1
|
Fanizza F, Perottoni S, Boeri L, Donnaloja F, Negro F, Pugli F, Forloni G, Giordano C, Albani D. A gut-brain axis on-a-chip platform for drug testing challenged with donepezil. LAB ON A CHIP 2025; 25:1854-1874. [PMID: 40052475 DOI: 10.1039/d4lc00273c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Current drug development pipelines are time-consuming and prone to a significant percentage of failure, partially due to the limited availability of advanced human preclinical models able to better replicate the in vivo complexity of our body. To contribute to an advancement in this field, we developed an in vitro multi-organ-on-a-chip system, that we named PEGASO platform, which enables the dynamic culturing of human cell-based models relevant for drug testing. The PEGASO platform is composed of five independent connected units, which are based on a previously developed millifluidic organ-on-a-chip device (MINERVA 2.0), hosting human primary cells and iPSC-derived cells recapitulating key biological features of the gut, immune system, liver, blood-brain-barrier and brain that were fluidically connected and challenged to model the physiological passage of donepezil, a drug prescribed for Alzheimer's disease. The nutrient medium flow rate of the connected units was tuned to obtain suitable oxygenation and shear stress values for the cells cultured in dynamic condition. A computational model was at first developed to simulate donepezil transport within the platform and to assess the drug amount reaching the last organ-on-a-chip. Then, we demonstrated that after 24 hours of donepezil administration, the drug was actually transported though the cell-based models of the platform which in turn were found viable and functional. Donepezil efficacy was confirmed by the decreased acetylcholinesterase activity at the brain model and by the increased expression of a donepezil-relevant multi-drug transporter (P-gp). Overall, the PEGASO platform is an innovative in vitro tool for drug screening and personalized medicine applications which holds the potential to be translated to preclinical research and improve new drug development pipelines.
Collapse
Affiliation(s)
- Francesca Fanizza
- Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milan, Italy.
| | - Simone Perottoni
- Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milan, Italy.
| | - Lucia Boeri
- Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milan, Italy.
| | - Francesca Donnaloja
- Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milan, Italy.
| | - Francesca Negro
- Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milan, Italy.
| | - Francesca Pugli
- Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milan, Italy.
| | - Gianluigi Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Carmen Giordano
- Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milan, Italy.
| | - Diego Albani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
2
|
Sadri A. Is Target-Based Drug Discovery Efficient? Discovery and "Off-Target" Mechanisms of All Drugs. J Med Chem 2023; 66:12651-12677. [PMID: 37672650 DOI: 10.1021/acs.jmedchem.2c01737] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Target-based drug discovery is the dominant paradigm of drug discovery; however, a comprehensive evaluation of its real-world efficiency is lacking. Here, a manual systematic review of about 32000 articles and patents dating back to 150 years ago demonstrates its apparent inefficiency. Analyzing the origins of all approved drugs reveals that, despite several decades of dominance, only 9.4% of small-molecule drugs have been discovered through "target-based" assays. Moreover, the therapeutic effects of even this minimal share cannot be solely attributed and reduced to their purported targets, as they depend on numerous off-target mechanisms unconsciously incorporated by phenotypic observations. The data suggest that reductionist target-based drug discovery may be a cause of the productivity crisis in drug discovery. An evidence-based approach to enhance efficiency seems to be prioritizing, in selecting and optimizing molecules, higher-level phenotypic observations that are closer to the sought-after therapeutic effects using tools like artificial intelligence and machine learning.
