1
|
Masnata M, Salem S, de Rus Jacquet A, Anwer M, Cicchetti F. Targeting Tau to Treat Clinical Features of Huntington's Disease. Front Neurol 2020; 11:580732. [PMID: 33329322 PMCID: PMC7710872 DOI: 10.3389/fneur.2020.580732] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by severe motor, cognitive and psychiatric impairments. While motor deficits often confirm diagnosis, cognitive dysfunctions usually manifest early in the disease process and are consistently ranked among the leading factors that impact the patients' quality of life. The genetic component of HD, a mutation in the huntingtin (HTT) gene, is traditionally presented as the main contributor to disease pathology. However, accumulating evidence suggests the implication of the microtubule-associated tau protein to the pathogenesis and therefore, proposes an alternative conceptual framework where tau and mutant huntingtin (mHTT) act conjointly to drive neurodegeneration and cognitive dysfunction. This perspective on disease etiology offers new avenues to design therapeutic interventions and could leverage decades of research on Alzheimer's disease (AD) and other tauopathies to rapidly advance drug discovery. In this mini review, we examine the breadth of tau-targeting treatments currently tested in the preclinical and clinical settings for AD and other tauopathies, and discuss the potential application of these strategies to HD.
Collapse
Affiliation(s)
- Maria Masnata
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada
| | - Shireen Salem
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.,Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada
| | - Aurelie de Rus Jacquet
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada
| | - Mehwish Anwer
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, Canada.,Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada
| |
Collapse
|
2
|
Mitochondria under the spotlight: On the implications of mitochondrial dysfunction and its connectivity to neuropsychiatric disorders. Comput Struct Biotechnol J 2020; 18:2535-2546. [PMID: 33033576 PMCID: PMC7522539 DOI: 10.1016/j.csbj.2020.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/30/2022] Open
Abstract
Neuropsychiatric disorders (NPDs) such as bipolar disorder (BD), schizophrenia (SZ) and mood disorder (MD) are hard to manage due to overlapping symptoms and lack of biomarkers. Risk alleles of BD/SZ/MD are emerging, with evidence suggesting mitochondrial (mt) dysfunction as a critical factor for disease onset and progression. Mood stabilizing treatments for these disorders are scarce, revealing the need for biomarker discovery and artificial intelligence approaches to design synthetically accessible novel therapeutics. Here, we show mt involvement in NPDs by associating 245 mt proteins to BD/SZ/MD, with 7 common players in these disease categories. Analysis of over 650 publications suggests that 245 NPD-linked mt proteins are associated with 800 other mt proteins, with mt impairment likely to rewire these interactions. High dosage of mood stabilizers is known to alleviate manic episodes, but which compounds target mt pathways is another gap in the field that we address through mood stabilizer-gene interaction analysis of 37 prescriptions and over-the-counter psychotropic treatments, which we have refined to 15 mood-stabilizing agents. We show 26 of the 245 NPD-linked mt proteins are uniquely or commonly targeted by one or more of these mood stabilizers. Further, induced pluripotent stem cell-derived patient neurons and three-dimensional human brain organoids as reliable BD/SZ/MD models are outlined, along with multiomics methods and machine learning-based decision making tools for biomarker discovery, which remains a bottleneck for precision psychiatry medicine.
