1
|
Hariom, Kumari P, Chaturvedi S, Shrivastav S, Maratha S, Walia V. Caffeic acid differentially modulates behavior and neurochemicals in chronic unpredictable mild stress and dexamethasone induced models of depression. Pharmacol Biochem Behav 2025; 247:173930. [PMID: 39644931 DOI: 10.1016/j.pbb.2024.173930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
In the present study authors studied the effect of caffeic acid (CA) in chronic unpredictable mild stress (CUMS) and dexamethasone (DEXA) model of depression. CUMS (21 days) and DEXA (1.5 mg/kg × 21 days) was used for the induction of depression and anxiety related behavior. Locomotor activity was determined using actophotometer. Depression related behavior was determined using tail suspension test (TST) and forced swim test (FST) whereas for the determination of anxiety related behavior elevated plus maze (EPM) test was used. Following behavioral studies, mice were sacrificed by decapitation method. Hippocampus was dissected and was used for the neurochemical assays including 5-HT (serotonin), glutamate, nitrite and gamma-aminobutyric acid (GABA). The results obtained suggested that the CA (25-100 mg/kg, i.p.) did not affect the activity count in CUMS exposed and DEXA treated mice. CA (50 mg/kg) evoked anxiogenic reactions in CUMS model by increasing the hippocampal nitrite and glutamate level while CA (50 mg/kg) exerted anxiolysis in DEXA model by reducing the level of 5-HT. In CUMS model, CA exerted antidepressant like effect by increasing the hippocampal nitric oxide (NO) level, in DEXA model CA exerted antidepressant like effect by reducing the hippocampal glutamate level. CA failed to reverse DEXA mediated nNOS inhibition and therefore decreases hippocampal glutamate level to exert antidepressant like effect. Thus, CA modulate anxiety and depression related neurobehavioral alterations in both CUMS and DEXA models.
Collapse
Affiliation(s)
- Hariom
- SGT College of Pharmacy, SGT University, Gurugram, Haryana, India
| | - Prerna Kumari
- SGT College of Pharmacy, SGT University, Gurugram, Haryana, India
| | | | | | - Sushma Maratha
- SGT College of Pharmacy, SGT University, Gurugram, Haryana, India.
| | - Vaibhav Walia
- SGT College of Pharmacy, SGT University, Gurugram, Haryana, India.
| |
Collapse
|
2
|
Kafetzopoulos V, Kokras N, Katsaitis F, Sousa N, Leite-Almeida H, Sotiropoulos I, Dalla C. Prefrontal cortex-nucleus reuniens-hippocampus network exhibits sex-differentiated responses to stress and antidepressant treatment in rats. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06667-w. [PMID: 39162717 DOI: 10.1007/s00213-024-06667-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 08/02/2024] [Indexed: 08/21/2024]
Abstract
RATIONALE Depression is a serious psychiatric disease, which is diagnosed twice as frequently in women than men. We have recently shown that lesioning or inactivation of the nucleus reuniens (RE), which interconnects the prefrontal cortex (PFC) and hippocampus, promoted resilience to stress in males, exerts an antidepressant effect in the Forced Swim Test (FST) and prevents the development of behavioral and neurobiological alterations induced by the chronic mild stress model of depression. OBJECTIVES In this study, we expand our findings on the FST in female rats and we investigate whether RE lesion presents sex differences following treatment with two distinct antidepressants, a selective serotonin reuptake inhibitor, i.e. sertraline and a tricyclic antidepressant, i.e. clomipramine. METHODS Male and female rats received either a surgical lesion of the RE or sham operation, then treated with vehicle, sertraline (10mg/kg) or clomipramine (10mg/kg) and were subjected to the FST. Activation of key brain areas of interest (PFC, Hippocampus and RE) were measured by c-Fos immunoreactivity. RESULTS RE lesion induced an antidepressant-like phenotype in both female and male rats, confirming its crucial role in the stress response. Similarly to RE lesion, sertraline treatment resulted in increased swimming and decreased immobility duration, as well as enhanced head shake frequency, in both sexes. Notably, climbing behavior was increased only following clomipramine treatment. RE area was less active in females compared to male rats and in clomipramine-treated males compared to their corresponding vehicle-group. Activation of the PFC and the CA1 hippocampal area was reduced in clomipramine-treated females, in comparison to vehicle-treated female rats. This effect was not evident in males, which exhibited less activation in the PFC and the hippocampus than females. CONCLUSION Re lesion proves equally effective in female and male rats, but sex is highlighted as a pivotal factor in behavioral and treatment response in FST, as well as in related circuit connectivity and activation.
Collapse
Affiliation(s)
- V Kafetzopoulos
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias St, Athens, 11527, Greece
- Department of Psychiatry, Medical School, University of Cyprus, Nicosia, Cyprus
| | - N Kokras
- First Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Filippos Katsaitis
- Laboratory of Brain Exosomes & Pathology, Institute of Biosciences & Applications, NCSR Demokritos, Athens, Greece
| | - N Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
- Clinical Academic Center (2CA), Braga, Portugal
| | - H Leite-Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - I Sotiropoulos
- Laboratory of Brain Exosomes & Pathology, Institute of Biosciences & Applications, NCSR Demokritos, Athens, Greece
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - C Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias St, Athens, 11527, Greece.
- Second Department of Obstetrics - Gynecology, Aretaieio Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
3
|
Su Y, Wang B, Ye J, Wang Y, Cui Y, Chen C, Ruan N, Hu Z, Li L, Liu H, Xie H. Dexmedetomidine improves the acute stress reactivity of male rat through interventions of serum- and glucocorticoid-inducible kinase 1 and nNOS in the bed nucleus of the stria terminalis. Biochem Biophys Res Commun 2023; 638:155-162. [PMID: 36459879 DOI: 10.1016/j.bbrc.2022.11.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/24/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Moderate acute stress responses are beneficial for adaptation and maintenance of homeostasis. Exposure of male rat to stress induces effects in the bed nucleus of the stria terminalis (BNST), for it can be activated by the same stimuli that induce activation of the hypothalamic-pituitary-adrenal axis. However, the underlying mechanism of the BNST on male stress reactivity remains unclear. In this study, we explored whether systematic administration of dexmedetomidine (DEXM) altered the acute stress reactivity through its effect on the BNST. Male Sprague-Dawley rats in the stress (STRE) group, DEXM group, and the DEXM + GSK-650394 (GSK, an antagonist of serum- and glucocorticoid-inducible kinase 1 (SGK1)) group, except those in the vehicle (VEH) group, underwent 1-h restraint plus water-immersion (RPWI) exposure. All the rats proceeded the open field test (OFT) 24 h before RPWI and 1 h after RPWI. After the second OFT, the rats received VEH, DEXM (75 μg/kg i.p.), or were pretreated with GSK (2 μM i.p.) 0.5 h ahead of DEXM respectively. The third OFT was conducted 6 h after drug administration and then the rats were sacrificed. The rats that experienced RPWI showed dramatically elevated serum corticosterone (CORT), multiplied neuronal nitric oxide synthase (nNOS) and SGK1 in the BNST, and terrible OFT behavior. We discovered when the nNOS and SGK1 were decreased in the rat BNST through DEXM treatment, the serum CORT was reduced and the OFT manifestation was ameliorated, whereas these were restrained by GSK application. Our results reveal that modest interventions to SGK1 and nNOS in the BNST improve the male rat reactivity to acute stress, and DEXM was one modulator of these effects.