Collapse
Affiliation(s)
- Arash Sadri
- Lyceum Scientific Charity, Tehran, Iran, 1415893697
- Interdisciplinary Neuroscience Research Program (INRP), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran, 1417755331
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran, 1417614411
| |
Collapse
|
3
|
Xie J, Liu L, Guo H, Bao Q, Hu P, Li H, Che H, Xie W. Orally administered melanin from Sepiapharaonis ink ameliorates depression-anxiety-like behaviors in DSS-induced colitis by mediating inflammation pathway and regulating apoptosis. Int Immunopharmacol 2022; 106:108625. [PMID: 35180627 DOI: 10.1016/j.intimp.2022.108625] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/12/2022] [Accepted: 02/10/2022] [Indexed: 12/20/2022]
Abstract
The effects of intestinal inflammation on the brain and behavior have received a lot of attention. Melanin (MSI) from Sepiapharaonis ink as an emerging functional food, it exhibited a significant protective effect on dextran sulfate sodium (DSS) induced colitis in previous study. In present study, C57BL/6J mice were free to drink 2.5% DSS solution to establish the colitis model. During the DSS treatment, mice were orally administrated with MSI once per day (75, 150, and 300 mg/kg, respectively). The results showed that MSI treatment ameliorated the depression and anxiety symptoms of colitis mice. Further mechanism studies indicated that MSI alleviated inflammatory response by adjusting cytokines TNF-α, IL-1β, IFN-γ, and IL-10, and proteins NLRP3/ASC/caspase-1 inflammasome), inhibited the activation of microglia, restored brain synaptic density, reduced oxidative stress (SOD, MDA) and regulated apoptosis (tunel staining, caspase-3). MSI could modulate depression-anxiety states by targeting inflammation, nerve tissue, oxidative stress and apoptosis. MSI administration could serve as an emerging blue food and nutrition strategy for the prevention of digestive tract inflammation and behavioral disorders.
Collapse
Affiliation(s)
- Jingwen Xie
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China
| | - Lin Liu
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China
| | - Hao Guo
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China
| | - Qi Bao
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China
| | - Penglong Hu
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China
| | - Hongyan Li
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China; Shandong Provincial Key Laboratory of Biochemical Engineering, Shandong, Qingdao 266042, China; Shandong Provincial Key Laboratory of Biochemical Engineering, Shandong, Qingdao 266042, China
| | - Hongxia Che
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China; Shandong Provincial Key Laboratory of Biochemical Engineering, Shandong, Qingdao 266042, China; Shandong Provincial Key Laboratory of Biochemical Engineering, Shandong, Qingdao 266042, China
| | - Wancui Xie
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China; Shandong Provincial Key Laboratory of Biochemical Engineering, Shandong, Qingdao 266042, China; Shandong Provincial Key Laboratory of Biochemical Engineering, Shandong, Qingdao 266042, China.
| |
Collapse
|
4
|
Bae M, Han SY, Kim ES, You BH, Kim YM, Cho J, Chin YW, Choi YH. Effect of Water Extract of Mangosteen Pericarp on Donepezil Pharmacokinetics in Mice. Molecules 2021; 26:5246. [PMID: 34500680 PMCID: PMC8434012 DOI: 10.3390/molecules26175246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022] Open
Abstract
The pharmacokinetic (PK) change in a drug by co-administered herbal products can alter the efficacy and toxicity. In the circumstances that herb-drug combinations have been increasingly attempted to alleviate Alzheimer's disease (AD), the PK evaluation of herb-drug interaction (HDI) is necessary. The change in systemic exposure as well as target tissue distribution of the drug have been issued in HDIs. Recently, the memory-enhancing effects of water extract of mangosteen pericarp (WMP) has been reported, suggesting a potential for the combination of WMP and donepezil (DNP) for AD treatment. Thus, it was evaluated how WMP affects the PK change of donepezil, including systemic exposure and tissue distribution in mice after simultaneous oral administration of DNP with WMP. Firstly, co-treatment of WMP and donepezil showed a stronger inhibitory effect (by 23.0%) on the neurotoxicity induced by Aβ(25-35) in SH-SY5Y neuroblastoma cells than donepezil alone, suggesting that the combination of WMP and donepezil may be more effective in moderating neurotoxicity than donepezil alone. In PK interaction, WMP increased donepezil concentration in the brain at 4 h (by 63.6%) after administration without affecting systemic exposure of donepezil. Taken together, our results suggest that WMP might be used in combination with DNP as a therapy for AD.
Collapse
Affiliation(s)
- Mingoo Bae
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si 10326, Gyonggi-do, Korea; (M.B.); (S.Y.H.); (E.-S.K.); (B.H.Y.); (J.C.)
| | - Seung Yon Han
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si 10326, Gyonggi-do, Korea; (M.B.); (S.Y.H.); (E.-S.K.); (B.H.Y.); (J.C.)
| | - Eun-Sun Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si 10326, Gyonggi-do, Korea; (M.B.); (S.Y.H.); (E.-S.K.); (B.H.Y.); (J.C.)
| | - Byung Hoon You
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si 10326, Gyonggi-do, Korea; (M.B.); (S.Y.H.); (E.-S.K.); (B.H.Y.); (J.C.)