Collapse
|
3
|
Lithium Content of 160 Beverages and Its Impact on Lithium Status in Drosophila melanogaster. Foods 2020; 9:foods9060795. [PMID: 32560287 PMCID: PMC7353479 DOI: 10.3390/foods9060795] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/06/2020] [Accepted: 06/11/2020] [Indexed: 11/17/2022] Open
Abstract
Lithium (Li) is an important micronutrient in human nutrition, although its exact molecular function as a potential essential trace element has not yet been fully elucidated. It has been previously shown that several mineral waters are rich and highly bioavailable sources of Li for human consumption. Nevertheless, little is known about the extent in which other beverages contribute to the dietary Li supply. To this end, the Li content of 160 different beverages comprising wine and beer, soft and energy drinks and tea and coffee infusions was analysed by inductively coupled plasma mass spectrometry (ICP-MS). Furthermore, a feeding study in Drosophila melanogaster was conducted to test whether Li derived from selected beverages changes Li status in flies. In comparison to the average Li concentration in mineral waters (108 µg/L; reference value), the Li concentration in wine (11.6 ± 1.97 µg/L) and beer (8.5 ± 0.77 µg/L), soft and energy drinks (10.2 ± 2.95 µg/L), tea (2.8 ± 0.65 µg/L) and coffee (0.1 ± 0.02 µg/L) infusions was considerably lower. Only Li-rich mineral water (~1600 µg/L) significantly increased Li concentrations in male and female flies. Unlike mineral water, most wine and beer, soft and energy drink and tea and coffee samples were rather Li-poor food items and thus may only contribute to a moderate extent to the dietary Li supply. A novelty of this study is that it relates analytical Li concentrations in beverages to Li whole body retention in Drosophila melanogaster.
Collapse
|
4
|
Balasubramanian D, Pearson JF, Kennedy MA. Gene expression effects of lithium and valproic acid in a serotonergic cell line. Physiol Genomics 2018; 51:43-50. [PMID: 30576260 DOI: 10.1152/physiolgenomics.00069.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Valproic acid (VPA) and lithium are widely used in the treatment of bipolar disorder. However, the underlying mechanism of action of these drugs is not clearly understood. We used RNA-Seq analysis to examine the global profile of gene expression in a rat serotonergic cell line (RN46A) after exposure to these two mood stabilizer drugs. Numerous genes were differentially regulated in response to VPA (log2 fold change ≥ 1.0; i.e., odds ratio of ≥2, at false discovery rate <5%), but only two genes ( Dynlrb2 and Cdyl2) showed significant differential regulation after exposure of the cells to lithium, with the same analysis criteria. Both of these genes were also regulated by VPA. Many of the differentially expressed genes had functions of potential relevance to mood disorders or their treatment, such as several serpin family genes (including neuroserpin), Nts (neurotensin), Maob (monoamine oxidase B), and Ap2b1, which is important for synaptic vesicle function. Pathway analysis revealed significant enrichment of Gene Ontology terms such as extracellular matrix remodeling, cell adhesion, and chemotaxis. This study in a cell line derived from the raphe nucleus has identified a range of genes and pathways that provide novel insights into potential therapeutic actions of the commonly used mood stabilizer drugs.
Collapse
Affiliation(s)
- Diana Balasubramanian
- Carney Centre for Pharmacogenomics, Department of Pathology and Biomedical Science, University of Otago , Christchurch , New Zealand
| | - John F Pearson
- Carney Centre for Pharmacogenomics, Department of Pathology and Biomedical Science, University of Otago , Christchurch , New Zealand.,Biostatistics and Computational Biology Unit, University of Otago , Christchurch , New Zealand
| | - Martin A Kennedy
- Carney Centre for Pharmacogenomics, Department of Pathology and Biomedical Science, University of Otago , Christchurch , New Zealand
| |
Collapse
|
5
|
Roux M, Dosseto A. From direct to indirect lithium targets: a comprehensive review of omics data. Metallomics 2017; 9:1326-1351. [DOI: 10.1039/c7mt00203c] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metal ions are critical to a wide range of biological processes.
