1
|
Ziakova K, Kovalska M, Pilchova I, Dibdiakova K, Brodnanova M, Pokusa M, Kalenska D, Racay P. Involvement of Proteasomal and Endoplasmic Reticulum Stress in Neurodegeneration After Global Brain Ischemia. Mol Neurobiol 2023; 60:6316-6329. [PMID: 37452223 PMCID: PMC10533597 DOI: 10.1007/s12035-023-03479-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
A brief period of transient global brain ischemia leads to selective ischemic neurodegeneration associated with death of hippocampal CA1 pyramidal neurons days after reperfusion. The mechanism of such selective and delayed neurodegeneration is still uncertain. Our work aimed to study the involvement of proteasomal and endoplasmic reticulum (ER) stress in ischemic neurodegeneration. We have performed laser scanning confocal microscopy analysis of brain slices from control and experimental animals that underwent global brain ischemia for 15 min and varying times of reperfusion. We have focused on ubiquitin, PUMA, a proapoptotic protein of the Bcl-2 family overexpressed in response to both proteasomal and ER stress, and p53, which controls expression of PUMA. We have also examined the expression of HRD1, an E3 ubiquitin ligase that was shown to be overexpressed after ER stress. We have also examined potential crosstalk between proteasomal and ER stress using cellular models of both proteasomal and ER stress. We demonstrate that global brain ischemia is associated with an appearance of distinct immunoreactivity of ubiquitin, PUMA and p53 in pyramidal neurons of the CA1 layer of the hippocampus 72 h after ischemic insults. Such changes correlate with a delay and selectivity of ischemic neurodegeneration. Immunoreactivity of HRD1 observed in all investigated regions of rat brain was transiently absent in both CA1 and CA3 pyramidal neurones 24 h after ischemia in the hippocampus, which does not correlate with a delay and selectivity of ischemic neurodegeneration. We do not document significant crosstalk between proteasomal and ER stress. Our results favour dysfunction of the ubiquitin proteasome system and consequent p53-induced expression of PUMA as the main mechanisms responsible for selective and delayed degeneration of pyramidal neurons of the hippocampal CA1 layer in response to global brain ischemia.
Collapse
Affiliation(s)
- Katarina Ziakova
- Biomedical Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Maria Kovalska
- Department of Histology and Embryology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Ivana Pilchova
- Biomedical Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Katarina Dibdiakova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4D, SK-03601, Martin, Slovak Republic
| | - Maria Brodnanova
- Biomedical Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Michal Pokusa
- Biomedical Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Dagmar Kalenska
- Department of Anatomy, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Racay
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4D, SK-03601, Martin, Slovak Republic.
| |
Collapse
|
2
|
Bonato JM, de Mattos BA, Oliveira DV, Milani H, Prickaerts J, de Oliveira RMW. Blood-Brain Barrier Rescue by Roflumilast After Transient Global Cerebral Ischemia in Rats. Neurotox Res 2023; 41:311-323. [PMID: 36922461 DOI: 10.1007/s12640-023-00639-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023]
Abstract
Phosphodiesterase 4 inhibitors (PDE4-I), which selectively increase cyclic adenosine monophosphate (cAMP) levels, have shown neuroprotective effects after several neurological injuries inducing blood-brain barrier (BBB) damage including local/focal cerebral ischemia. The present investigated whether roflumilast confers BBB neuroprotection in the hippocampus after transient global cerebral ischemia (TGCI) in rats. TGCI resulted in whole BBB disruption as measured by the increase of Evans blue (EB) and IgG extravasation, neurodegeneration, and downregulation of claudin-5 and endothelial nitric oxide synthase (eNOS) levels in the CA1 hippocampal subfield of ischemic rats. Roflumilast attenuated BBB disruption and restored the levels of eNOS in the CA1 hippocampal area. Moreover, roflumilast increased the levels of B2 cell lymphoma (BcL-2) and neuron-glial antigen-2 (NG2) in the CA1 subfield after global ischemia in rats. The protective effects of roflumilast against TGCI-induced BBB breakdown might involve preservation of BBB integrity, vascularization and angiogenesis, and myelin repair.
