 14195, Germany
| | - P Sabri
- Computational Molecular Design, Zuse-Institut Berlin, Takustrasse 7, Berlin, 14195, Germany
| | - M Reidelbach
- Computational Molecular Design, Zuse-Institut Berlin, Takustrasse 7, Berlin, 14195, Germany
| | - H Machelska
- Department of Anesthesiology and Critical Care Medicine, Charité-Universitätsmedizin Berlin Campus Benjamin Franklin, Freie Universität Berlin, Hindenburgdamm 30, Berlin 12203, Germany
| | - M Weber
- Computational Molecular Design, Zuse-Institut Berlin, Takustrasse 7, Berlin, 14195, Germany
| | - C Stein
- Department of Anesthesiology and Critical Care Medicine, Charité-Universitätsmedizin Berlin Campus Benjamin Franklin, Freie Universität Berlin, Hindenburgdamm 30, Berlin 12203, Germany.
| |
Collapse
|
8
|
Wang H, Wang S, Zhang K, Wang H, Lan L, Ma X, Liu X, Zhang S, Zheng J, Wei X, Yan H. Aquaporin 4 Forms a Macromolecular Complex with Glutamate Transporter 1 and Mu Opioid Receptor in Astrocytes and Participates in Morphine Dependence. J Mol Neurosci 2017; 62:17-27. [PMID: 28341892 DOI: 10.1007/s12031-017-0905-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 02/24/2017] [Indexed: 10/19/2022]
Abstract
The water channel aquaporin 4 (AQP4) is abundantly expressed in astrocytes and provides a mechanism by which water permeability of the plasma membrane can be regulated. Evidence suggests that AQP4 is associated with glutamate transporter-1 (GLT-1) for glutamate clearance and contributes to morphine dependence. Previous studies show that AQP4 deficiency changed the mu opioid receptor expression and opioid receptors' characteristics as well. In this study, we focused on whether AQP4 could form macromolecular complex with GLT-1 and mu opioid receptor (MOR) and participates in morphine dependence. By using immunofluorescence staining, fluorescence resonance energy transfer, and co-immunoprecipitation, we demonstrated that AQP4 forms protein complexes with GLT-1 and MOR in both brain tissue and primary cultured astrocytes. We then showed that the C-terminus of AQP4 containing the amino acid residues 252 to 323 is the site of interaction with GLT-1. Protein kinase C, activated by morphine, played an important role in regulating the expression of these proteins. These findings may help to reveal the mechanism that AQP4, GLT-1, and MOR form protein complex and participate in morphine dependence, and deeply understand the reason that AQP4 deficiency maintains extracellular glutamate homeostasis and attenuates morphine dependence, moreover emphasizes the function of astrocyte in morphine dependence.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Shiqi Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Kang Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Hua Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Liting Lan
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Xiaoyun Ma
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Xiaoyan Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Shuzhuo Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Jianquan Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Xiaoli Wei
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| | - Haitao Yan
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| |
Collapse
|
9
|
Ma J, Yuan X, Qu H, Zhang J, Wang D, Sun X, Zheng Q. The role of reactive oxygen species in morphine addiction of SH-SY5Y cells. Life Sci 2015; 124:128-35. [PMID: 25623851 DOI: 10.1016/j.lfs.2015.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 02/04/2023]
Abstract
AIMS The alteration of ROS level is frequently observed in the course of morphine addiction, and ROS is proverbially involved in this process. This study aims to explore the relationship among morphine addiction, reactive oxygen species (ROS) and expression of μ-opioid receptor (MOR) in differentiated SH-SY5Y cells. MAIN METHODS SH-SY5Y cells were induced to differentiation by treatment with retinoic acid (RA); the activity of lactate dehydrogenase (LDH) and the nitro blue tetrazolium (NBT) reduction were assessed by spectrophotometry. Intracellular reactive oxygen species (ROS) was measured with the 2,7-dichlorofluorescin diacetate (DCFH-DA) assay. Cellular cAMP was determined by using a competitive protein binding kit. The mRNA expression of μ-opioid receptor (MOR) was evaluated by qRT-PCR. KEY FINDINGS Morphine-induced ROS are generated in a concentration- and time-dependent manner and inhibited by naloxone. Exogenous oxidants increase the level of ROS and aggravate morphine addiction, while the exogenous antioxidants efficiently reverse these effects. Morphine decreases the mRNA level of MOR in a concentration-dependent manner. And the mRNA level of MOR is remarkably reduced in the presence of exogenous oxidants and effectively promoted by antioxidants. SIGNIFICANCE This study indicates that ROS can affect morphine addiction through involving MOR. Treatment with ROS scavenging can serve as a medical therapy for morphine addiction.