Collapse
Affiliation(s)
- Ying Su
- Zhejiang Province Key Laboratory of Anesthesiology, Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Benfu Wang
- Department of Anesthesiology, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jianwen Ye
- Department of Anesthesiology, The Second Clinical College of Wenzhou Medical University, Wenzhou, China
| | - Yixuan Wang
- Department of Anesthesiology, The Second Clinical College of Wenzhou Medical University, Wenzhou, China
| | - Yanhua Cui
- Zhejiang Province Key Laboratory of Anesthesiology, Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chunjiang Chen
- Zhejiang Province Key Laboratory of Anesthesiology, Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Naqi Ruan
- Zhejiang Province Key Laboratory of Anesthesiology, Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhiyan Hu
- Zhejiang Province Key Laboratory of Anesthesiology, Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li Li
- Zhejiang Province Key Laboratory of Anesthesiology, Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huacheng Liu
- Zhejiang Province Key Laboratory of Anesthesiology, Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Hong Xie
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Uzungil V, Tran H, Aitken C, Wilson C, Opazo CM, Li S, Payet JM, Mawal CH, Bush AI, Hale MW, Hannan AJ, Renoir T. Novel Antidepressant-Like Properties of the Iron Chelator Deferiprone in a Mouse Model of Depression. Neurotherapeutics 2022; 19:1662-1685. [PMID: 35861925 PMCID: PMC9606181 DOI: 10.1007/s13311-022-01257-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 10/17/2022] Open
Abstract
Depressed individuals who carry the short allele for the serotonin-transporter-linked promotor region of the gene are more vulnerable to stress and have reduced response to first-line antidepressants such as selective serotonin reuptake inhibitors. Since depression severity has been reported to correlate with brain iron levels, the present study aimed to characterise the potential antidepressant properties of the iron chelator deferiprone. Using the serotonin transporter knock-out (5-HTT KO) mouse model, we assessed the behavioural effects of acute deferiprone on the Porsolt swim test (PST) and novelty-suppressed feeding test (NSFT). Brain and blood iron levels were also measured following acute deferiprone. To determine the relevant brain regions activated by deferiprone, we then measured c-Fos expression and applied network-based analyses. We found that deferiprone reduced immobility time in the PST in 5-HTT KO mice and reduced latency to feed in the NSFT in both genotypes, suggesting potential antidepressant-like effects. There was no effect on brain or blood iron levels following deferiprone treatment, potentially indicating an acute iron-independent mechanism. Deferiprone reversed the increase in c-Fos expression induced by swim stress in 5-HTT KO mice in the lateral amygdala. Functional network analyses suggest that hub regions of activity in mice treated with deferiprone include the caudate putamen and prefrontal cortex. The PST-induced increase in network modularity in wild-type mice was not observed in 5-HTT KO mice. Altogether, our data show that the antidepressant-like effects of deferiprone could be acting via an iron-independent mechanism and that these therapeutic effects are underpinned by changes in neuronal activity in the lateral amygdala.
Collapse
Affiliation(s)
- Volkan Uzungil
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Harvey Tran
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Connor Aitken
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Carey Wilson
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Carlos M Opazo
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Shanshan Li
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Jennyfer M Payet
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Celeste H Mawal
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Matthew W Hale
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Anthony J Hannan
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Thibault Renoir
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia.
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia.
| |
Collapse
|
5
|
Maratha S, Sharma V, Walia V. Antidepressant Like Effect of Ascorbic Acid in Mice: Possible Involvement of NO-sGC-cGMP Signaling. Neurochem Res 2021; 47:967-978. [PMID: 34825298 DOI: 10.1007/s11064-021-03496-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 10/19/2022]
Abstract
The present study was designed to determine the antidepressant like activity of ascorbic acid (AA) in mice. Further the influence of NO-sGC-cGMP signaling in the antidepressant like effect of AA in mice was determined. Male swiss albino mice were used in the present study. Mice in the control group received saline and fluoxetine (10 mg/kg, i.p.) was used as the standard antidepressant drug. AA (50, 100 and 150 mg/kg, i.p.) was administered to the mice and depression related behavior were determined using tail suspension test (TST) and forced swim test (FST). Further the whole brain nitrite and serotonin levels were also determined. It was observed that the administration of AA (100 mg/kg, i.p.) reversed the depression like behavior in mice in TST and FST. AA (100 mg/kg, i.p.) treatment decreased the level of nitrite and increased the level of serotonin in the brain of mice significantly as compared to control. Further the behavioral and neurochemical effect of AA (50 mg/kg, i.p) was studied in NO modulator [NO donor: L-Arginine (50 mg/kg, i.p); NO-sGC inhibitor: methylene blue (1 mg/kg, i.p.) and cGMP modulator: sildenafil (1 mg/kg, i.p.)] pretreated mice. It was observed that the pretreatment of NO donor and cGMP modulator counteracted the effect conferred by AA (50 mg/kg, i.p). While the pretreatment of NO-sGC inhibitor potentiated the effect conferred by AA (50 mg/kg, i.p). The present study suggested that the AA confer antidepressant like effect in mice and NO-sGC-cGMP signaling pathway influence the antidepressant like effect of AA in mice.
Collapse
Affiliation(s)
- Sushma Maratha
- SGT College of Pharmacy, SGT University, Gurugram, India
| | - Vijay Sharma
- SGT College of Pharmacy, SGT University, Gurugram, India
| | - Vaibhav Walia
- SGT College of Pharmacy, SGT University, Gurugram, India.
| |
Collapse
|
6
|
Dimén D, Puska G, Szendi V, Sipos E, Zelena D, Dobolyi Á. Sex-specific parenting and depression evoked by preoptic inhibitory neurons. iScience 2021; 24:103090. [PMID: 34604722 PMCID: PMC8463871 DOI: 10.1016/j.isci.2021.103090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/20/2021] [Accepted: 09/01/2021] [Indexed: 01/08/2023] Open
Abstract
The role of preoptic GABAergic inhibitory neurons was addressed in parenting, anxiety and depression. Pup exposure and forced swimming resulted in similar c-Fos activation pattern in neurons expressing vesicular GABA transporter in the preoptic area with generally stronger labeling and different distributional pattern in females than in males. Chemogenetic stimulation of preoptic GABAergic cells resulted in elevated maternal motivation and caring behavior in females and mothers but aggression toward pups in males. Behavioral effects were the opposite following inhibition of preoptic GABAergic neurons suggesting their physiological relevance. In addition, increased anxiety-like and depression-like behaviors were found following chemogenetic stimulation of the same neurons in females, whereas previous pup exposure increased only anxiety-like behavior suggesting that not the pups, but overstimulation of the cells can lead to depression-like behavior. A sexually dimorphic projection pattern of preoptic GABAergic neurons was also identified, which could mediate sex-dependent parenting and associated emotional behaviors. Preoptic GABAergic neurons promote maternal behaviors in females mice Activation of preoptic GABAergic neurons induces pup-directed aggression in males Projection pattern of preoptic GABAergic neurons is sexually dimorphic Depression-like behaviors are provoked by stimulation of preoptic GABAergic neurons
Collapse
Affiliation(s)
- Diána Dimén
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences, Eötvös Loránd Research Network, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Gina Puska
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences, Eötvös Loránd Research Network, Eötvös Loránd University, 1117 Budapest, Hungary.,Department of Ecology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| | - Vivien Szendi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences, Eötvös Loránd Research Network, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Eszter Sipos
- Department of Behavioral and Stress Studies, Institute of Experimental Medicine, 1080 Budapest, Hungary
| | - Dóra Zelena
- Department of Behavioral and Stress Studies, Institute of Experimental Medicine, 1080 Budapest, Hungary.,Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Árpád Dobolyi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences, Eötvös Loránd Research Network, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
7
|
Panayotis N, Freund PA, Marvaldi L, Shalit T, Brandis A, Mehlman T, Tsoory MM, Fainzilber M. β-sitosterol reduces anxiety and synergizes with established anxiolytic drugs in mice. Cell Rep Med 2021; 2:100281. [PMID: 34095883 PMCID: PMC8149471 DOI: 10.1016/j.xcrm.2021.100281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/28/2021] [Accepted: 04/22/2021] [Indexed: 12/26/2022]
Abstract
Anxiety and stress-related conditions represent a significant health burden in modern society. Unfortunately, most anxiolytic drugs are prone to side effects, limiting their long-term usage. Here, we employ a bioinformatics screen to identify drugs for repurposing as anxiolytics. Comparison of drug-induced gene-expression profiles with the hippocampal transcriptome of an importin α5 mutant mouse model with reduced anxiety identifies the hypocholesterolemic agent β-sitosterol as a promising candidate. β-sitosterol activity is validated by both intraperitoneal and oral application in mice, revealing it as the only clear anxiolytic from five closely related phytosterols. β-sitosterol injection reduces the effects of restraint stress, contextual fear memory, and c-Fos activation in the prefrontal cortex and dentate gyrus. Moreover, synergistic anxiolysis is observed when combining sub-efficacious doses of β-sitosterol with the SSRI fluoxetine. These preclinical findings support further development of β-sitosterol, either as a standalone anxiolytic or in combination with low-dose SSRIs.