Collapse
Affiliation(s)
- Jéssica Mendes Bonato
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, CEP, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Bianca Andretto de Mattos
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, CEP, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Daniela Velasquez Oliveira
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, CEP, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, CEP, 5790, 87020-900, Maringá, Paraná, Brazil
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Rúbia Maria Weffort de Oliveira
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, CEP, 5790, 87020-900, Maringá, Paraná, Brazil.
| |
Collapse
|
3
|
Khan H, Kaur Grewal A, Gurjeet Singh T. Mitochondrial dynamics related neurovascular approaches in cerebral ischemic injury. Mitochondrion 2022; 66:54-66. [DOI: 10.1016/j.mito.2022.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/14/2022] [Accepted: 08/02/2022] [Indexed: 12/30/2022]
|
4
|
Carmona Mata V, Goldberg J. Morin and isoquercitrin protect against ischemic neuronal injury by modulating signaling pathways and stimulating mitochondrial biogenesis. Nutr Neurosci 2022:1-11. [PMID: 35857717 DOI: 10.1080/1028415x.2022.2094855] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJETIVE The search for the etiology of Alzheimer's disease has revealed dysregulation of amyloid protein precursors, β-secretase, mitophagy, apoptosis, and Tau protein genes after ischemic brain injury. Due to this and the fact that some flavonoids have demonstrated anti-amyloidogenic effects on AD targets, we aimed to investigate whether they are effective against an ischemic neuronal injury not only by its antioxidant effects and clarify their mechanism.We simulated the energy depletion that characterizes ischemic processes using iodoacetic acid on HT22 cells. In vitro ischemic assays were also performed under OXPHOS inhibition using inhibitors of the different mitochondrial complexes and intracellular ATP, NADH and NADPH levels were determined. The signaling pathways of MAP kinase (MAPK) and of the PI3K/Akt mTOR were analyzed for its close association with post-ischemic survival. RESULTS Morin and isoquercitrin showed a significant neuroprotective effect against IAA toxicity, favored the activity of the mitochondrial complexes and prevented the decrease in ERK phosphorylation and activation of the stress proteins JNK and p38 caused by IAA treatment, as well as prevented satisfactorily mTOR and p70 dephosphorylation. They provide a considerable resistance to ischemic brain injury by modulating signaling pathways that stimulate mitochondrial biogenesis and promoting the activity of electron transport chain.
Collapse
Affiliation(s)
- Vanesa Carmona Mata
- Departamento de Farmacología, Farmacognosia y Botánica. Facultad de Farmacia, Universidad Complutense, Madrid, Spain.,Cellular Neurobiology, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joshua Goldberg
- Cellular Neurobiology, The Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
5
|
Zhu L, Zhou X, Li S, Liu J, Yang J, Fan X, Zhou S. miR‑183‑5p attenuates cerebral ischemia injury by negatively regulating PTEN. Mol Med Rep 2020; 22:3944-3954. [PMID: 32901892 PMCID: PMC7533437 DOI: 10.3892/mmr.2020.11493] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Cerebral ischemia is a common cerebrovascular disease caused by the occlusion of a cerebral blood vessel. MicroRNAs (miRNAs/miRs) are emerging regulators of various human diseases, including cerebral ischemia. Upregulation of miR‑183‑5p has been reported to alleviate liver injury induced by ischemia‑reperfusion (I/R). However, the effect of miR‑183‑5p on cerebral ischemia injury remains unknown. The present study evaluated the effects of miR‑183‑5p on ischemia injury using ischemic models of mouse brains exposed to transient middle cerebral artery occlusion and Neuro‑2A (N2A) neuroblastoma cells exposed to oxygen‑glucose‑deprivation (OGD) and subsequently reoxygenated. Ischemia was evaluated in mice using neurological function scores, cerebral edema, 2,3,5‑triphenyltetrazoliumchloride, Nissl and Fluoro‑Jade B staining assays. In addition, miR‑183‑5p expression, N2A cell viability and the expression levels of apoptosis‑associated proteins were detected by quantitative PCR, Cell Counting Kit‑8 assay, flow cytometry and western blotting. The association between miR‑183‑5p and phosphatase and tensin homolog (PTEN) was also confirmed by a luciferase reporter assay. The results revealed that miR‑183‑5p expression was decreased and brain damage was increased in ischemic mice compared with the sham group. Additionally, miR‑183‑5p levels were reduced, and apoptosis was increased in N2A cells exposed to ischemia compared with the control group. Following transfection with agomiR‑183‑5p, cerebral ischemic injury and apoptosis levels were reduced in the in vivo I/R stroke model and OGD‑induced N2A cells. In addition, PTEN was determined to be a target of miR‑183‑5p following elucidation of a direct binding site. Overexpression of PTEN reversed the miR‑183‑5p‑induced N2A cell apoptosis inhibition and survival after OGD. The results of the present study suggested that miR‑183‑5p reduced ischemic injury by negatively regulating PTEN, which may aid the development of a novel therapeutic strategy for cerebral ischemia.