Collapse
Affiliation(s)
- Jun Ma
- Binzhou Medical University, Yantai 264000, Shandong, China; Life Science School, Yantai University, Yantai 264000, Shandong, China
| | - Xuan Yuan
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832002, Xinjiang, China
| | - Hengyi Qu
- Binzhou Medical University, Yantai 264000, Shandong, China
| | - Juan Zhang
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832002, Xinjiang, China
| | - Dong Wang
- Qianfoshan Hospital of Shandong Province, Jinan 250014, China
| | - Xiling Sun
- Binzhou Medical University, Yantai 264000, Shandong, China.
| | - Qiusheng Zheng
- Binzhou Medical University, Yantai 264000, Shandong, China; Life Science School, Yantai University, Yantai 264000, Shandong, China.
| |
Collapse
|
10
|
Synthesis of benzo-fused spiropiperidines through a regioselective free radical-mediated cyclization as key step: a suitable alternative towards the lead σ-1 receptor ligand L-687384. MONATSHEFTE FUR CHEMIE 2015. [DOI: 10.1007/s00706-014-1407-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Adnan LHM, Bakar NHA, Mohamad N. Opioid dependence and substitution therapy: thymoquinone as potential novel supplement therapy for better outcome for methadone maintenance therapy substitution therapy. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2014; 17:926-8. [PMID: 25859295 PMCID: PMC4387227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/22/2014] [Indexed: 11/08/2022]
Abstract
Methadone is widely being used for opioid substitution therapy. However, the administration of methadone to opioid dependent individual is frequently accompanied by withdrawal syndrome and chemical dependency develops. Other than that, it is also difficult to retain patients in the treatment programme making their retention rates are decreasing over time. This article is written to higlights the potential use of prophetic medicines, Nigella sativa, as a supplement for opioid dependent receiving methadone. It focuses on the potential role of N. sativa and its major active compound, Thymoquinone (TQ) as a calcium channel blocking agent to reduce withdrawal syndrome and opioid dependency.
Collapse
Affiliation(s)
- Liyana Hazwani Mohd Adnan
- Faculty of Medicine and Health Sciences (FPSK), Universiti Sultan Zainal Abidin (UniSZA), 20400, Kuala Terengganu, Terengganu, Malaysia
| | - Nor Hidayah Abu Bakar
- Faculty of Medicine and Health Sciences (FPSK), Universiti Sultan Zainal Abidin (UniSZA), 20400, Kuala Terengganu, Terengganu, Malaysia
| | - Nasir Mohamad
- Innovation and Research; FPSK, UniSZA, 20400, Kuala Terengganu, Terengganu, Malaysia,*Corresponding author: Nasir Mohamad. Innovation and Research, Faculty of Medicine and Health Sciences, Universiti Sultan Zainal Abidin, 20400, Kuala Terengganu, Terengganu, Malaysia. Tel: +6019-9388078;
| |
Collapse
|
12
|
Yasgar A, Simeonov A. Current approaches for the discovery of drugs that deter substance and drug abuse. Expert Opin Drug Discov 2014; 9:1319-31. [PMID: 25251069 DOI: 10.1517/17460441.2014.956721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Much has been presented and debated on the topic of drug abuse and its multidimensional nature, including the role of society and its customs and laws, economical factors, and the magnitude and nature of the burden. Given the complex nature of the receptors and pathways implicated in regulation of the cognitive and behavioral processes associated with addiction, a large number of molecular targets have been interrogated during recent years to discover starting points for development of small-molecule interventions. AREAS COVERED This review describes recent developments in the field of early drug discovery for drug abuse interventions with an emphasis on the advances published during the 2012 - 2014 period. EXPERT OPINION Technologically, the processes/platforms utilized in drug abuse drug discovery are nearly identical to those used in the other disease areas. A key complicating factor in drug abuse research is the enormous biological complexity surrounding the brain processes involved and the associated difficulty in finding 'good' targets and achieving exquisite selectivity of treatment agents. While tremendous progress has been made during recent years to use the power of high-throughput technologies to discover proof-of-principle molecules for many new targets, next-generation models will be especially important in this field. Examples include: seeking advantageous drug-drug combinations, the use of automated whole-animal behavioral screening systems, advancing our understanding of the role of epigenetics in drug addiction and the employment of organoid-level 3D test platforms (also referred to as tissue-chip or organs-on-chip).