Collapse
Affiliation(s)
| | - Anthony Dosseto
- Wollongong Isotope Geochronology Laboratory
- School of Earth & Environmental Sciences
- University of Wollongong
- Wollongong
- Australia
| |
Collapse
|
6
|
Lithium promotes DNA stability and survival of ischemic retinal neurocytes by upregulating DNA ligase IV. Cell Death Dis 2016; 7:e2473. [PMID: 27853172 PMCID: PMC5260892 DOI: 10.1038/cddis.2016.341] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 02/01/2023]
Abstract
Neurons display genomic fragility and show fragmented DNA in pathological degeneration. A failure to repair DNA breaks may result in cell death or apoptosis. Lithium protects retinal neurocytes following nutrient deprivation or partial nerve crush, but the underlying mechanisms are not well defined. Here we demonstrate that pretreatment with lithium protects retinal neurocytes from ischemia-induced damage and enhances light response in rat retina following ischemia–reperfusion injury. Moreover, we found that DNA nonhomologous end-joining (NHEJ) repair is implicated in this process because in ischemic retinal neurocytes, lithium significantly reduces the number of γ-H2AX foci (well-characterized markers of DNA double-strand breaks in situ) and increases the DNA ligase IV expression level. Furthermore, we also demonstrate that nuclear respiratory factor 1 (Nrf-1) and phosphorylated cyclic AMP-response element binding protein-1 (P-CREB1) bind to ligase IV promoter to cause upregulation of ligase IV in neurocytes. The ischemic upregulation of Nrf-1 and lithium-induced increase of P-CREB1 cooperate to promote transcription of ligase IV. Short hairpin RNAs against Nrf-1 and CREB1 could significantly inhibit the increase in promoter activity and expression of ligase IV observed in the control oligos following lithium treatment in retinal neurocytes. More importantly, ischemic stimulation triggers the expression of ligase IV. Taken together, our results thus reveal a novel mechanism that lithium offers neuroprotection from ischemia-induced damage by enhancing DNA NHEJ repair.
Collapse
|
7
|
Malhi GS, Outhred T. Therapeutic Mechanisms of Lithium in Bipolar Disorder: Recent Advances and Current Understanding. CNS Drugs 2016; 30:931-49. [PMID: 27638546 DOI: 10.1007/s40263-016-0380-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lithium is the most effective and well established treatment for bipolar disorder, and it has a broad array of effects within cellular pathways. However, the specific processes through which therapeutic effects occur and are maintained in bipolar disorder remain unclear. This paper provides a timely update to an authoritative review of pertinent findings that was published in CNS Drugs in 2013. A literature search was conducted using the Scopus database, and was limited by year (from 2012). There has been a resurgence of interest in lithium therapy mechanisms, perhaps driven by technical advancements in recent years that permit the examination of cellular mechanisms underpinning the effects of lithium-along with the reuptake of lithium in clinical practice. Recent research has further cemented glycogen synthase kinase 3β (GSK3β) inhibition as a key mechanism, and the inter-associations between GSK3β-mediated neuroprotective, anti-oxidative and neurotransmission mechanisms have been further elucidated. In addition to highly illustrative cellular research, studies examining higher-order biological systems, such as circadian rhythms, as well as employing innovative animal and human models, have increased our understanding of how lithium-induced changes at the cellular level possibly translate to changes at behavioural and clinical levels. Neural circuitry research is yet to identify clear mechanisms of change in bipolar disorder in response to treatment with lithium, but important structural findings have demonstrated links to the modulation of cellular mechanisms, and peripheral marker and pharmacogenetic studies are showing promising findings that will likely inform the exploration for predictors of lithium treatment response. With a deeper understanding of lithium's therapeutic mechanisms-from the cellular to clinical levels of investigation-comes the opportunity to develop predictive models of lithium treatment response and identify novel drug targets, and recent findings have provided important leads towards these goals.