Collapse
Affiliation(s)
- Li Zhu
- Department of Neurology, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xueying Zhou
- Department of Rehabilitation, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shanshan Li
- Department of Neurology, Binzhou People's Hospital, Binzhou, Shandong 256610, P.R. China
| | - Jianmeng Liu
- Department of Gynaecology and Obstetrics, Binzhou People's Hospital, Binzhou, Shandong 256610, P.R. China
| | - Jingyan Yang
- Department of Pathology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xiangyun Fan
- Department of General Medicine, Binzhou People's Hospital, Binzhou, Shandong 256610, P.R. China
| | - Shengnian Zhou
- Department of Neurology, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
6
|
Xiong J, Quan J, Qin C, Wang X, Dong Q, Zhang B. Dexmedetomidine Exerts Brain-Protective Effects Under Cardiopulmonary Bypass Through Inhibiting the Janus Kinase 2/Signal Transducers and Activators of Transcription 3 Pathway. J Interferon Cytokine Res 2019; 40:116-124. [PMID: 31834821 DOI: 10.1089/jir.2019.0110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Brain injury is a major complication resulted from cardiopulmonary bypass (CPB). Dexmedetomidine (DEX) has potential brain-protective effects; however, the mechanism is unclear. The aim of this study is to investigate the effect of DEX on brain injury in CPB rats and its mechanism. The levels of interleukin-6 (IL-6), interleukin-10 (IL-10), S100β, and neuron-specific enolase (NSE) were measured by enzyme-linked immunosorbent assay. The hippocampus CA1 region in rats was observed by hematoxylin-eosin staining. Western blot and quantitative real-time polymerase chain reaction were performed to detect related proteins and mRNA expressions in the hippocampus tissues. We found that after CPB, the neuron cells in hippocampus CA1 region of rats were randomly arranged, and that the levels of IL-6, IL-10, S100β, NSE, Cleaved Caspase-3, and Bax were upregulated, while Bal-2 level was downregulated. However, after DEX treatment, the neuron cells arranged in an orderly manner, and the levels of IL-6, IL-10, S100β, NSE, Cleaved Caspase-3, and Bax were downregulated, but Bal-2 level was upregulated. DEX suppressed Janus kinase 2 (JAK2)/signal transducers and activators of transcription 3 (STAT3) pathway activated by CPB, ameliorated CPB-induced brain injury in rats by reducing inflammatory response, and inhibited neuronal apoptosis. The brain-protective effect of DEX may be related to the inhibition of the activation of JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Jijun Xiong
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jie Quan
- Department of Neurology, Guilin People's Hospital, Guilin, Guangxi, China
| | - Chaosheng Qin
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaogang Wang
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qinghua Dong
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bingdong Zhang
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
7
|
Klacanova K, Kovalska M, Chomova M, Pilchova I, Tatarkova Z, Kaplan P, Racay P. Global brain ischemia in rats is associated with mitochondrial release and downregulation of Mfn2 in the cerebral cortex, but not the hippocampus. Int J Mol Med 2019; 43:2420-2428. [PMID: 31017259 PMCID: PMC6488171 DOI: 10.3892/ijmm.2019.4168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/27/2019] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are crucial for neuronal cell survival and death through their functions in ATP production and the intrinsic pathway of apoptosis. Mitochondrial dysfunction is considered to play a central role in several serious human diseases, including neurodegenerative diseases, such as Parkinson's and Alzheimer's disease and ischemic neurodegeneration. The aim of the present study was to investigate the impact of transient global brain ischemia on the expression of selected proteins involved in mitochondrial dynamics and mitochondria‑associated membranes. The main foci of interest were the proteins mitofusin 2 (Mfn2), dynamin‑related protein 1 (DRP1), voltage‑dependent anion‑selective channel 1 (VDAC1) and glucose‑regulated protein 75 (GRP75). Western blot analysis of total cell extracts and mitochondria isolated from either the cerebral cortex or hippocampus of experimental animals was performed. In addition, Mfn2 was localized intracellularly by laser