Collapse
Affiliation(s)
- Nicolas Panayotis
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Philip A. Freund
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Letizia Marvaldi
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Tali Shalit
- Ilana and Pascal Mantoux Institute for Bioinformatics, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Brandis
- Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Tevie Mehlman
- Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Michael M. Tsoory
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Mike Fainzilber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
8
|
Moreno-Santos B, Marchi-Coelho C, Costa-Ferreira W, Crestani CC. Angiotensinergic receptors in the medial amygdaloid nucleus differently modulate behavioral responses in the elevated plus-maze and forced swimming test in rats. Behav Brain Res 2020; 397:112947. [PMID: 33011187 DOI: 10.1016/j.bbr.2020.112947] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/01/2020] [Accepted: 09/26/2020] [Indexed: 12/16/2022]
Abstract
The brain renin-angiotensin system (RAS) has been implicated in anxiety and depression disorders, but the specific brain sites involved are poorly understood. The medial amygdaloid nucleus (MeA) is involved in expression of behavioral responses. However, despite evidence of the presence of all angiotensinergic receptors in this amygdaloid nucleus, regulation of anxiety- and depressive-like behaviors by angiotensinergic neurotransmissions within the MeA has never been reported. Thus, the present study aimed to investigate the role angiotensin II (AT1 and AT2 receptors) and angiotensin-(1-7) (Mas receptor) receptors present within the MeA in behavioral responses in the elevated plus-maze (EPM) and forced swimming test (FST). For this, male Wistar rats had cannula-guide bilaterally implanted into the MeA, and independent sets of animals received bilateral microinjections of either the selective AT1 receptor antagonist losartan, the selective AT2 receptor antagonist PD123319, the selective Mas receptor antagonist A-779 or vehicle into the MeA before the EPM and FST. Treatment of the MeA with either PD123319 or A-779 decreased the EPM open arms exploration, while losartan did not affect behavioral responses in this apparatus. However, intra-MeA microinjection of losartan decreased immobility in the FST. Administration of either PD123319 or A-779 into the MeA did not affect the immobility during the FST, but changed the pattern of the active behaviors swimming and climbing. Altogether, these results indicate the presence of different angiotensinergic mechanisms within the MeA controlling behavioral responses in the FST and EPM.
Collapse
Affiliation(s)
- Beatriz Moreno-Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Camila Marchi-Coelho
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Willian Costa-Ferreira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Carlos C Crestani
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil.
| |
Collapse
|
9
|
Fee C, Prevot T, Misquitta K, Banasr M, Sibille E. Chronic Stress-induced Behaviors Correlate with Exacerbated Acute Stress-induced Cingulate Cortex and Ventral Hippocampus Activation. Neuroscience 2020; 440:113-129. [PMID: 32473277 DOI: 10.1016/j.neuroscience.2020.05.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/28/2022]
Abstract
Altered activity of corticolimbic brain regions is a hallmark of stress-related illnesses, including mood disorders, neurodegenerative diseases, and substance abuse disorders. Acute stress adaptively recruits brain region-specific functions for coping, while sustained activation under chronic stress may overwhelm feedback mechanisms and lead to pathological cellular and behavioral responses. The neural mechanisms underlying dysregulated stress responses and how they contribute to behavioral deficits are poorly characterized. Here, we tested whether prior exposure to chronic restraint stress (CRS) or unpredictable chronic mild stress (UCMS) in mice could alter functional response to acute stress and whether these changes are associated with chronic stress-induced behavioral deficits. More specifically, we assessed acute stress-induced functional activation indexed by c-Fos+ cell counts in 24 stress- and mood-related brain regions, and determined if changes in functional activation were linked to chronic stress-induced behavioral impairments, summarized across dimensions through principal component analysis (PCA). Results indicated that CRS and UCMS led to convergent physiological and anxiety-like deficits, whereas working and short-term memory were impaired only in UCMS mice. CRS and UCMS exposure exacerbated functional activation by acute stress in anterior cingulate cortex (ACC) area 24b and ventral hippocampal (vHPC) CA1, CA3, and subiculum. In dysregulated brain regions, levels of functional activation were positively correlated with principal components reflecting variance across behavioral deficits relevant to stress-related disorders. Our data supports an association between a dysregulated stress response, altered functional corticolimbic excitation/inhibition balance, and the expression of maladaptive behaviors.
Collapse
Affiliation(s)
- Corey Fee
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Thomas Prevot
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Keith Misquitta
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Mounira Banasr
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
10
|
Liu W, Li Q, Ye B, Cao H, Shen F, Xu Z, Du W, Guo F, Liu J, Li T, Zhang B, Liu Z. Repeated Nitrous Oxide Exposure Exerts Antidepressant-Like Effects Through Neuronal Nitric Oxide Synthase Activation in the Medial Prefrontal Cortex. Front Psychiatry 2020; 11:837. [PMID: 33088274 PMCID: PMC7495238 DOI: 10.3389/fpsyt.2020.00837] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/31/2020] [Indexed: 12/29/2022] Open
Abstract
Clinical studies have demonstrated that exposure to the inhalational general anesthetic nitrous oxide (N2O) produces antidepressant effects in depressed patients. However, the mechanisms underlying the antidepressant effects of N2O remain largely unknown. Neuronal nitric oxide synthase (nNOS)-mediated nitric oxide (NO) synthesis is essential for brain function and underlies the molecular mechanisms of many neuromodulators. We hypothesized that activation of the nNOS/NO pathway in the medial prefrontal cortex (mPFC) might mediate the antidepressant effects of N2O. In this study, we revealed that repeated N2O exposure produced antidepressant-like responses in mice. Our mechanistic exploration showed that repeated N2O exposure increased burst firing activity and that the expression levels of BDNF with nNOS activation were dependent in the mPFC. In particular, the antidepressant-like effects of N2O were also antagonized by local nNOS inhibition in the mPFC. In summary, our results indicated that N2O exposure enhances BDNF expression levels and burst firing rates in an nNOS activation dependent manner, which might underlie the pharmacological mechanism of the antidepressant-like effects of N2O exposure. The present study appears to provide further mechanistic evidence supporting the antidepressant effects of N2O.
Collapse
Affiliation(s)
- Wei Liu
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qian Li
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Binglu Ye
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hang Cao
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fuyi Shen
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhendong Xu
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Weijia Du
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fei Guo
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jinqi Liu
- The MacDuffie School, Granby, MA, United States
| | - Tianyu Li
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bing Zhang
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.,Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhiqiang Liu
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.,Anesthesia and Brain Function Research Institute, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Prelimbic neuronal nitric oxide synthase inhibition exerts antidepressant-like effects independently of BDNF signalling cascades. Acta Neuropsychiatr 2019; 31:143-150. [PMID: 30890202 DOI: 10.1017/neu.2018.39] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVES NMDA antagonists and nitric oxide synthase (NOS) inhibitors induce antidepressant-like effects and may represent treatment options for depression. The behavioural effects of NMDA antagonists seem to depend on Tyrosine kinase B receptor (TrkB) activation by BDNF and on mechanistic target of rapamycin (mTOR), in the medial prefrontal cortex (mPFC). However, it is unknown whether similar mechanisms are involved in the behavioural effects of NOS inhibitors. Therefore, this work aimed at determining the role of TrkB and mTOR signalling in the prelimbic area of the ventral mPFC (vmPFC-PL) in the antidepressant-like effect of NOS inhibitors. METHODS Pharmacological treatment with LY235959 or ketamine (NMDA antagonists), NPA or 7-NI (NOS inhibitors), BDNF, K252a (Trk antagonist) and rapamycin (mTOR inhibitor) injected systemically or into vmPFC-PL followed by behavioural assessment. RESULTS We found that bilateral injection of BDNF into the vmPFC-PL induced an antidepressant-like effect, which was blocked by pretreatment with K252a and rapamycin. Microinjection of LY 235959 into the vmPFC-PL induced antidepressant-like effect that was suppressed by local rapamycin but not by K252a pretreatment. Microinjection of NPA induced an antidepressant-like effect insensitive to both K252a and rapamycin. Similarly, the antidepressant-like effects of a systemic injection of ketamine or 7-NI were not affected by blockade of mTOR or Trk receptors in the vmPFC-PL. CONCLUSION Our data support the hypothesis that NMDA blockade induces an antidepressant-like effect that requires mTOR but not Trk signalling into the vmPFC-PL. The antidepressant-like effect induced by local NOS inhibition is independent on both Trk and mTOR signalling in the vmPFC-PL.