Collapse
Affiliation(s)
- Adam Yasgar
- National Institutes of Health, NIH Chemical Genomics Center, National Center for Advancing Translational Sciences , Bethesda, MD , USA +1 301 217 5721 ; +1 301 217 5736 ;
| | | |
Collapse
|
13
|
Freitas J, Miller N, Mengeling BJ, Xia M, Huang R, Houck K, Rietjens IMCM, Furlow JD, Murk AJ. Identification of thyroid hormone receptor active compounds using a quantitative high-throughput screening platform. Curr Chem Genom Transl Med 2014; 8:36-46. [PMID: 24772387 PMCID: PMC3999704 DOI: 10.2174/2213988501408010036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 12/09/2013] [Accepted: 12/12/2013] [Indexed: 02/02/2023] Open
Abstract
To adapt the use of GH3.TRE-Luc reporter gene cell line for a quantitative high-throughput screening (qHTS)
platform, we miniaturized the reporter gene assay to a 1536-well plate format. 1280 chemicals from the Library of Pharmacologically
Active Compounds (LOPAC) and the National Toxicology Program (NTP) 1408 compound collection
were analyzed to identify potential thyroid hormone receptor (TR) agonists and antagonists. Of the 2688 compounds
tested, eight scored as potential TR agonists when the positive hit cut-off was defined at ≥10% efficacy, relative to maximal
triiodothyronine (T3) induction, and with only one of those compounds reaching ≥20% efficacy. One common class of
compounds positive in the agonist assays were retinoids such as all-trans retinoic acid, which are likely acting via the retinoid-X receptor, the heterodimer partner with the TR. Five potential TR antagonists were identified, including the antiallergy
drug tranilast and the anxiolytic drug SB 205384 but also some cytotoxic compounds like 5-fluorouracil. None of
the inactive compounds were structurally related to T3, nor had been reported elsewhere to be thyroid hormone disruptors,
so false negatives were not detected. None of the low potency (>100µM) TR agonists resembled T3 or T4, thus these may
not bind directly in the ligand-binding pocket of the receptor. For TR agonists, in the qHTS, a hit cut-off of ≥20% efficacy
at 100 µM may avoid identification of positives with low or no physiological relevance. The miniaturized GH3.TRE-Luc
assay offers a promising addition to the in vitro test battery for endocrine disruption, and given the low percentage of
compounds testing positive, its high-throughput nature is an important advantage for future toxicological screening.
Collapse
Affiliation(s)
- Jaime Freitas
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands ; Group of Cell Activation and Gene Expression, Institute for Molecular and Cellular Biology, University of Porto, Porto, Portugal
| | - Nicole Miller
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brenda J Mengeling
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis 95616, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Keith Houck
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands
| | - J David Furlow
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis 95616, USA
| | - Albertinka J Murk
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands ; Subdepartment of Environmental Technology, Wageningen University, and Wageningen-IMARES, Axis Z (Building number 118), Room TT.1.100, Bornse Weilanden 96708, WG Wageningen, The Netherlands
| |
Collapse
|
14
|
Spahn V, Stein C, Zöllner C. Modulation of transient receptor vanilloid 1 activity by transient receptor potential ankyrin 1. Mol Pharmacol 2014; 85:335-44. [PMID: 24275229 DOI: 10.1124/mol.113.088997] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is a nonselective ligand-gated cation channel responding to noxious heat, protons, and chemicals such as capsaicin. TRPV1 is expressed in sensory neurons and plays a critical role in pain associated with tissue injury, inflammation, and nerve lesions. Transient receptor potential ankyrin 1 (TRPA1) is coexpressed with TRPV1. It is activated by compounds that cause a burning sensation (e.g., mustard oil) and, indirectly, by components of the inflammatory milieu eliciting nociceptor excitation and pain hypersensitivity. Previous studies indicate an interaction of TRPV1 and TRPA1 signaling pathways. Here we sought to examine the molecular mechanisms underlying such interactions in nociceptive neurons. We first excluded physical interactions of both channels using radioligand binding studies. By microfluorimetry, electrophysiological experiments, cAMP measurements, and site-directed mutagenesis we found a sensitization of TRPV1 after TRPA1 stimulation with mustard oil in a calcium and cAMP/protein kinase A (PKA)-dependent manner. TRPA1 stimulation enhanced TRPV1 phosphorylation via the putative PKA phosphorylation site serine 116. We also detected calcium-sensitive increased TRPV1 activity after TRPA1 activation in dorsal root ganglion neurons. The inhibition of TRPA1 by HC-030031 (1,2,3,6-tetrahydro-1,3-dimethyl-N-[4-(1-methylethyl)phenyl]-2,6-dioxo-7H-purine-7-acetamide, 2-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)-N-(4-isopropylphenyl)acetamide) after its initial stimulation (and the calcium-insensitive TRPA1 mutant D477A) still showed increased capsaicin-induced TRPV1 activity. This excludes a calcium-induced additive TRPA1 current after TRPV1 stimulation. Our study shows sensitization of TRPV1 via activation of TRPA1, which involves adenylyl cyclase, increased cAMP, subsequent translocation and activation of PKA, and phosphorylation of TRPV1 at PKA phosphorylation residues. This suggests that cross-sensitization of TRP channels contributes to enhanced pain sensitivity in inflamed tissues.