| | - Young-Mi Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (Y.-M.K.); (Y.-W.C.)
| | - Jungsook Cho
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si 10326, Gyonggi-do, Korea; (M.B.); (S.Y.H.); (E.-S.K.); (B.H.Y.); (J.C.)
| | - Young-Won Chin
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (Y.-M.K.); (Y.-W.C.)
| | - Young Hee Choi
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si 10326, Gyonggi-do, Korea; (M.B.); (S.Y.H.); (E.-S.K.); (B.H.Y.); (J.C.)
| |
Collapse
|
5
|
Ahnaou A, White E, Biermans R, Manyakov NV, Drinkenburg WHIM. In Vivo Plasticity at Hippocampal Schaffer Collateral-CA1 Synapses: Replicability of the LTP Response and Pharmacology in the Long-Evans Rat. Neural Plast 2020; 2020:6249375. [PMID: 33273904 PMCID: PMC7676971 DOI: 10.1155/2020/6249375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 09/17/2020] [Accepted: 10/06/2020] [Indexed: 01/15/2023] Open
Abstract
Broad issues associated with non-replicability have been described in experimental pharmacological and behavioral cognitive studies. Efforts to prevent biases that contribute to non-replicable scientific protocols and to improve experimental rigor for reproducibility are increasingly seen as a basic requirement for the integrity of scientific research. Synaptic plasticity, encompassing long-term potentiation (LTP), is believed to underlie mechanisms of learning and memory. The present study was undertaken in Long-Evans (LE) rats, a strain of rat commonly used in cognitive behavioral tests, to (1) compare three LTP tetanisation protocols, namely, the high-frequency stimulation (HFS), the theta-burst stimulation (TBS), and the paired-pulse facilitation (PPF) at the Schaffer collateral-CA1 stratum radiatum synapse and to (2) assess sensitivity to acute pharmacology. Results: (1) When compared to Sprague-Dawley (SD) rats, the HFS using a stimulus intensity of 50% of the maximum slope obtained from input/output (I/O) curves elicited lower and higher thresholds of synaptic plasticity responses in SD and LE rats, respectively. The 2-train TBS protocol significantly enhanced the LTP response in LE rats over the 5- and 10-train TBS protocols in both strains, and the 5 × TBS protocol inducing a subthreshold LTP response was used in subsequent pharmacological studies in LE rats. The PPF protocol, investigating the locus of the LTP response, showed no difference for the selected interstimulus intervals. (2) Scopolamine, a nonspecific muscarinic antagonist, had a subtle effect, whereas donepezil, an acetylcholinesterase inhibitor, significantly enhanced the LTP response, demonstrating the sensitivity of the TBS protocol to enhanced cholinergic tone. MK-801, a noncompetitive N-methyl-D-aspartate (NMDA) antagonist, significantly reduced LTP response, while memantine, another NMDA antagonist, had no effect on LTP response, likely associated with a weaker TBS protocol. PQ10, a phosphodiesterase-10 inhibitor, significantly enhanced the TBS-induced LTP response, but did not change the PPF response. Overall, the results confirm the strain-dependent differences in the form of synaptic plasticity, replicate earlier plasticity results, and report effective protocols that generate a relatively subthreshold margin of LTP induction and maintenance, which are suitable for pharmacology in the LE rat strain mainly used in cognitive studies.
Collapse
Affiliation(s)
- A. Ahnaou
- Department of Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV., Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - E. White
- Department of Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV., Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - R. Biermans
- Department of Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV., Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - N. V. Manyakov
- Department of Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV., Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - W. H. I. M. Drinkenburg
- Department of Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV., Turnhoutseweg 30, B-2340 Beerse, Belgium
| |
Collapse
|
6
|
Eskandary A, Moazedi AA, Najaph Zade H, Akhond MR. Effects of Donepezil Hydrochloride on Neuronal Response of Pyramidal Neurons of the CA1 Hippocampus in Rat Model of Alzheimer's Disease. Basic Clin Neurosci 2019; 10:109-117. [PMID: 31031898 PMCID: PMC6484192 DOI: 10.32598/bcn.9.10.305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/25/2018] [Accepted: 11/10/2018] [Indexed: 11/20/2022] Open
Abstract
Introduction Donepezil (DON), an Acetylcholinesterase Inhibitor (AChEI), is widely used in the treatment of Alzheimer's Disease (AD). The current study aimed at evaluating the effect of donepezil hydrochloride on pyramidal neuron response in CA1 region of a rat model of AD. Methods In the current experimental study, adult male Wistar rats were randomly divided into four groups: Nucleus Basalis Magnocellularis (NBM) lesion (the lesions were induced by an electrical method of 0.5 m A, for 3 s in NBM) and three donepezil groups (lesions plus 5, 10, and 15 mg/kg donepezil intraperitoneal injection). Neuronal spontaneous activity to injection of the donepezil and saline were recorded in CA1 region of hippocampal. Results The obtained results showed that IntraPeritoneal (IP) injection of donepezil (10 and 15 mg/kg) increased neuronal spontaneous activity in the rat model of AD. Conclusion The current study results suggested that acute IP injection of donepezil increased neuronal response in CA1 region of hippocampal in a rat model of AD.