Collapse
|
12
|
Nitric oxide signalling and antidepressant action revisited. Cell Tissue Res 2019; 377:45-58. [PMID: 30649612 DOI: 10.1007/s00441-018-02987-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022]
Abstract
Studies about the pathogenesis of mood disorders have consistently shown that multiple factors, including genetic and environmental, play a crucial role on their development and neurobiology. Multiple pathological theories have been proposed, of which several ultimately affects or is a consequence of dysfunction in brain neuroplasticity and homeostatic mechanisms. However, current clinical available pharmacological intervention, which is predominantly monoamine-based, suffers from a partial and lacking response even after weeks of continuous treatment. These issues raise the need for better understanding of aetiologies and brain abnormalities in depression, as well as developing novel treatment strategies. Nitric oxide (NO) is a gaseous unconventional neurotransmitter, which regulates and governs several important physiological functions in the central nervous system, including processes, which can be associated with the development of mood disorders. This review will present general aspects of the NO system in depression, highlighting potential targets that may be utilized and further explored as novel therapeutic targets in the future pharmacotherapy of depression. In particular, the review will link the importance of neuroplasticity mechanisms governed by NO to a possible molecular basis for the antidepressant effects.
Collapse
|
13
|
Zhou QG, Zhu XH, Nemes AD, Zhu DY. Neuronal nitric oxide synthase and affective disorders. IBRO Rep 2018; 5:116-132. [PMID: 30591953 PMCID: PMC6303682 DOI: 10.1016/j.ibror.2018.11.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 11/07/2018] [Accepted: 11/13/2018] [Indexed: 01/08/2023] Open
Abstract
Affective disorders including major depressive disorder (MDD), bipolar disorder (BPD), and general anxiety affect more than 10% of population in the world. Notably, neuronal nitric oxide synthase (nNOS), a downstream signal molecule of N-methyl-D-aspartate receptors (NMDARs) activation, is abundant in many regions of the brain such as the prefrontal cortex (PFC), hippocampus, amygdala, dorsal raphe nucleus (DRN), locus coeruleus (LC), and hypothalamus, which are closely associated with the pathophysiology of affective disorders. Decreased levels of the neurotransmitters including 5-hydroxytryptamine or serotonin (5-HT), noradrenalin (NA), and dopamine (DA) as well as hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis are common pathological changes of MDD, BPD, and anxiety. Increasing data suggests that nNOS in the hippocampus play a crucial role in the etiology of MDD whereas nNOS-related dysregulation of the nitrergic system in the LC is closely associated with the pathogenesis of BPD. Moreover, hippocampal nNOS is implicated in the role of serotonin receptor 1 A (5-HTR1 A) in modulating anxiety behaviors. Augment of nNOS and its carboxy-terminal PDZ ligand (CAPON) complex mediate stress-induced anxiety and disrupting the nNOS-CAPON interaction by small molecular drug generates anxiolytic effect. To date, however, the function of nNOS in affective disorders is not well reviewed. Here, we summarize works about nNOS and its signal mechanisms implicated in the pathophysiology of affective disorders. On the basis of this review, it is suggested that future research should more fully focus on the role of nNOS in the pathomechanism and treatment of affective disorders.
Collapse
Affiliation(s)
- Qi-Gang Zhou
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing 211166, PR China
| | - Xian-Hui Zhu
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing 211166, PR China
| | - Ashley D Nemes
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, USA
| | - Dong-Ya Zhu
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing 211166, PR China
| |
Collapse
|
14
|
Barretto-de-Souza L, Adami MB, Benini R, Crestani CC. Dual role of nitrergic neurotransmission in the bed nucleus of the stria terminalis in controlling cardiovascular responses to emotional stress in rats. Br J Pharmacol 2018; 175:3773-3783. [PMID: 30007000 DOI: 10.1111/bph.14447] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/02/2018] [Accepted: 07/09/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE The aim of the present study was to assess the interaction of nitrergic neurotransmission within the bed nucleus of the stria terminalis (BNST) with local glutamatergic and noradrenergic neurotransmission in the control of cardiovascular responses to acute restraint stress in rats. EXPERIMENTAL APPROACH Interaction with local noradrenergic neurotransmission was evaluated using local pretreatment with the selective α1 -adrenoceptor antagonist WB4101 before microinjection of the NO donor NOC-9 into the BNST. Interaction with glutamatergic neurotransmission was assessed by pretreating the BNST with a selective inhibitor of neuronal NOS (nNOS), Nω-propyl-L-arginine (NPLA) before local microinjection of NMDA. The effect of intra-BNST NPLA microinjection in animals locally pretreated with WB4101 was also evaluated. KEY RESULTS NOC-9 reduced the heart rate (HR) and blood pressure increases evoked by restraint stress. These effects of NOC-9 on HR, but not in blood pressure, was inhibited by pretreatment of BNST with WB4101. NMDA enhanced the restraint-evoked HR increase, and this effect was abolished following BNST pretreatment with NPLA. Administration of NPLA to the BNST of animals pretreated locally with WB4101 decreased the HR and blood pressure increases induced by restraint. CONCLUSION AND IMPLICATIONS These results indicate that inhibitory control of stress-evoked cardiovascular responses by nitrergic signalling in the BNST is mediated by a facilitation of local noradrenergic neurotransmission. The present data also provide evidence of an involvement of local nNOS in facilitatory control of tachycardia during stress by NMDA receptors within the BNST.
Collapse
Affiliation(s)
- Lucas Barretto-de-Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil.,Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Mariane B Adami
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Ricardo Benini
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil.,Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Carlos C Crestani
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil.,Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| |
Collapse
|
15
|
Zhang X, Huo Q, Sun W, Zhang C, Wu Z, Xing B, Li Q. Rs2910164 in microRNA‑146a confers an elevated risk of depression in patients with coronary artery disease by modulating the expression of NOS1. Mol Med Rep 2018; 18:603-609. [PMID: 29749487 DOI: 10.3892/mmr.2018.8929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 01/13/2017] [Indexed: 11/06/2022] Open
Abstract
Depression has been well established as an independent predictor of mortality and cardiac morbidity rates in patients with coronary artery disease (CAD). Evidence has shown that single nucleotide polymorphisms located in pre‑microRNA (miRNA) or mature miRNA may modify various biological processes and affect the process of carcinogenesis, and the downregulation of neuronal nitric oxide synthase 1 (NOS1) can induce depression. It has been shown that NOS1 is the target gene of miR‑146a, and that the rs2910164 G/C polymorphism can downregulate the expression of miR‑146a. In the present study, computational analysis was used to identify the target of miR‑146a, and a luciferase reporter assay system was used to validate NOS1 as a target gene of miR‑146a. In addition, U251 cells were treated with miR‑146a mimics/inhibitors to verify the negative regulatory association between miR‑146a and NOS1. Reverse transcription‑quantitative polymerase chain reaction analysis and western blot analysis were used to estimate the mRNA expression of NOS1 and the expression of miR‑146a. The results showed that the 'seed sequence' was located within the 3'‑untranslated region of NOS1 by searching an online miRNA database (www.mirdb.org), and the luciferase reporter assay confirmed that NOS1 was a direct target gene of miR‑146a. It was also found that the mRNA and protein expression levels of NOS1 in U251 cells treated with miR‑146a mimics and NOS1 small interfering RNA were substantially downregulated, compared with cells treated with the scramble control. The cells treated with miR‑146a inhibitors showed increased expression of NOS1. In addition, the presence of a minor allele of the rs2910164 polymorphism was significantly associated with risk of depression in patients with CAD. Taken together, the findings indicated a decreased risk of depression in the patients with CAD who were carriers of the miR‑146a rs2910164 C allele, and this association may be attributed to its ability to compromise the expression of miR‑146a, and thereby increase the expression of its target gene, NOS1.