Collapse
Affiliation(s)
- Viola Spahn
- Charité, Universitätsmedizin Berlin, Klinik für Anästhesiologie und Operative Intensivmedizin, Berlin, Germany (V.S., C.S., C.Z.); and Universitätsklinikum Hamburg, Eppendorf, Klinik und Poliklinik für Anästhesiologie, Zentrum für Anästhesiologie und Intensivmedizin, Hamburg, Germany (C.Z.)
| | | | | |
Collapse
|
15
|
Conley JM, Brust TF, Xu R, Burris KD, Watts VJ. Drug-induced sensitization of adenylyl cyclase: assay streamlining and miniaturization for small molecule and siRNA screening applications. J Vis Exp 2014:e51218. [PMID: 24514897 DOI: 10.3791/51218] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Sensitization of adenylyl cyclase (AC) signaling has been implicated in a variety of neuropsychiatric and neurologic disorders including substance abuse and Parkinson's disease. Acute activation of Gαi/o-linked receptors inhibits AC activity, whereas persistent activation of these receptors results in heterologous sensitization of AC and increased levels of intracellular cAMP. Previous studies have demonstrated that this enhancement of AC responsiveness is observed both in vitro and in vivo following the chronic activation of several types of Gαi/o-linked receptors including D2 dopamine and μ opioid receptors. Although heterologous sensitization of AC was first reported four decades ago, the mechanism(s) that underlie this phenomenon remain largely unknown. The lack of mechanistic data presumably reflects the complexity involved with this adaptive response, suggesting that nonbiased approaches could aid in identifying the molecular pathways involved in heterologous sensitization of AC. Previous studies have implicated kinase and Gbγ signaling as overlapping components that regulate the heterologous sensitization of AC. To identify unique and additional overlapping targets associated with sensitization of AC, the development and validation of a scalable cAMP sensitization assay is required for greater throughput. Previous approaches to study sensitization are generally cumbersome involving continuous cell culture maintenance as well as a complex methodology for measuring cAMP accumulation that involves multiple wash steps. Thus, the development of a robust cell-based assay that can be used for high throughput screening (HTS) in a 384 well format would facilitate future studies. Using two D2 dopamine receptor cellular models (i.e. CHO-D2L and HEK-AC6/D2L), we have converted our 48-well sensitization assay (>20 steps 4-5 days) to a five-step, single day assay in 384-well format. This new format is amenable to small molecule screening, and we demonstrate that this assay design can also be readily used for reverse transfection of siRNA in anticipation of targeted siRNA library screening.
Collapse
Affiliation(s)
- Jason M Conley
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University
| | | | | | | | | |
Collapse
|
16
|
Spahn V, Fischer O, Endres-Becker J, Schäfer M, Stein C, Zöllner C. Opioid withdrawal increases transient receptor potential vanilloid 1 activity in a protein kinase A-dependent manner. Pain 2013; 154:598-608. [PMID: 23398938 DOI: 10.1016/j.pain.2012.12.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 11/21/2012] [Accepted: 12/31/2012] [Indexed: 11/30/2022]
Abstract
Hyperalgesia is a cardinal symptom of opioid withdrawal. The transient receptor potential vanilloid 1 (TRPV1) is a ligand-gated ion channel expressed on sensory neurons responding to noxious heat, protons, and chemical stimuli such as capsaicin. TRPV1 can be inhibited via μ-opioid receptor (MOR)-mediated reduced activity of adenylyl cyclases (ACs) and decreased cyclic adenosine monophosphate (cAMP) levels. In contrast, opioid withdrawal following chronic activation of MOR uncovers AC superactivation and subsequent increases in cAMP and protein kinase A (PKA) activity. Here we investigated (1) whether an increase in cAMP during opioid withdrawal increases the activity of TRPV1 and (2) how opioid withdrawal modulates capsaicin-induced nocifensive behavior in rats. We applied whole-cell patch clamp, microfluorimetry, cAMP assays, radioligand binding, site-directed mutagenesis, and behavioral experiments. Opioid withdrawal significantly increased cAMP levels and capsaicin-induced TRPV1 activity in both transfected human embryonic kidney 293 cells and dissociated dorsal root ganglion (DRG) neurons. Inhibition of AC and PKA, as well as mutations of the PKA phosphorylation sites threonine 144 and serine 774, prevented the enhanced TRPV1 activity. Finally, capsaicin-induced nocifensive behavior was increased during opioid withdrawal in vivo. In summary, our results demonstrate an increased activity of TRPV1 in DRG neurons as a new mechanism contributing to opioid withdrawal-induced hyperalgesia.