Collapse
Affiliation(s)
- Azade Eskandary
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Ahmad Ali Moazedi
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Hosein Najaph Zade
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohamad Reza Akhond
- Department of Statistics, Faculty of Mathematical Sciences and Computer, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
7
|
Eskandary A, Moazedi AA, Najaph zade varzi H, Akhond MR. Combined Effects of Donepezil and Lovastatin on Cognition Deficit Induced by Bilateral Lesion of the Nucl. Basalis Magnocellularis in a Rat Model of Alzheimer’s Disease. NEUROPHYSIOLOGY+ 2018. [DOI: 10.1007/s11062-018-9723-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Sun L, Zhao M, Zhang J, Liu A, Ji W, Li Y, Yang X, Wu Z. MiR-144 promotes β-amyloid accumulation-induced cognitive impairments by targeting ADAM10 following traumatic brain injury. Oncotarget 2017; 8:59181-59203. [PMID: 28938628 PMCID: PMC5601724 DOI: 10.18632/oncotarget.19469] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 06/19/2017] [Indexed: 12/24/2022] Open
Abstract
The dysregulation expression of microRNAs (miRNAs) including miR-144, has been widely documented in TBI. However, little is known about the potential roles of miR-144 in the pathogenesis of TBI. In this study, we investigated the potential effects of miR-144 on cognitive function in vivo and in vitro. The results indicated that inhibition of miR-144 conferred a better neurological outcome after TBI in vivo, as evidenced by reduced lesion volume, alleviated brain edema and increased mNSS, of particular importance, improved cognitive deficits. In vitro, miR-144 knockdown protected neuron against Glu-induced injury, by enhancing cell viability, suppressing LDH release and caspase-3 activity, and reducing cognitive-related proteins levels. However, overexpression of miR-144 in vivo and in vitro showed the opposite effects. To further explore the molecular mechanisms underlying miR-144-induced cognitive dysfunctions, we found a significant inverse correlation between miR-144 and ADAM10 expression. Moreover, the direct interaction between miR-144 and ADAM10 3’-UTR was identified by dual-luciferase reporter assay. Also, we found miR-144 negatively regulated ADAM10 protein expression. Additionally, ADAM10 could modulate β-amyloid formation involved in cognitive deficits. Notably, ADAM10 knockdown by siRNA apparently abrogated miR-144 inhibitor-mediated neuroprotection. Taken together, these findings demonstrated that elevated miR-144 promoted cognitive impairments induced by β-amyloid accumulation post-TBI through suppressing of ADAM10 expression.