Collapse
Affiliation(s)
- Xinling Zhang
- Department of Cardiology, The First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Qianqian Huo
- Department of Cardiology, The First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Wei Sun
- Department of Cardiology, The First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Chunxiang Zhang
- Department of Cardiology, The First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Zongyin Wu
- Department of Cardiology, The First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Bing Xing
- Department of Cardiology, The First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Qiang Li
- Department of Cardiology, The First People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
16
|
Oliveira LA, Gomes-de-Souza L, Benini R, Crestani CC. Control of cardiovascular responses to stress by CRF in the bed nucleus of stria terminalis is mediated by local NMDA/nNOS/sGC/PKG signaling. Psychoneuroendocrinology 2018; 89:168-176. [PMID: 29414029 DOI: 10.1016/j.psyneuen.2018.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 01/05/2018] [Accepted: 01/10/2018] [Indexed: 11/27/2022]
Abstract
The aims of the present study were to assess an interaction of corticotropin-releasing factor (CRF) neurotransmission within the bed nucleus of the stria terminalis (BNST) with local nitrergic signaling, as well as to investigate an involvement of activation of local NMDA glutamate receptor and nitric oxide (NO) signaling in control of cardiovascular responses to acute restraint stress by BNST CRF neurotransmission in rats. We observed that CRF microinjection into the BNST increased local NO release during restraint stress. Furthermore, bilateral microinjection of CRF into the BNST enhanced both the arterial pressure and heart rate increases evoked by restraint stress, but without affecting the sympathetically-mediated cutaneous vasoconstriction. The facilitation of both pressor and tachycardiac responses to restraint stress evoked by BNST treatment with CRF were completely inhibited by local pretreatment with either the selective NMDA glutamate receptor antagonist LY235959, the selective neuronal nitric oxide synthase (nNOS) inhibitor Nω-Propyl-l-arginine (NPLA), the soluble guanylate cyclase (sGC) inhibitor 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) or the protein kinase G (PKG) inhibitor KT5823. Taken together, these results provide evidence that BNST CRF neurotransmission facilitates local NMDA-mediated glutamatergic neurotransmission and activates nitrergic signaling, and this pathway is involved in control of cardiovascular responses to stress.
Collapse
Affiliation(s)
- Leandro A Oliveira
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Lucas Gomes-de-Souza
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Ricardo Benini
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Carlos C Crestani
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil.
| |
Collapse
|
17
|
Barretto-de-Souza L, Adami MB, Oliveira LA, Gomes-de-Souza L, Duarte JO, Almeida J, Crestani CC. Nitric oxide-cGMP-PKG signaling in the bed nucleus of the stria terminalis modulates the cardiovascular responses to stress in male rats. Eur Neuropsychopharmacol 2018; 28:75-84. [PMID: 29169825 DOI: 10.1016/j.euroneuro.2017.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/29/2017] [Accepted: 11/09/2017] [Indexed: 12/11/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) constitutes an important component of neural substrates of physiological and behavioral responses to aversive stimuli, and it has been implicated on cardiovascular responses evoked by stress. Nevertheless, the local neurochemical mechanisms involved in BNST control of cardiovascular responses during aversive threats are still poorly understood. Thus, the aim of the present study was to assess the involvement of activation in the BNST of the neuronal isoform of the enzyme nitric oxide synthase (nNOS), as well as of signaling mechanisms related to nitric oxide effects such as soluble guanylate cyclase (sGC) and protein kinase G (PKG) on cardiovascular responses induced by an acute session of restraint stress in male rats. We observed that bilateral microinjection of either the nonselective NOS inhibitor Nω-Nitro-L-arginine methyl ester (L-NAME), the selective nNOS inhibitor Nω-Propyl-L-arginine (NPLA) or the sGC inhibitor 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) into the BNST enhanced the tachycardic response and decreased the drop in tail cutaneous temperature evoked by acute restraint stress, but without affecting the increase on blood pressure. Bilateral BNST treatment with the selective PKG inhibitor KT5823 also facilitated the heart rate increase and decreased the drop in cutaneous temperature, in addition to enhancing the blood pressure increase. Taken together, these results provide evidence that NO released from nNOS and activation of sGC and PKG within the BNST play an inhibitory influence on tachycardia to stress, whereas this signaling mechanism mediates the sympathetic-mediated cutaneous vasoconstriction.
Collapse
Affiliation(s)
- Lucas Barretto-de-Souza
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Mariane B Adami
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Leandro A Oliveira
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Lucas Gomes-de-Souza
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Josiane O Duarte
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Jeferson Almeida
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Carlos C Crestani
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil.
| |
Collapse
|
18
|
Ratajczak P, Kus K, Skurzyńska M, Nowakowska E. The influence of aripiprazole and venlafaxine on the antidepressant-like effect observed in prenatally stressed rats (animal model of depression). Hum Exp Toxicol 2017; 37:972-982. [PMID: 29239218 DOI: 10.1177/0960327117747023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Depression is a nosological entity which may appear alone or concomitantly (e.g. in schizophrenia). Analysis of data from both clinical and experimental studies allows a conclusion that atypical antipsychotics, such as aripiprazole (ARI), may also be effective in treating depression in addition to antidepressants. The aim of the studies was to determine antidepressant efficacy of ARI, venlafaxine (VEN) and combined therapy using both drugs, in prenatally stressed rats (animal depression model) and control group. In addition, this article was aimed at determining the effect of these drugs on locomotor activity of these animals. The effect of chronic stress used in pregnant rats and the use of drugs such as ARI (1.5 mg/kg) and VEN (20 mg/kg) were studied in forced swimming test (FST; antidepressant effect) and locomotor activity test. Performed tests confirmed the antidepressant effect of ARI, VEN and efficacy of combined drugs in FST in both prenatally stressed rats (effect present upon single administration and after 7, 14 and 21 days of testing) and control group rats (effect present upon single administration and 7 days of testing). Moreover, upon single administration of the used drugs to prenatally stressed rats, it was found sedative effect - reduced animals' locomotor activity. Study results have proven antidepressant and sedative efficacy of ARI, VEN and combined administration of these drugs. Due to the small amount of data on the above preparations, in particular in the context of animal depression models, further studies in this respect are recommended.
Collapse
Affiliation(s)
- P Ratajczak
- Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Poznan, Poland
| | - K Kus
- Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Poznan, Poland
| | - M Skurzyńska
- Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Poznan, Poland
| | - E Nowakowska
- Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
19
|
Sherwin E, Lennon A, Harkin A. Regional Specific Modulation of Stress-Induced Neuronal Activation Associated with the PSD95/NOS Interaction Inhibitor ZL006 in the Wistar Kyoto Rat. Int J Neuropsychopharmacol 2017; 20:833-843. [PMID: 28977524 PMCID: PMC5632311 DOI: 10.1093/ijnp/pyx053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/07/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND To determine brain areas involved in the antidepressant-related behavioral effects of the selective neuronal nitric oxide synthase inhibitor 1-(2-Trifluoro-methyl-phenyl) imidazole (TRIM) and experimental test compound 4-((3,5-dichloro-2-hydroxybenzyl)amino)-2-hydroxybenzoic acid (ZL006), an inhibitor of the PSD of 95 kDa/neuronal nitric oxide synthase interaction in the N-methyl-D-aspartic acid receptor signalling pathway, regional specific expression of the neuronal activation marker c-FOS was assessed following exposure to the forced swimming test in the Wistar Kyoto rat. METHODS Wistar Kyoto rats were subjected to a 15-minute swim pretest (pre-forced swimming test) period on day 1. At 24, 5, and 1 hour prior to the 5-minute test, which took place 24 hours following the pre-forced swimming test, animals were treated with TRIM (50 mg/kg; i.p.), ZL006 (10 mg/kg; i.p.), or saline vehicle (1 mL/kg i.p). Behavior was recorded during both pretest and test periods. RESULTS Both TRIM and ZL006 decreased immobility time in Wistar Kyoto rats in the forced swimming test. Exposure to the forced swimming test increased c-FOS immunoreactivity in the lateral septum, paraventricular nucleus of the hypothalamus, periaqueductal grey, dentate gyrus, and ventral CA1 of the hippocampus compared with non-forced swimming test-exposed controls. Forced swimming test-induced c-FOS immunoreactivity was further increased in the lateral septum, periaqueductal gray, and paraventricular nucleus of the hypothalamus following treatment with TRIM or ZL006. By contrast, forced swimming test-induced c-FOS immunoreactivity was reduced in dorsal dentate gyrus and ventral CA1 following treatment with TRIM or ZL006. Exposure to the forced swimming test resulted in an increase in NADPH diaphorase staining in the paraventricular nucleus of the hypothalamus. This forced swimming test-induced increase was attenuated following treatment with ZL006 and points to the paraventricular nucleus as a brain region where ZL006 acts to attenuate forced swimming test-induced neuronal nitric oxide synthase activity while concomitantly regulating region specific neuronal activation associated with an antidepressant-related response. CONCLUSIONS This study identified a pattern of enhanced and reduced forced swimming test-related c-FOS immunoreactivity indicative of a regulated network where inhibition of nitric oxide coupled to the N-methyl-D-aspartic acid receptor leads to activation of the lateral septum, periaqueductal gray, and paraventricular nucleus of the hypothalamus with concomitant inhibition of the hippocampus.