Collapse
Affiliation(s)
- Gin S Malhi
- Academic Department of Psychiatry, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, 2065, Australia. .,Sydney Medical School Northern, The University of Sydney, Sydney, NSW, 2006, Australia. .,CADE Clinic Level 3, Main Hospital Building, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW, 2065, Australia.
| | - Tim Outhred
- Academic Department of Psychiatry, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, 2065, Australia.,Sydney Medical School Northern, The University of Sydney, Sydney, NSW, 2006, Australia.,CADE Clinic Level 3, Main Hospital Building, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW, 2065, Australia
| |
Collapse
|
8
|
Lazzara CA, Riley RR, Rane A, Andersen JK, Kim YH. The combination of lithium and l-Dopa/Carbidopa reduces MPTP-induced abnormal involuntary movements (AIMs) via calpain-1 inhibition in a mouse model: Relevance for Parkinson׳s disease therapy. Brain Res 2015; 1622:127-36. [PMID: 26119916 DOI: 10.1016/j.brainres.2015.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/16/2015] [Accepted: 06/16/2015] [Indexed: 11/27/2022]
Abstract
Lithium has recently been suggested to have neuroprotective effects in several models of neurodegenerative disease including Parkinson׳s disease (PD). Levodopa (l-Dopa) replacement therapy remains the most common and effective treatment for PD, although it induces the complication of l-Dopa induced dyskinesia after years of use. Here we examined the potential use of lithium in combination with l-Dopa/Carbidopa for both reducing MPTP-induced abnormal involuntary movements (AIMs) as well as protecting against cell death in MPTP-lesioned mice. Chronic lithium administration (0.127% LiCl in the feed) in the presence of daily l-Dopa/Carbidopa injection for a period of 2 months was sufficient to effectively reduce MPTP-induced AIMs in mice. Mechanistically, lithium was found to suppress MPTP-induced calpain activities in vivo coinciding with down-regulation of calpain-1 but not calpain-2 expression in both the striatum (ST) and the brain stem (BS). Calpain inhibition has previously been associated with increased levels of the rate-limiting enzyme in dopamine synthesis, tyrosine hydroxylase (TH), which is probably mediated by the up-regulation of the transcription factors MEF-2A and 2D. Lithium was found to induce up-regulation of TH expression in the ST and the BS, as well as in N27 rat dopaminergic cells. Further, histone acetyltransferase (HAT) expression was substantially up-regulated by lithium treatment in vitro. These results suggest the potential use of lithium in combination with l-Dopa/Carbidopa not only as a neuroprotectant, but also for reducing AIMs and possibly alleviating potential side-effects associated with the current treatment for PD.
Collapse
Affiliation(s)
- Carol A Lazzara
- Department of Biological Sciences, Delaware State University, Dover, DE 19901-2277, United States
| | - Rebeccah R Riley
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, United States
| | - Anand Rane
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, United States
| | - Julie K Andersen
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, United States.
| | - Yong-Hwan Kim
- Department of Biological Sciences, Delaware State University, Dover, DE 19901-2277, United States.
| |
Collapse
|
9
|
Lithium in the treatment of bipolar disorder: pharmacology and pharmacogenetics. Mol Psychiatry 2015; 20:661-70. [PMID: 25687772 PMCID: PMC5125816 DOI: 10.1038/mp.2015.4] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 11/22/2014] [Accepted: 12/19/2014] [Indexed: 01/09/2023]
Abstract
After decades of research, the mechanism of action of lithium in preventing recurrences of bipolar disorder remains only partially understood. Lithium research is complicated by the absence of suitable animal models of bipolar disorder and by having to rely on in vitro studies of peripheral tissues. A number of distinct hypotheses emerged over the years, but none has been conclusively supported or rejected. The common theme emerging from pharmacological and genetic studies is that lithium affects multiple steps in cellular signaling, usually enhancing basal and inhibiting stimulated activities. Some of the key nodes of these regulatory networks include GSK3 (glycogen synthase kinase 3), CREB (cAMP response element-binding protein) and Na(+)-K(+) ATPase. Genetic and pharmacogenetic studies are starting to generate promising findings, but remain limited by small sample sizes. As full responders to lithium seem to represent a unique clinical population, there is inherent value and need for studies of lithium responders. Such studies will be an opportunity to uncover specific effects of lithium in those individuals who clearly benefit from the treatment.