scanning confocal microscopy. It was demonstrated that 15‑min ischemia, or 15‑min ischemia followed by 1, 3, 24 or 72 h of reperfusion, was associated with a marked decrease of the Mfn2 protein in mitochondria isolated from the cerebral cortex, but not in hippocampal mitochondria. Moreover, a translocation of the Mfn2 protein to the cytoplasm was documented immediately after global brain ischemia in the neurons of the cerebral cortex by laser scanning confocal microscopy. Mfn2 translocation was followed by decreased expression of Mfn2 during reperfusion. Markedly elevated levels of the VDAC1 protein were also documented in total cell extracts isolated from the hippocampus of rats after 15 min of global brain ischemia followed by 3 h of reperfusion, and from the cerebral cortex of rats after 15 min of global brain ischemia followed by 72 h of reperfusion. The mitochondrial Mfn2 release observed during the early stages of reperfusion may thus represent an important mechanism of mitochondrial dysfunction associated with neuronal dysfunction or death induced by global brain ischemia.
Collapse
Affiliation(s)
- Katarina Klacanova
- Biomedical Center and Institute of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK‑03601 Martin, Slovak Republic
| | - Maria Kovalska
- Department of Histology and Embryology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK‑03601 Martin, Slovak Republic
| | - Maria Chomova
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University in Bratislava, SK‑81108 Bratislava, Slovak Republic
| | - Ivana Pilchova
- Biomedical Center and Institute of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK‑03601 Martin, Slovak Republic
| | - Zuzana Tatarkova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK‑03601 Martin, Slovak Republic
| | - Peter Kaplan
- Biomedical Center and Institute of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK‑03601 Martin, Slovak Republic
| | - Peter Racay
- Biomedical Center and Institute of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK‑03601 Martin, Slovak Republic
| |
Collapse
|
8
|
Crunfli F, Vrechi TA, Costa AP, Torrão AS. Cannabinoid Receptor Type 1 Agonist ACEA Improves Cognitive Deficit on STZ-Induced Neurotoxicity Through Apoptosis Pathway and NO Modulation. Neurotox Res 2019; 35:516-529. [PMID: 30607903 DOI: 10.1007/s12640-018-9991-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 12/20/2022]
Abstract
The cannabinoid system has the ability to modulate cellular and molecular mechanisms, including excitotoxicity, oxidative stress, apoptosis, and inflammation, acting as a neuroprotective agent, by its relationship with signaling pathways associated to the control of cell proliferation, differentiation, and survival. Recent reports have raised new perspectives on the possible role of cannabinoid system in neurodegenerative diseases like Alzheimer disease's (AD). AD is a neurodegenerative disorder characterized by the presence of amyloid plaques, neurofibrillary tangles, neuronal death, and progressive cognitive loss, which could be caused by energy metabolism impairment, changes in insulin signaling, chronic oxidative stress, neuroinflammation, Tau hyperphosphorylation, and Aβ deposition in the brain. Thus, we investigated the presumptive protective effect of the cannabinoid type 1 (CB1)-selective receptor agonist arachidonyl-2'-chloroethylamide (ACEA) against streptozotocin (STZ) exposure stimuli in an in vitro neuronal model (Neuro-2a neuroblastoma cells) and in vivo model (intracerebroventricular STZ injection), experimental models of sporadic AD. Our results demonstrated that ACEA treatment reversed cognitive impairment and increased activity of Akt and ERK triggered by STZ, and increased IR expression and increased the anti-apoptotic proteins levels, Bcl-2. In the in vitro model, ACEA was able to rescue cells from STZ-triggered death and modulated the NO release by STZ. Our study has demonstrated a participation of the cannabinoid system in cellular survival, involving the CB1 receptor, which occurs by positive regulation of the anti-apoptotic proteins, suggesting the participation of this system in neurodegenerative processes. Our data suggest that the cannabinoid system is an interesting therapeutic target for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Fernanda Crunfli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, 05508-000, Brazil.