Collapse
Affiliation(s)
- Eoin Sherwin
- Department of Physiology, School of Medicine (Dr Sherwin), School of Pharmacy and Pharmaceutical Sciences (Dr Harkin), and Trinity College Institute of Neuroscience (Dr Sherwin, Ms Lennon, Dr Harkin), Trinity College, Dublin, Ireland
| | - Aifric Lennon
- Department of Physiology, School of Medicine (Dr Sherwin), School of Pharmacy and Pharmaceutical Sciences (Dr Harkin), and Trinity College Institute of Neuroscience (Dr Sherwin, Ms Lennon, Dr Harkin), Trinity College, Dublin, Ireland
| | - Andrew Harkin
- Department of Physiology, School of Medicine (Dr Sherwin), School of Pharmacy and Pharmaceutical Sciences (Dr Harkin), and Trinity College Institute of Neuroscience (Dr Sherwin, Ms Lennon, Dr Harkin), Trinity College, Dublin, Ireland.,Correspondence: Andrew Harkin, PhD, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland ()
| |
Collapse
|
20
|
Hiraoka K, Motomura K, Yanagida S, Ohashi A, Ishisaka-Furuno N, Kanba S. Pattern of c-Fos expression induced by tail suspension test in the mouse brain. Heliyon 2017; 3:e00316. [PMID: 28616594 PMCID: PMC5458762 DOI: 10.1016/j.heliyon.2017.e00316] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 05/30/2017] [Indexed: 12/03/2022] Open
Abstract
The tail suspension test (TST) has been widely used as a screening assay for antidepressant drugs. However, the neural substrates underlying the stress response and antidepressant-like effect during the TST remain largely unknown despite the prevalence of this test. In the present study, we used immunohistochemistry to examine alterations in c-Fos expression as a measure of neuronal activity in the mouse brain after acute administration of the antidepressant drugs nortriptyline or escitalopram (or saline as a control) with or without a subsequent TST session. We found that without the TST session, nortriptyline administration enhanced the density of c-Fos-immunoreactive cells in regions of the central extended amygdala, paraventricular hypothalamic nucleus, and relevant regions of the brain stem, whereas escitalopram did not change c-Fos expression in any region. Following the TST in the absence of antidepressant drugs, we observed a significant increase in c-Fos-positive cell density in a number of brain regions within the limbic telencephalon, hypothalamus, and brain stem. We detected a statistically significant interaction using an analysis of variance between the main effects of the drug and stress response in four regions: the infralimbic cortex, lateral septal nucleus (intermediate part), ventrolateral preoptic nucleus, and solitary nucleus. Following the TST, escitalopram but not nortriptyline increased c-Fos-positive cell density in the infralimbic cortex and ventrolateral preoptic nucleus, whereas nortriptyline but not escitalopram increased c-Fos expression in the solitary nucleus. Both antidepressants significantly increased c-Fos expression in the lateral septal nucleus (intermediate part). The present results indicate that neuronal activity increases in septo-hypothalamic regions and related structures, especially the lateral septal nucleus, following administration of drugs producing an antidepressant-like effect in mice subjected to the TST.
Collapse
Affiliation(s)
- Kentaro Hiraoka
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Keisuke Motomura
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Satoru Yanagida
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Ayako Ohashi
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Nozomi Ishisaka-Furuno
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Shigenobu Kanba
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
21
|
Semax, an analog of ACTH (4-7), regulates expression of immune response genes during ischemic brain injury in rats. Mol Genet Genomics 2017; 292:635-653. [PMID: 28255762 DOI: 10.1007/s00438-017-1297-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 02/07/2017] [Indexed: 12/20/2022]
Abstract
Brain stroke continues to claim the lives of million people every year. To build the effective strategies for stroke treatment it is necessary to understand the neuroprotective mechanisms that are able to prevent the ischemic injury. Consisting of the ACTH(4-7) fragment and the tripeptide Pro-Gly-Pro (PGP), the synthetic peptide Semax effectively protects brain against ischemic stroke. However, the molecular mechanisms underlying its neuroprotection and participation of PGP in them are still needed to be clarified. To reveal biological processes and signaling pathways, which are affected by Semax and PGP, we performed the transcriptome analysis of cerebral cortex of rats with focal cerebral ischemia treated by these peptides. The genome-wide biochip data analysis detected the differentially expressed genes (DEGs) and bioinformatic web-tool Ingenuity iReport found DEGs associations with several biological processes and signaling pathways. The immune response is the process most markedly affected by the peptide: Semax enhances antigen presentation signaling pathway, intensifies the effect of ischemia on the interferon signaling pathways and affects the processes for synthesizing immunoglobulins. Semax significantly increased expression of the gene encoding the immunoglobulin heavy chain, highly affects on cytokine, stress response and ribosomal protein-encoding genes after occlusion. PGP treatment of rats with ischemia attenuates the immune activity and suppresses neurotransmission in the CNS. We suppose that neuroprotective mechanism of Semax is realized via the neuroimmune crosstalk, and the new properties of PGP were found under ischemia. Our results provided the basis for further proteomic investigations in the field of searching Semax neuroprotection mechanism.
Collapse
|
22
|
Borbély É, Hajna Z, Nabi L, Scheich B, Tékus V, László K, Ollmann T, Kormos V, Gaszner B, Karádi Z, Lénárd L, Paige CJ, Quinn JP, Szolcsányi J, Pintér E, Keeble J, Berger A, Helyes Z. Hemokinin-1 mediates anxiolytic and anti-depressant-like actions in mice. Brain Behav Immun 2017; 59:219-232. [PMID: 27621226 DOI: 10.1016/j.bbi.2016.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/25/2016] [Accepted: 09/07/2016] [Indexed: 01/23/2023] Open
Abstract
The tachykinin NK1 receptor was suggested to be involved in psychiatric disorders, but its antagonists have failed to be effective as antidepressants in clinical trials. Hemokinin-1 (HK-1), the newest tachykinin, is present in several brain regions and activates the NK1 receptor similarly to substance P (SP), but acts also through other mechanisms. Therefore, we investigated the roles of the Tac4 gene-derived HK-1 in comparison with SP and neurokinin A (NKA) encoded by the Tac1 gene, as well as the NK1 receptor in anxiety and depression-like behaviors in mice. Mice lacking SP/NKA, HK-1 or the NK1 receptor (Tac1-/-, Tac4-/-, Tacr1-/-, respectively) compared to C57Bl/6 wildtypes (WT), and treatment with the NK1 antagonist CP99994 were used in the experiments. Anxiety was evaluated in the light-dark box (LDB) and the elevated plus maze (EPM), locomotor activity in the open field (OFT) tests. Hedonic behavior was assessed in the sucrose preference test (SPT), depression-like behavior in the tail suspension (TST) and forced swim (FST) tests. FST-induced neuronal responsiveness was evaluated with Fos immunohistochemistry in several stress-related brain regions. In the LDB, Tac4-/- mice spent significantly less, while Tacr1-/- and CP99994-treated mice spent significantly more time in the lit compartment. In the EPM only Tac4-/- showed reduced time in the open arms, but no difference was observed in any other groups. In the OFT Tac4-/- mice showed significantly reduced, while Tac1-/- and Tacr1-/- animals increased motility than the WTs, but CP99994 had no effect. NK1-/- consumed markedly more, while Tac4-/- less sucrose solution compared to WTs. In the TST and FST, Tac4-/- mice showed significantly increased immobility. However, depression-like behavior was decreased both in cases of genetic deletion and pharmacological blockade of the NK1 receptor. FST-induced neuronal activation in different nuclei involved in behavioral and neuroendocrine stress responses was significantly reduced in the brain of Tac4 -/- mice. Our results provide the first evidence for an anxiolytic and anti-depressant-like actions of HK-1 through a presently unknown target-mediated mechanism. Identification of its receptor and/or signaling pathways might open new perspectives for anxiolytic and anti-depressant therapies.