Collapse
Affiliation(s)
- Liqian Sun
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Manman Zhao
- Department of Histology and Embryology, School of Basic Medical Science, North China University of Science and Technology, Tangshan 063000, P.R. China
| | - Jingbo Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Aihua Liu
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Wenjun Ji
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Youxiang Li
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Xinjian Yang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Zhongxue Wu
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
9
|
Lu C, Shi Z, Sun X, Pan R, Chen S, Li Y, Qu L, Sun L, Dang H, Bu L, Chen L, Liu X. Kai Xin San aqueous extract improves Aβ 1-40-induced cognitive deficits on adaptive behavior learning by enhancing memory-related molecules expression in the hippocampus. JOURNAL OF ETHNOPHARMACOLOGY 2017; 201:73-81. [PMID: 27751826 DOI: 10.1016/j.jep.2016.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 09/18/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kai Xin San (KXS), a traditional formula of Chinese medicine, has been used to treat dementia. AIM OF THE STUDY The present study aimed to investigate its ameliorating effects on Aβ1-40-induced cognitive impairment in rats using a series of novel reward-directed instrumental learning tasks, and to determine its possible mechanism of action. MATERIALS AND METHODS Rats were pretreated with KXS aqueous extract (0.72 and 1.44g/kg, p.o.) for 10 days, and were trained to gain reward reinforcement by lever pressing at the meantime. Thereafter, rats received a bilateral microinjection of Aβ1-40 in CA1 regions of the hippocampus. Cognitive performance was evaluated with the goal directed (higher response ratio) and habit (visual signal discrimination and extinction) learning tasks, as well as on the levels of memory-related biochemical parameters and molecules. RESULTS Our findings first demonstrated that KXS can improve Aβ1-40-induced amnesia in RDIL via enhancing the comprehension of action-outcome association and the utilization of cue information to guide behavior. Then, its ameliorating effects should be attributed to the modulation of memory-related molecules in the hippocampus. CONCLUSION In conclusion, KXS has the potential to prevent and/or delay the deterioration of cognitive impairment in AD.
Collapse
Affiliation(s)
- Cong Lu
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zhe Shi
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiuping Sun
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruile Pan
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shanguang Chen
- China Astronaut Research and Training Center, Beijing, China
| | - Yinghui Li
- China Astronaut Research and Training Center, Beijing, China
| | - Lina Qu
- China Astronaut Research and Training Center, Beijing, China
| | - Lihua Sun
- Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Haixia Dang
- Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Lanlan Bu
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Lingling Chen
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Xinmin Liu
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
10
|
Townsend M, Whyment A, Walczak JS, Jeggo R, van den Top M, Flood DG, Leventhal L, Patzke H, Koenig G. α7-nAChR agonist enhances neural plasticity in the hippocampus via a GABAergic circuit. J Neurophysiol 2016; 116:2663-2675. [PMID: 27655963 DOI: 10.1152/jn.00243.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/18/2016] [Indexed: 11/22/2022] Open
Abstract
Agonists of the α7-nicotinic acetylcholine receptor (α7-nAChR) have entered clinical trials as procognitive agents for treating schizophrenia and Alzheimer's disease. The most advanced compounds are orthosteric agonists, which occupy the ligand binding site. At the molecular level, agonist activation of α7-nAChR is reasonably well understood. However, the consequences of activating α7-nAChRs on neural circuits underlying cognition remain elusive. Here we report that an α7-nAChR agonist (FRM-17848) enhances long-term potentiation (LTP) in rat septo-hippocampal slices far below the cellular EC50 but at a concentration that coincides with multiple functional outcome measures as we reported in Stoiljkovic M, Leventhal L, Chen A, Chen T, Driscoll R, Flood D, Hodgdon H, Hurst R, Nagy D, Piser T, Tang C, Townsend M, Tu Z, Bertrand D, Koenig G, Hajós M. Biochem Pharmacol 97: 576-589, 2015. In this same concentration range, we observed a significant increase in spontaneous γ-aminobutyric acid (GABA) inhibitory postsynaptic currents and a moderate suppression of excitability in whole cell recordings from rat CA1 pyramidal neurons. This modulation of GABAergic activity is necessary for the LTP-enhancing effects of FRM-17848, since inhibiting GABAA α5-subunit-containing receptors fully reversed the effects of the α7-nAChR agonist. These data suggest that α7-nAChR agonists may increase synaptic plasticity in hippocampal slices, at least in part, through a circuit-level enhancement of a specific subtype of GABAergic receptor.