| | - Talita A Vrechi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, 05508-000, Brazil
| | - Andressa P Costa
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, 05508-000, Brazil
| | - Andréa S Torrão
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, 05508-000, Brazil
| |
Collapse
|
9
|
Tóthová B, Kovalská M, Kalenská D, Tomašcová A, Lehotský J. Histone Hyperacetylation as a Response to Global Brain Ischemia Associated with Hyperhomocysteinemia in Rats. Int J Mol Sci 2018; 19:E3147. [PMID: 30322095 PMCID: PMC6214033 DOI: 10.3390/ijms19103147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/05/2018] [Accepted: 10/10/2018] [Indexed: 01/13/2023] Open
Abstract
Epigenetic regulations play an important role in both normal and pathological conditions of an organism, and are influenced by various exogenous and endogenous factors. Hyperhomocysteinemia (hHcy), as a risk factor for several pathological conditions affecting the central nervous system, is supposed to alter the epigenetic signature of the given tissue, which therefore worsens the subsequent damage. To investigate the effect of hHcy in combination with ischemia-reperfusion injury (IRI) and histone acetylation, we used the hHcy animal model of global forebrain ischemia in rats. Cresyl violet staining showed massive neural disintegration in the M1 (primary motor cortex) region as well as in the CA1 (cornu ammonis 1) area of the hippocampus induced by IRI. Neural loss was significantly higher in the group with induced hHcy. Moreover, immunohistochemistry and Western blot analysis of the brain cortex showed prominent changes in the acetylation of histones H3 and H4, at lysine 9 and 12, respectively, as a result of IRI and induced hHcy. It seems that the differences in histone acetylation patterns in the cortical region have a preferred role in pathological processes induced by IRI associated with hHcy and could be considered in therapeutic strategies.
Collapse
Affiliation(s)
- Barbara Tóthová
- Department of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia.
| | - Mária Kovalská
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia.
| | - Dagmar Kalenská
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia.
| | - Anna Tomašcová
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia.
| | - Ján Lehotský
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia.
- Department of Neuroscience, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia.
| |
Collapse
|
10
|
Li Y, Zhang W, Chen C, Zhang C, Duan J, Yao H, Wei Q, Meng A, Shi J. Inotodiol protects PC12 cells against injury induced by oxygen and glucose deprivation/restoration through inhibiting oxidative stress and apoptosis. J Appl Biomed 2018. [DOI: 10.1016/j.jab.2017.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
11
|
Han XR, Wen X, Wang YJ, Wang S, Shen M, Zhang ZF, Fan SH, Shan Q, Wang L, Li MQ, Hu B, Sun CH, Wu DM, Lu J, Zheng YL. MicroRNA-140-5p elevates cerebral protection of dexmedetomidine against hypoxic-ischaemic brain damage via the Wnt/β-catenin signalling pathway. J Cell Mol Med 2018. [PMID: 29536658 PMCID: PMC5980153 DOI: 10.1111/jcmm.13597] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hypoxia–ischaemia (HI) remains a major cause of foetal brain damage presented a scarcity of effective therapeutic approaches. Dexmedetomidine (DEX) and microRNA‐140‐5p (miR‐140‐5p) have been highlighted due to its potentially significant role in the treatment of cerebral ischaemia. This study was to investigate the role by which miR‐140‐5p provides cerebral protection using DEX to treat hypoxic–ischaemic brain damage (HIBD) in neonatal rats via the Wnt/β‐catenin signalling pathway. The HIBD rat models were established and allocated into various groups with different treatment plans, and eight SD rats into sham group. The learning and memory ability of the rats was assessed. Apoptosis and pathological changes in the hippocampus CA1 region and expressions of the related genes of the Wnt/β‐catenin signalling pathway as well as the genes responsible of apoptosis were detected. Compared with the sham group, the parameters of weight, length growth, weight ratio between hemispheres, the rate of reaching standard, as well as Bcl‐2 expressions, were all increased. Furthermore, observations of increased levels of cerebral infarction volume, total mortality rate, response times, total response duration, expressions of Wnt1, β‐catenin, TCF‐4, E‐cadherin, apoptosis rate of neurons, and Bax expression were elevated. Following DEX treatment, the symptoms exhibited by HIBD rats were ameliorated. miR‐140‐5p and si‐Wnt1 were noted to attenuate the progression of HIBD. Our study demonstrates that miR‐140‐5p promotes the cerebral protective effects of DEX against HIBD in neonatal rats by targeting the Wnt1 gene through via the negative regulation of the Wnt/β‐catenin signalling pathway.