Collapse
Affiliation(s)
- Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary
| | - Zsófia Hajna
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary
| | - Liza Nabi
- King's College London, Institute of Pharmaceutical Science, London, UK
| | - Bálint Scheich
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary
| | - Valéria Tékus
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary
| | - Kristóf László
- Department of Physiology, Medical School, University of Pécs, Hungary
| | - Tamás Ollmann
- Department of Physiology, Medical School, University of Pécs, Hungary
| | - Viktória Kormos
- Department of Anatomy, Medical School, University of Pécs, Hungary
| | - Balázs Gaszner
- Department of Anatomy, Medical School, University of Pécs, Hungary
| | - Zoltán Karádi
- Department of Physiology, Medical School, University of Pécs, Hungary
| | - László Lénárd
- Department of Physiology, Medical School, University of Pécs, Hungary
| | | | - John P Quinn
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine Liverpool University, Liverpool, UK
| | - János Szolcsányi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary
| | - Julie Keeble
- King's College London, Institute of Pharmaceutical Science, London, UK
| | - Alexandra Berger
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary; MTA-PTE NAP B Chronic Pain Research Group, Hungary.
| |
Collapse
|
23
|
Sherwin E, Gigliucci V, Harkin A. Regional specific modulation of neuronal activation associated with nitric oxide synthase inhibitors in an animal model of antidepressant activity. Behav Brain Res 2017; 316:18-28. [DOI: 10.1016/j.bbr.2016.08.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 11/30/2022]
|
24
|
Hott SC, Gomes FV, Uliana DL, Vale GT, Tirapelli CR, Resstel LB. Bed nucleus of the stria terminalis NMDA receptors and nitric oxide modulate contextual fear conditioning in rats. Neuropharmacology 2017; 112:135-143. [DOI: 10.1016/j.neuropharm.2016.05.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 05/22/2016] [Accepted: 05/29/2016] [Indexed: 01/17/2023]
|
25
|
Yanagida S, Motomura K, Ohashi A, Hiraoka K, Miura T, Kanba S. Effect of acute imipramine administration on the pattern of forced swim-induced c-Fos expression in the mouse brain. Neurosci Lett 2016; 629:119-124. [DOI: 10.1016/j.neulet.2016.06.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/20/2016] [Accepted: 06/27/2016] [Indexed: 11/16/2022]
|
26
|
Antidepressant-like effect of cannabidiol injection into the ventral medial prefrontal cortex—Possible involvement of 5-HT1A and CB1 receptors. Behav Brain Res 2016; 303:218-27. [DOI: 10.1016/j.bbr.2016.01.033] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 01/12/2016] [Accepted: 01/15/2016] [Indexed: 01/24/2023]
|
27
|
Liu W, Wang Y, Li H, Ji L. The Role of Nitric Oxide in the Antidepressant Actions of 5-Aminoimidazole-4-Carboxamide-1-β-D-Ribofuranoside in Insulin-Resistant Mice. Psychosom Med 2016; 78:102-112. [PMID: 26569535 DOI: 10.1097/psy.0000000000000268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Depression and Type 2 diabetes mellitus are interrelated conditions, but the underlying neurobiology is insufficiently understood. The current study compared the effects of a pharmacological manipulation with 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) that targets neurobiological processes by adenosine 5'-monophosphate-activated protein kinase activation versus exercise on depression-like behavior and nitric oxide (NO)-related measures. METHODS A mouse model of a depression-like and insulin-resistant state, induced by the co-treatment of high-fat diet and corticosterone administration, was used to examine the antidepressant action of AICAR and exercise. RESULTS Data showed that AICAR was a putative antidepressant in the depression-like and insulin-resistant mice (total ambulatory distance in the open-field test was 5120.69 ± 167.47 cm, mobility duration in the forced swim test was 17.61 ± 1.54 seconds, latency to feed in the novelty suppressed feeding test was 255.67 ± 37.80 seconds; all p values < .05). Furthermore, the antidepressant actions of AICAR required endothelial nitric oxide synthase activity with increased NO production in the prefrontal cortex, whereas corticosterone-induced expression of neuronal nitric oxide synthase and NO production may increase the risk of depression. In contrast to the traditional antidepressants such as ketamine and imipramine, AICAR interfered with the effects of insulin in skeletal muscle in the context of high-fat diet, consistent with the potential antidepressant effects of AICAR. Exercise also resulted in activation of adenosine 5'-monophosphate-activated protein kinase, nitric oxide synthase, and NO production (all p values < .01), which in turn may be implicated in the antidepressant effects of exercise. CONCLUSIONS These findings suggest that NO is an essential signal mediating the antidepressant actions of AICAR. Ultimately, the concurrent effects of AICAR on brain insulin action and mitochondrial function suggest a potential of neural insulin resistance, which may contribute to our understanding of the comorbidity of depression and Type 2 diabetes.
Collapse
Affiliation(s)
- Weina Liu
- From the Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education (Liu, Ji), School of Physical Education & Health Care (Liu, Ji), East China Normal University, Shanghai, China; Department of Physiology (Wang), Second Military Medical University, Shanghai, China; and Department of P.E. Education & Military (Li), Zhejiang University of Technology, Hangzhou, China
| | | | | | | |
Collapse
|
28
|
Somatostatin receptor subtype 4 activation is involved in anxiety and depression-like behavior in mouse models. Neuropharmacology 2015; 101:204-15. [PMID: 26387439 DOI: 10.1016/j.neuropharm.2015.09.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/04/2015] [Accepted: 09/15/2015] [Indexed: 01/15/2023]
Abstract
Somatostatin regulates stress-related behavior and its expression is altered in mood disorders. However, little is known about the underlying mechanisms, especially about the importance of its receptors (sst1-sst5) in anxiety and depression-like behavior. Here we analyzed the potential role of sst4 receptor in these processes, since sst4 is present in stress-related brain regions, but there are no data about its functional relevance. Genetic deletion of sst4 (Sstr4(-/-)) and its pharmacological activation with the newly developed selective non-peptide agonist J-2156 were used. Anxiety was examined in the elevated plus maze (EPM) and depression-like behavior in the forced swim (FST) and tail suspension tests (TST). Neuronal activation during the TST was monitored by Fos immunohistochemistry, receptor expression was identified by sst4(LacZ) immunostaining in several brain regions. Sstr4(-/-) mice showed increased anxiety in the EPM and enhanced depression-like behavior in the FST. J-2156 (100 μg/kg i.p.) exhibited anxiolytic effect in the EPM and decreased immobility in the TST. J-2156 alone did not influence Fos immunoreactivity in intact mice, but significantly increased the stress-induced Fos response in the dorsal raphe nucleus, central projecting Edinger-Westphal nucleus, periaqueductal gray matter, the magnocellular, but not the parvocellular part of the hypothalamic paraventricular nucleus, lateral septum, bed nucleus of the stria terminalis and the amygdala. Notably, sst4(LacZ) immunoreactivity occurred in the central and basolateral amygdala. Together, these studies reveal that sst4 mediates anxiolytic and antidepressant-like effects by enhancing the stress-responsiveness of several brain regions with special emphasis on the amygdala.
Collapse
|
29
|
Neuronal nitric oxide synthase (NOS1) polymorphisms interact with financial hardship to affect depression risk. Neuropsychopharmacology 2014; 39:2857-66. [PMID: 24917196 PMCID: PMC4200496 DOI: 10.1038/npp.2014.137] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 05/11/2014] [Accepted: 05/12/2014] [Indexed: 01/24/2023]
Abstract
There is increasing evidence that genetic factors have a role in differential susceptibility to depression in response to severe or chronic adversity. Studies in animals suggest that nitric oxide (NO) signalling has a key role in depression-like behavioural responses to stress. This study investigated whether genetic variation in the brain-expressed nitric oxide synthase gene NOS1 modifies the relationship between psychosocial stress and current depression score. We recruited a population sample of 1222 individuals who provided DNA and questionnaire data on symptoms and stress. Scores on the List of Life-Threatening Experiences (LTE) questionnaire for the last year and self-rated current financial hardship were used as measures of recent/ongoing psychosocial stress. Twenty SNPs were genotyped. Significant associations between eight NOS1 SNPs, comprising two regional haplotypes, and current depression score were identified that survived correction for multiple testing when current financial hardship was used as the interaction term. A smaller three-SNP haplotypes (rs10507279, rs1004356 and rs3782218) located in a regulatory region of NOS1 showed one of the strongest effects, with the A-C-T haplotype associating with higher depression scores at low adversity levels but lower depression scores at higher adversity levels (p=2.3E-05). These results suggest that NOS1 SNPs interact with exposure to economic and psychosocial stressors to alter individual's susceptibility to depression.