Collapse
|
10
|
Payandemehr B, Bahremand A, Ebrahimi A, Nasrabady SE, Rahimian R, Bahremand T, Sharifzadeh M, Dehpour AR. Protective effects of lithium chloride on seizure susceptibility: Involvement of α2-adrenoceptor. Pharmacol Biochem Behav 2015; 133:37-42. [PMID: 25824982 DOI: 10.1016/j.pbb.2015.03.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 03/19/2015] [Accepted: 03/21/2015] [Indexed: 11/26/2022]
Abstract
For more than 60years, lithium has been the mainstay in the treatment of mental disorders as a mood stabilizer. In addition to the antimanic and antidepressant responses, lithium also shows some anticonvulsant properties. In spite of the ascertained neuroprotective effects of this alkali metal, the underlying mechanisms through which lithium regulates behavior are still poorly understood. Among different targets, some authors suggest neuromodulatory effects of lithium are the consequences of interaction of this agent with the brain neurotransmitters including adrenergic system. In order to study the involvement of α2-adrenergic system in anticonvulsant effect of lithium, we used a model of clonic seizure induced by pentylenetetrazole (PTZ) in male NMRI mice. Injection of a single effective dose of lithium chloride (30mg/kg, i.p.) significantly increased the seizure threshold (p<0.01). The anticonvulsant effect of an effective dose of lithium was prevented by pre-treatment with low and per se non-effective dose of clonidine [α2-adrenoceptor agonist] (0.05, 0.1 and 0.25mg/kg). On the other hand, yohimbine [α2-adrenoceptor antagonist] augmented the anticonvulsant effect of sub-effective dose of lithium (10mg/kgi.p.) at relatively low doses (0.1, 0.5, 1 and 2.5mg/kg). Moreover, UK14304 [a potent and selective α2-adrenoceptor agonist] (0.05 and 0.1mg/kg) and RX821008 [a potent and selective α2D-adrenoceptor antagonist] (0.05, 0.1 and 0.25mg/kg) repeated the same results confirming that these modulatory effects are conducted specifically through the α2D-adrenoceptors. In summary, our findings demonstrated that α2-adrenoceptor pathway could be involved in the anticonvulsant properties of lithium chloride in the model of chemically induced clonic seizure.
Collapse
Affiliation(s)
- Borna Payandemehr
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Bahremand
- Institut universitaire en santé mentale de Québec, Québec City, Québec, Canada
| | - Ali Ebrahimi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Ebrahimi Nasrabady
- Motor Neuron Center, College of Physicians and Surgeons, Columbia University Medical Center, NY, USA
| | - Reza Rahimian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Taraneh Bahremand
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran" to the Ahmad reza Dehpour.
| |
Collapse
|
11
|
Leeds PR, Yu F, Wang Z, Chiu CT, Zhang Y, Leng Y, Linares GR, Chuang DM. A new avenue for lithium: intervention in traumatic brain injury. ACS Chem Neurosci 2014; 5:422-33. [PMID: 24697257 DOI: 10.1021/cn500040g] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of disability and death from trauma to central nervous system (CNS) tissues. For patients who survive the initial injury, TBI can lead to neurodegeneration as well as cognitive and motor deficits, and is even a risk factor for the future development of neurodegenerative disorders such as Alzheimer's disease. Preclinical studies of multiple neuropathological and neurodegenerative disorders have shown that lithium, which is primarily used to treat bipolar disorder, has considerable neuroprotective effects. Indeed, emerging evidence now suggests that lithium can also mitigate neurological deficits incurred from TBI. Lithium exerts neuroprotective effects and stimulates neurogenesis via multiple signaling pathways; it inhibits glycogen synthase kinase-3 (GSK-3), upregulates neurotrophins and growth factors (e.g., brain-derived neurotrophic factor (BDNF)), modulates inflammatory molecules, upregulates neuroprotective factors (e.g., B-cell lymphoma-2 (Bcl-2), heat shock protein 70 (HSP-70)), and concomitantly downregulates pro-apoptotic factors. In various experimental TBI paradigms, lithium has been shown to reduce neuronal death, microglial activation, cyclooxygenase-2 induction, amyloid-β (Aβ), and hyperphosphorylated tau levels, to preserve blood-brain barrier integrity, to mitigate neurological deficits and psychiatric disturbance, and to improve learning and memory outcome. Given that lithium exerts multiple therapeutic effects across an array of CNS disorders, including promising results in preclinical models of TBI, additional clinical research is clearly warranted to determine its therapeutic attributes for combating TBI. Here, we review lithium's exciting potential in ameliorating physiological as well as cognitive deficits induced by TBI.