Collapse
Affiliation(s)
- Viola Spahn
- Charité - Universitätsmedizin Berlin, Klinik für Anaesthesiologie und operative Intensivmedizin, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin 12203, Germany Universitätsklinikum Hamburg - Eppendorf, Klinik für Anästhesiologie, Hamburg 20251, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
This paper is the thirty-fourth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2011 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
18
|
Wen D, Ma CL, Zhang YJ, Meng YX, Ni ZY, Li SJ, Cong B. Cholecystokinin receptor-1 mediates the inhibitory effects of exogenous cholecystokinin octapeptide on cellular morphine dependence. BMC Neurosci 2012; 13:63. [PMID: 22682150 PMCID: PMC3407485 DOI: 10.1186/1471-2202-13-63] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 06/08/2012] [Indexed: 11/16/2022] Open
Abstract
Background Cholecystokinin octapeptide (CCK-8), the most potent endogenous anti-opioid peptide, has been shown to regulate the processes of morphine dependence. In our previous study, we found that exogenous CCK-8 attenuated naloxone induced withdrawal symptoms. To investigate the precise effect of exogenous CCK-8 and the role of cholecystokinin (CCK) 1 and/or 2 receptors in morphine dependence, a SH-SY5Y cell model was employed, in which the μ-opioid receptor, CCK1/2 receptors, and endogenous CCK are co-expressed. Results Forty-eight hours after treating SH-SY5Y cells with morphine (10 μM), naloxone (10 μM) induced a cAMP overshoot, indicating that cellular morphine dependence had been induced. The CCK receptor and endogenous CCK were up-regulated after chronic morphine exposure. The CCK2 receptor antagonist (LY-288,513) at 1–10 μM inhibited the naloxone-precipitated cAMP overshoot, but the CCK1 receptor antagonist (L-364,718) did not. Interestingly, CCK-8 (0.1-1 μM), a strong CCK receptor agonist, dose-dependently inhibited the naloxone-precipitated cAMP overshoot in SH-SY5Y cells when co-pretreated with morphine. The L-364,718 significantly blocked the inhibitory effect of exogenous CCK-8 on the cAMP overshoot at 1–10 μM, while the LY-288,513 did not. Therefore, the CCK2 receptor appears to be necessary for low concentrations of endogenous CCK to potentiate morphine dependence in SH-SY5Y cells. An additional inhibitory effect of CCK-8 at higher concentrations appears to involve the CCK1 receptor. Conclusions This study reveals the difference between exogenous CCK-8 and endogenous CCK effects on the development of morphine dependence, and provides the first evidence for the participation of the CCK1 receptor in the inhibitory effects of exogenous CCK-8 on morphine dependence.
Collapse
Affiliation(s)
- Di Wen
- Department of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Shijiazhuang 050017, PR China
| | | | | | | | | | | | | |
Collapse
|
19
|
Higashida H. A personal view from a long-lasting collaborator on the research strategies of Marshall Nirenberg. Neurochem Int 2012; 61:821-7. [PMID: 22414530 DOI: 10.1016/j.neuint.2012.02.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/19/2012] [Accepted: 02/25/2012] [Indexed: 11/20/2022]
Abstract
In this review, I summarized transition in Dr. Marshall Nirenberg's research interests during 1970s, from a view of a long-lasting collaborator. Nirenberg switched his research filed to neurobiology after his success in deciphering genetic code and being honored with the Nobel Prize in Physiology or Medicine in 1968. His targets were to obtain genetically pure population of neurons, i.e. neuroblastoma clones, to make somatic hydrid cells, to culture neuronal and muscle cells, and to produce monoclonal antibodies against whole retinal or neuroblastoma cells. He studied neurotransmitters, receptors, cyclic nucleotides, cell differentiation, secretion, synapse formation, and chemical recognition. Especially he liked his hypothesis for opiate tolerance and dependency as a model of cellular memory. Through these studies, he seemed to devote all his time of about 50 years from 1960s to decoding brain memory processes.
Collapse
Affiliation(s)
- Haruhiro Higashida
- Department of Biophysical Genetics, Kanazawa University Graduate School of Medicine, Kanazawa 920-8640, Japan.
| |
Collapse
|