Collapse
|
30
|
Issy A, Del Bel E. 7-Nitroindazole blocks the prepulse inhibition disruption and c-Fos increase induced by methylphenidate. Behav Brain Res 2014; 262:74-83. [DOI: 10.1016/j.bbr.2013.12.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/17/2013] [Accepted: 12/21/2013] [Indexed: 01/03/2023]
|
31
|
Pereira VS, Casarotto PC, Hiroaki-Sato VA, Sartim AG, Guimarães FS, Joca SRL. Antidepressant- and anticompulsive-like effects of purinergic receptor blockade: involvement of nitric oxide. Eur Neuropsychopharmacol 2013; 23:1769-78. [PMID: 23434291 DOI: 10.1016/j.euroneuro.2013.01.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/27/2012] [Accepted: 01/27/2013] [Indexed: 10/27/2022]
Abstract
Activation of purinergic receptors by ATP (P2R) modulates glutamate release and the activation of post-synaptic P2R is speculated to induce nitric oxide (NO) synthesis. Increased glutamatergic and nitrergic signaling have been involved in the neurobiology of stress-related psychiatric disorders such as anxiety and depression. Therefore, the aim of this study was to test the effects of two P2R antagonists (PPADS and iso-PPADS) in animals submitted to models predictive of antidepressant-, anxiolytic- and anticompulsive-like effects. Swiss mice receiving PPADS at 12.5mg/kg showed reduced immobility time in the forced swimming test (FST) similarly to the prototype antidepressant imipramine (30mg/kg). This dose was also able to decrease the number of buried marbles in the marble-burying test (MBT), an anticompulsive-like effect. However, no effect was observed in animals submitted to the elevated plus maze (EPM) and to the open field test. The systemic administration of iso-PPADS, a preferential P2XR antagonist, also reduced the immobility time in FST, which was associated to a decrease in NOx levels in the prefrontal cortex. In addition, P2X7 receptor was found co-immunoprecipitated with neuronal nitric oxide synthase (NOS1) in the prefrontal cortex. These results suggest that P2X7, possibly coupled to NOS1, could modulate behavioral responses associated to stress-related disorders and it could be a new target for the development of more effective treatments for affective disorders.
Collapse
Affiliation(s)
- Vitor S Pereira
- Department of Pharmacology, School of Medicine, Campus USP, Ribeirão Preto, SP 14049-900, Brazil
| | | | | | | | | | | |
Collapse
|
32
|
Noradrenergic neurotransmission within the bed nucleus of the stria terminalis modulates the retention of immobility in the rat forced swimming test. Behav Pharmacol 2013; 24:214-21. [PMID: 23625378 DOI: 10.1097/fbp.0b013e3283618ae4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) is a limbic structure that has a direct influence on the autonomic, neuroendocrine, and behavioral responses to stress. It was recently reported that reversible inactivation of synaptic transmission within this structure causes antidepressant-like effects, indicating that activation of the BNST during stressful situations would facilitate the development of behavioral changes related to the neurobiology of depression. Moreover, noradrenergic neurotransmission is abundant in the BNST and has an important role in the regulation of emotional processes related to the stress response. Thus, this study aimed to test the hypothesis that activation of adrenoceptors within the BNST facilitates the development of behavioral consequences of stress. To investigate this hypothesis, male Wistar rats were stressed (forced swimming, 15 min) and 24 h later received intra-BNST injections of vehicle, WB4101, RX821002, CGP20712, or ICI118,551, which are selective α(1), α(2), β(1), and β(2) adrenoceptor antagonists, respectively, 10 min before a 5-min forced swimming test. It was observed that administration of WB4101 (10 and 15 nmol), CGP20712 (5 and 10 nmol), or ICI118,551 (5 nmol) into the BNST reduced the immobility time of rats subjected to forced swimming test, indicating an antidepressant-like effect. These findings suggest that activation of α(1), β(1), and β(2) adrenoceptors in the BNST could be involved in the development of the behavioral consequences of stress.
Collapse
|
33
|
van Kerkhof LWM, Damsteegt R, Trezza V, Voorn P, Vanderschuren LJMJ. Functional integrity of the habenula is necessary for social play behaviour in rats. Eur J Neurosci 2013; 38:3465-75. [PMID: 24103016 DOI: 10.1111/ejn.12353] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 08/08/2013] [Indexed: 02/05/2023]
Abstract
During post-weaning development, a marked increase in peer-peer interactions is observed in mammals, including humans, which is signified by the abundance of social play behaviour. Social play is highly rewarding, and known to be modulated through monoaminergic neurotransmission. Recently, the habenula has received widespread attention because of its role in the regulation of monoaminergic neurotransmission as well as in a variety of emotional and cognitive functions. Therefore, in the present study, we investigated the involvement of the habenula in social play behaviour. Using the neuronal activity maker c-fos, we showed that the habenula was activated after 24 h of social isolation in adolescent rats, and that a subsequent social play interaction reduced c-fos activity in the medial part of the lateral habenula. This suggested that habenula activity modulated the aversive properties of social isolation, which was alleviated by the positive effects of social play. Furthermore, after functional inactivation of the habenula, using a mixture of the GABA receptor agonists baclofen and muscimol, social play behaviour was markedly reduced, whereby responsiveness to play solicitation was more sensitive to habenula inactivation than play solicitation itself. Together, our data indicate an important role for the habenula in the processing of positive (i.e., social play behaviour) and negative (i.e., social isolation) social information in adolescent rats. Altered habenula function might therefore be related to the social impairments in childhood and adolescent psychiatric disorders such as autism, attention deficit/hyperactivity disorder and early-onset schizophrenia.
Collapse
Affiliation(s)
- Linda W M van Kerkhof
- Department of Neuroscience and Pharmacology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
34
|
Choi SH, Chung S, Cho JH, Cho YH, Kim JW, Kim JM, Kim HJ, Kim HJ, Shin KH. Changes in c-Fos Expression in the Forced Swimming Test: Common and Distinct Modulation in Rat Brain by Desipramine and Citalopram. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2013; 17:321-9. [PMID: 23946692 PMCID: PMC3741489 DOI: 10.4196/kjpp.2013.17.4.321] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/23/2013] [Accepted: 06/05/2013] [Indexed: 12/05/2022]
Abstract
Rodents exposed to a 15-min pretest swim in the forced swimming test (FST) exhibit prolonged immobility in a subsequent 5-min test swim, and antidepressant treatment before the test swim reduces immobility. At present, neuronal circuits recruited by antidepressant before the test swim remain unclear, and also less is known about whether antidepressants with different mechanisms of action could influence neural circuits differentially. To reveal the neural circuits associated with antidepressant effect in the FST, we injected desipramine or citalopram 0.5 h, 19 h, and 23 h after the pretest swim and observed changes in c-Fos expression in rats before the test swim, namely 24 h after the pretest swim. Desipramine treatment alone in the absence of pretest swim was without effect, whereas citalopram treatment alone significantly increased the number of c-Fos-like immunoreactive cells in the central nucleus of the amygdala and bed nucleus of the stria terminalis, where this pattern of increase appears to be maintained after the pretest swim. Both desipramine and citalopram treatment after the pretest swim significantly increased the number of c-Fos-like immunoreactive cells in the ventral lateral septum and ventrolateral periaqueductal gray before the test swim. These results suggest that citalopram may affect c-Fos expression in the central nucleus of the amygdala and bed nucleus of the stria terminalis distinctively and raise the possibility that upregulation of c-Fos in the ventral lateral septum and ventrolateral periaqueductal gray before the test swim may be one of the probable common mechanisms underlying antidepressant effect in the FST.
Collapse
Affiliation(s)
- Sun Hye Choi
- Department of Pharmacology, Korea University College of Medicine, Seoul 136-705, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Fos Immunoreactivity in the Motor Cortex of Rats Realizing Operant Movements: Changes after Systemic Introduction of a NOS Blocker. NEUROPHYSIOLOGY+ 2013. [DOI: 10.1007/s11062-013-9339-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|