Collapse
Affiliation(s)
- Peter R. Leeds
- Molecular
Neurobiology Section, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, MSC 1363, Bethesda, Maryland 20892-1363, United States
| | - Fengshan Yu
- Molecular
Neurobiology Section, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, MSC 1363, Bethesda, Maryland 20892-1363, United States
| | - Zhifei Wang
- Molecular
Neurobiology Section, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, MSC 1363, Bethesda, Maryland 20892-1363, United States
| | - Chi-Tso Chiu
- Molecular
Neurobiology Section, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, MSC 1363, Bethesda, Maryland 20892-1363, United States
| | | | - Yan Leng
- Molecular
Neurobiology Section, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, MSC 1363, Bethesda, Maryland 20892-1363, United States
| | - Gabriel R. Linares
- Molecular
Neurobiology Section, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, MSC 1363, Bethesda, Maryland 20892-1363, United States
| | - De-Maw Chuang
- Molecular
Neurobiology Section, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, MSC 1363, Bethesda, Maryland 20892-1363, United States
| |
Collapse
|
12
|
de Bartolomeis A, Buonaguro EF, Iasevoli F, Tomasetti C. The emerging role of dopamine-glutamate interaction and of the postsynaptic density in bipolar disorder pathophysiology: Implications for treatment. J Psychopharmacol 2014; 28:505-26. [PMID: 24554693 DOI: 10.1177/0269881114523864] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aberrant synaptic plasticity, originating from abnormalities in dopamine and/or glutamate transduction pathways, may contribute to the complex clinical manifestations of bipolar disorder (BD). Dopamine and glutamate systems cross-talk at multiple levels, such as at the postsynaptic density (PSD). The PSD is a structural and functional protein mesh implicated in dopamine and glutamate-mediated synaptic plasticity. Proteins at PSD have been demonstrated to be involved in mood disorders pathophysiology and to be modulated by antipsychotics and mood stabilizers. On the other side, post-receptor effectors such as protein kinase B (Akt), glycogen synthase kinase-3 (GSK-3) and the extracellular signal-regulated kinase (Erk), which are implicated in both molecular abnormalities and treatment of BD, may interact with PSD proteins, and participate in the interplay of the dopamine-glutamate signalling pathway. In this review, we describe emerging evidence on the molecular cross-talk between dopamine and glutamate signalling in BD pathophysiology and pharmacological treatment, mainly focusing on dysfunctions in PSD molecules. We also aim to discuss future therapeutic strategies that could selectively target the PSD-mediated signalling cascade at the crossroads of dopamine-glutamate neurotransmission.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Section of Psychiatry, University Medical School of Naples "Federico II", Naples, Italy
| | - Elisabetta F Buonaguro
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Section of Psychiatry, University Medical School of Naples "Federico II", Naples, Italy
| | - Felice Iasevoli
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Section of Psychiatry, University Medical School of Naples "Federico II", Naples, Italy
| | - Carmine Tomasetti
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Section of Psychiatry, University Medical School of Naples "Federico II", Naples, Italy
| |
Collapse
|
13
|
Turkez H, Togar B, Di Stefano A, Taspınar N, Sozio P. Protective effects of cyclosativene on H2O 2-induced injury in cultured rat primary cerebral cortex cells. Cytotechnology 2014; 67:299-309. [PMID: 24493068 DOI: 10.1007/s10616-013-9685-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 12/25/2013] [Indexed: 01/31/2023] Open
Abstract