Collapse
Affiliation(s)
- Xin-Rui Han
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, China
| | - Xin Wen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, China
| | - Yong-Jian Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, China
| | - Shan Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, China
| | - Min Shen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, China
| | - Zi-Feng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, China
| | - Shao-Hua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, China
| | - Qun Shan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, China
| | - Liang Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, China
| | - Meng-Qiu Li
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, China
| | - Bin Hu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, China
| | - Chun-Hui Sun
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, China
| | - Dong-Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, China
| | - Yuan-Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, China.,College of Health Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, China
| |
Collapse
|
12
|
Wu J, Meng L, Long M, Ruan Y, Li X, Huang Y, Qiu W. Inhibition of breast cancer cell growth by the Pteris semipinnata extract ent-11α-hydroxy-15-oxo-kaur-16-en-19-oic-acid. Oncol Lett 2018; 14:6809-6814. [PMID: 29344122 DOI: 10.3892/ol.2017.7113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 05/11/2017] [Indexed: 02/06/2023] Open
Abstract
Previous studies have demonstrated strong anti-tumor effects of ent-11α-hydroxy-15-oxo-kaur-16-en-19-oic-acid (5F), an extract from Pteris semipinnata, in liver, lung, stomach and anaplastic thyroid cancer cells. However, whether 5F inhibits the growth of breast cancer cells remains unclear. The present study assessed the effect of 5F on breast cancer cells. The breast cancer cell lines MCF-7, MDA-MB-231 and SK-BR-3 were each treated with 0, 5, 10, 20 and 40 µg/ml 5F. Morphological changes in the breast cancer cells were assessed using fluorescence microscopy. The proliferation and apoptosis of the breast cancer cells were also examined using Cell Counting Kit-8 and flow cytometry. The levels of B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X apoptosis regulator (Bax), Bcl-2 antagonist/killer (Bak) 1 and caspase-3 in the breast cancer cells were assessed. The results of the present study demonstrated that 5F inhibited the proliferation of MCF-7, MDA-MB-231 and SK-BR-3 breast cancer cells in a concentration- and time-dependent manner. Treatment with 5F also induced the apoptosis of breast cancer cells. MDA-MB-231, MCF-7, and SK-BR-3 cells exhibited apoptotic rates of 40.13, 60.44, and 70.49%, respectively, following incubation with 5F for 24 h. Furthermore, 5F significantly decreased the expression of Bcl-2 and increased the expression of Bax, Bak, and caspase-3 in a concentration-dependent manner. The results of the present study revealed that the P. semipinnata extract 5F inhibited the growth of human breast cancer cells in a time- and concentration-dependent manner, and that 5F induced apoptosis of human breast cancer cells.