Collapse
Affiliation(s)
| | | | | | - Ross Jeggo
- Cerebrasol, Ltd., Montreal, Quebec City, Canada
| | | | | | - Liza Leventhal
- FORUM Pharmaceuticals, Inc., Waltham, Massachusetts; and
| | - Holger Patzke
- FORUM Pharmaceuticals, Inc., Waltham, Massachusetts; and
| | - Gerhard Koenig
- FORUM Pharmaceuticals, Inc., Waltham, Massachusetts; and
| |
Collapse
|
11
|
Goetghebeur PJ, Swartz JE. True alignment of preclinical and clinical research to enhance success in CNS drug development: a review of the current evidence. J Psychopharmacol 2016; 30:586-94. [PMID: 27147593 DOI: 10.1177/0269881116645269] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Central nervous system pharmacological research and development has reached a critical turning point. Patients suffering from disorders afflicting the central nervous system are numerous and command significant attention from the pharmaceutical industry. However, given the numerous failures of promising drugs, many companies are no longer investing in or, indeed, are divesting from this therapeutic area. Central nervous system drug development must change in order to develop effective therapies to treat these patients. Preclinical research is a cornerstone of drug development; however, it is frequently criticised for its lack of predictive validity. Animal models and assays can be shown to be more predictive than reported and, on many occasions, the lack of thorough preclinical testing is potentially to blame for some of the clinical failures. Important factors such as translational aspects, nature of animal models, variances in acute versus chronic dosing, development of add-on therapies and understanding of the full dose-response relationship are too often neglected. Reducing the attrition rate in central nervous system drug development could be achieved by addressing these important questions before novel compounds enter the clinical phase. This review illustrates the relevance of employing these criteria to translational central nervous system research, better to ensure success in developing new drugs in this therapeutic area.
Collapse
Affiliation(s)
| | - Jina E Swartz
- CNS Therapeutic Area Unit, Takeda Development Centre Europe Ltd, London, UK
| |
Collapse
|
12
|
Solntseva E, Kapai N, Popova O, Rogozin P, Skrebitsky V. The involvement of sigma1 receptors in donepezil-induced rescue of hippocampal LTP impaired by beta-amyloid peptide. Brain Res Bull 2014; 106:56-61. [DOI: 10.1016/j.brainresbull.2014.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/05/2014] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
|
13
|
Anastasio TJ. Computational identification of potential multitarget treatments for ameliorating the adverse effects of amyloid-β on synaptic plasticity. Front Pharmacol 2014; 5:85. [PMID: 24847263 PMCID: PMC4021136 DOI: 10.3389/fphar.2014.00085] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 04/07/2014] [Indexed: 11/24/2022] Open
Abstract
The leading hypothesis on Alzheimer Disease (AD) is that it is caused by buildup of the peptide amyloid-β (Aβ), which initially causes dysregulation of synaptic plasticity and eventually causes destruction of synapses and neurons. Pharmacological efforts to limit Aβ buildup have proven ineffective, and this raises the twin challenges of understanding the adverse effects of Aβ on synapses and of suggesting pharmacological means to prevent them. The purpose of this paper is to initiate a computational approach to understanding the dysregulation by Aβ of synaptic plasticity and to offer suggestions whereby combinations of various chemical compounds could be arrayed against it. This data-driven approach confronts the complexity of synaptic plasticity by representing findings from the literature in a course-grained manner, and focuses on understanding the aggregate behavior of many molecular interactions. The same set of interactions is modeled by two different computer programs, each written using a different programming modality: one imperative, the other declarative. Both programs compute the same results over an extensive test battery, providing an essential crosscheck. Then the imperative program is used for the computationally intensive purpose of determining the effects on the model of every combination of ten different compounds, while the declarative program is used to analyze model behavior using temporal logic. Together these two model implementations offer new insights into the mechanisms by which Aβ dysregulates synaptic plasticity and suggest many drug combinations that potentially may reduce or prevent it.