Sesquiterpenes have attracted much interest with respect to their protective effect against oxidative damage that may be the cause of many diseases including several neurodegenerative disorders and cancer. Our previous unpublished work suggested that cyclosativene (CSV), a tetracyclic sesquiterpene, has antioxidant and anticarcinogenic features. However, little is known about the effects of CSV on oxidative stress induced neurotoxicity. We used hydrogen peroxide (H2O2) exposure for 6 h to model oxidative stress. Therefore, this experimental design allowed us to explore the neuroprotective potential of CSV in H2O2-induced toxicity in new-born rat cerebral cortex cell cultures for the first time. For this aim, MTT and lactate dehydrogenase release assays were carried out to evaluate cytotoxicity. Total antioxidant capacity (TAC) and total oxidative stress (TOS) parameters were used to evaluate oxidative changes. In addition to determining of 8-hydroxy-2-deoxyguanosine (8-OH-dG) levels, the single cell gel electrophoresis (or Comet assay) was also performed for measuring the resistance of neuronal DNA to H2O2-induced challenge. Our results showed that survival and TAC levels of the cells decreased, while TOS, 8-OH-dG levels and the mean values of the total scores of cells showing DNA damage (Comet assay) increased in the H2O2 alone treated cultures. But pre-treatment of CSV suppressed the cytotoxicity, genotoxicity and oxidative stress which were increased by H2O2. On the basis of these observations, it is suggested that CSV as a natural product with an antioxidant capacity in mitigating oxidative injuries in the field of neurodegenerative disorders.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | | | | | | | | |
Collapse
|
14
|
Turkez H, Sozio P, Geyikoglu F, Tatar A, Hacimuftuoglu A, Di Stefano A. Neuroprotective effects of farnesene against hydrogen peroxide-induced neurotoxicity in vitro. Cell Mol Neurobiol 2014; 34:101-11. [PMID: 24105026 PMCID: PMC11488865 DOI: 10.1007/s10571-013-9991-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/19/2013] [Indexed: 12/21/2022]
Abstract
Oxidative stress is highly damaging to cellular macromolecules and is also considered a main cause of the loss and impairment of neurons in several neurodegenerative disorders. Recent reports indicate that farnesene (FNS), an acyclic sesquiterpene, has antioxidant properties. However, little is known about the effects of FNS on oxidative stress-induced neurotoxicity. We used hydrogen peroxide (H2O2) exposure for 6 h to model oxidative stress. Therefore, this experimental design allowed us to explore the neuroprotective potential of different FNS isomers (α-FNS and β-FNS) and their mixture (Mix-FNS) in H2O2-induced toxicity in newborn rat cerebral cortex cell cultures for the first time. For this aim, both MTT and lactate dehydrogenase assays were carried out to evaluate cell viability. Total antioxidant capacity (TAC) and total oxidative stress (TOS) parameters were used to assess oxidative alterations. In addition to determining of 8-hydroxy-2-deoxyguanosine (8-OH-dG) levels in vitro, the comet assay was also performed for measuring the resistance of neuronal DNA to H2O2-induced challenge. Our results showed that survival and TAC levels of the cells decreased, while TOS, 8-OH-dG levels and the mean values of the total scores of cells showing DNA damage (comet assay) increased in the group treated with H2O2 alone. But pretreatment of FNS suppressed the cytotoxicity, genotoxicity and oxidative stress, which were increased by H2O2 in clear type of isomers and applied concentration-dependent manners. The order of antioxidant effectiveness for modulating H2O2-induced oxidative stress-based neurotoxicity and genotoxicity is as β-FNS > Mix-FNS > α-FNS.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey,
| | | | | | | | | | | |
Collapse
|