Collapse
Affiliation(s)
- Thomas J Anastasio
- Department of Molecular and Integrative Physiology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign Urbana, IL, USA
| |
Collapse
|
14
|
Greig NH, Reale M, Tata AM. New pharmacological approaches to the cholinergic system: an overview on muscarinic receptor ligands and cholinesterase inhibitors. RECENT PATENTS ON CNS DRUG DISCOVERY 2013; 8:123-41. [PMID: 23597304 PMCID: PMC5831731 DOI: 10.2174/1574889811308020003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/13/2013] [Accepted: 04/13/2013] [Indexed: 12/27/2022]
Abstract
The cholinergic system is expressed in neuronal and in non-neuronal tissues. Acetylcholine (ACh), synthesized in and out of the nervous system can locally contribute to modulation of various cell functions (e.g. survival, proliferation). Considering that the cholinergic system and its functions are impaired in a number of disorders, the identification of new pharmacological approaches to regulate cholinergic system components appears of great relevance. The present review focuses on recent pharmacological drugs able to modulate the activity of cholinergic receptors and thereby, cholinergic function, with an emphasis on the muscarinic receptor subtype, and additionally covers the cholinesterases, the main enzymes involved in ACh hydrolysis. The presence and function of muscarinic receptor subtypes both in neuronal and non-neuronal cells has been demonstrated using extensive pharmacological data emerging from studies on transgenic mice. The possible involvement of ACh in different pathologies has been proposed in recent years and is becoming an important area of study. Although the lack of selective muscarinic receptor ligands has for a long time limited the definition of therapeutic treatment based on muscarinic receptors as targets, some muscarinic ligands such as cevimeline (patents US4855290; US5571918) or xanomeline (patent, US5980933) have been developed and used in pre-clinical or in clinical studies for the treatment of nervous system diseases (Alzheimer' and Sjogren's diseases). The present review focuses on the potential implications of muscarinic receptors in different pathologies, including tumors. Moreover, the future use of muscarinic ligands in therapeutic protocols in cancer therapy will be discussed, considering that some muscarinic antagonists currently used in the treatment of genitourinary disease (e.g. darifenacin, patent, US5096890; US6106864) have also been demonstrated to arrest tumor progression in nude mice. The involvement of muscarinic receptors in nociception also is over-viewed. In fact, muscarinic agonists such as vedaclidine, CMI-936 and CMI-1145 have been demonstrated to have analgesic effects in animal models comparable or more pronounced to those produced by morphine or opiates. Likewise, the crucial role of cholinesterases (acetylcholinesterase and butirylcholinesterase) in neural transmission is discussed, as large number of drugs inhibiting cholinesterase activity have become of increasing relevance particularly for the treatment of neurodegenerative disorders. Herein we summarize the current knowledge of the cholinesterase inhibitors with particular attention to recent patents for Alzheimer's disease drugs.
Collapse
Affiliation(s)
- Nigel H. Greig
- Drug Design and Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Marcella Reale
- Department of Experimental and Clinical Sciences, University G. D'Annunzio, Chieti, Italy
| | - Ada Maria Tata
- Dept. of Biology and Biotechnologies Charles Darwin, Sapienza Università di Roma, Research Center of Neurobiology Daniel Bovet, Roma, Italy
| |
Collapse
|
15
|
Kroker KS, Moreth J, Kussmaul L, Rast G, Rosenbrock H. Restoring long-term potentiation impaired by amyloid-beta oligomers: Comparison of an acetylcholinesterase inhibitior and selective neuronal nicotinic receptor agonists. Brain Res Bull 2013; 96:28-38. [DOI: 10.1016/j.brainresbull.2013.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/12/2013] [Accepted: 04/15/2013] [Indexed: 12/25/2022]
|
16
|
Nisticò R, Pignatelli M, Piccinin S, Mercuri NB, Collingridge G. Targeting synaptic dysfunction in Alzheimer's disease therapy. Mol Neurobiol 2012; 46:572-87. [PMID: 22914888 DOI: 10.1007/s12035-012-8324-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 08/06/2012] [Indexed: 12/22/2022]
Abstract
In the past years, major efforts have been made to understand the genetics and molecular pathogenesis of Alzheimer's disease (AD), which has been translated into extensive experimental approaches aimed at slowing down or halting disease progression. Advances in transgenic (Tg) technologies allowed the engineering of different mouse models of AD recapitulating a range of AD-like features. These Tg models provided excellent opportunities to analyze the bases for the temporal evolution of the disease. Several lines of evidence point to synaptic dysfunction as a cause of AD and that synapse loss is a pathological correlate associated with cognitive decline. Therefore, the phenotypic characterization of these animals has included electrophysiological studies to analyze hippocampal synaptic transmission and long-term potentiation, a widely recognized cellular model for learning and memory. Transgenic mice, along with non-Tg models derived mainly from exogenous application of Aβ, have also been useful experimental tools to test the various therapeutic approaches. As a result, numerous pharmacological interventions have been reported to attenuate synaptic dysfunction and improve behavior in the different AD models. To date, however, very few of these findings have resulted in target validation or successful translation into disease-modifying compounds in humans. Here, we will briefly review the synaptic alterations across the different animal models and we will recapitulate the pharmacological strategies aimed at rescuing hippocampal plasticity phenotypes. Finally, we will highlight intrinsic limitations in the use of experimental systems and related challenges in translating preclinical studies into human clinical trials.
Collapse
Affiliation(s)
- Robert Nisticò
- Department of Pharmacobiology, University of Calabria, 87036 Rende, Italy.
| | | | | | | | | |
Collapse
|