Collapse
Affiliation(s)
- Juekun Wu
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Lili Meng
- Department of Gynecology and Obstetrics, The Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Meijun Long
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Ying Ruan
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Xi Li
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Yong Huang
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Wanshou Qiu
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
13
|
Pilchova I, Klacanova K, Dibdiakova K, Saksonova S, Stefanikova A, Vidomanova E, Lichardusova L, Hatok J, Racay P. Proteasome Stress Triggers Death of SH-SY5Y and T98G Cells via Different Cellular Mechanisms. Neurochem Res 2017; 42:3170-3185. [PMID: 28725954 DOI: 10.1007/s11064-017-2355-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 07/07/2017] [Accepted: 07/12/2017] [Indexed: 01/24/2023]
Abstract
Overload or dysfunction of ubiquitin-proteasome system (UPS) is implicated in mechanisms of neurodegeneration associated with neurodegenerative diseases, e.g. Parkinson and Alzheimer disease, and ischemia-reperfusion injury. The aim of this study was to investigate the possible association between viability of neuroblastoma SH-SY5Y and glioblastoma T98G cells treated with bortezomib, inhibitor of 26S proteasome, and accumulation of ubiquitin-conjugated proteins with respect to direct cytotoxicity of aggregates of ubiquitin-conjugated proteins. Bortezomib-induced death of SH-SY5Y cells was documented after 24 h of treatment while death of T98G cells was delayed up to 48 h. Already after 4 h of treatment of both SH-SY5Y and T98G cells with bortezomib, increased levels of both ubiquitin-conjugated proteins with molecular mass more than 150 kDa and Hsp70 were observed whereas Hsp90 was elevated in T98G cells and decreased in SH-SY5Y cells. With respect to the cell death mechanism, we have documented bortezomib-induced activation of caspase 3 in SH-SY5Y cells that was probably a result of increased expression of pro-apoptotic proteins, PUMA and Noxa. In T98G cells, bortezomib-induced expression of caspase 4, documented after 24 h of treatment, with further activation of caspase 3, observed after 48 h of treatment. The delay in activation of caspase 3 correlated well with the delay of death of T98G cells. Our results do not support the possibility about direct cytotoxicity of aggregates of ubiquitin-conjugated proteins. They are more consistent with a view that proteasome inhibition is associated with both transcription-dependent and -independent changes in expression of pro-apoptotic proteins and consequent cell death initiation associated with caspase 3 activation.
Collapse
Affiliation(s)
- Ivana Pilchova
- Biomedical Center Martin JFM CU and Department of Medical Biochemistry JFM CU, Jessenius Faculty of Medicine in Martin (JFM CU), Comenius University in Bratislava, Mala Hora 4D, 03601, Martin, Slovak Republic
| | - Katarina Klacanova
- Biomedical Center Martin JFM CU and Department of Medical Biochemistry JFM CU, Jessenius Faculty of Medicine in Martin (JFM CU), Comenius University in Bratislava, Mala Hora 4D, 03601, Martin, Slovak Republic
| | - Katarina Dibdiakova
- Biomedical Center Martin JFM CU and Department of Medical Biochemistry JFM CU, Jessenius Faculty of Medicine in Martin (JFM CU), Comenius University in Bratislava, Mala Hora 4D, 03601, Martin, Slovak Republic
| | - Simona Saksonova
- Biomedical Center Martin JFM CU and Department of Medical Biochemistry JFM CU, Jessenius Faculty of Medicine in Martin (JFM CU), Comenius University in Bratislava, Mala Hora 4D, 03601, Martin, Slovak Republic
| | - Andrea Stefanikova
- Biomedical Center Martin JFM CU and Department of Medical Biochemistry JFM CU, Jessenius Faculty of Medicine in Martin (JFM CU), Comenius University in Bratislava, Mala Hora 4D, 03601, Martin, Slovak Republic
| | - Eva Vidomanova
- Biomedical Center Martin JFM CU and Department of Medical Biochemistry JFM CU, Jessenius Faculty of Medicine in Martin (JFM CU), Comenius University in Bratislava, Mala Hora 4D, 03601, Martin, Slovak Republic
| | - Lucia Lichardusova
- Biomedical Center Martin JFM CU and Department of Medical Biochemistry JFM CU, Jessenius Faculty of Medicine in Martin (JFM CU), Comenius University in Bratislava, Mala Hora 4D, 03601, Martin, Slovak Republic
| | - Jozef Hatok
- Biomedical Center Martin JFM CU and Department of Medical Biochemistry JFM CU, Jessenius Faculty of Medicine in Martin (JFM CU), Comenius University in Bratislava, Mala Hora 4D, 03601, Martin, Slovak Republic
| | - Peter Racay
- Biomedical Center Martin JFM CU and Department of Medical Biochemistry JFM CU, Jessenius Faculty of Medicine in Martin (JFM CU), Comenius University in Bratislava, Mala Hora 4D, 03601, Martin, Slovak Republic.
| |
Collapse
|
14
|
Establishment of an ideal time window model in hypothermic-targeted temperature management after traumatic brain injury in rats. Brain Res 2017. [PMID: 28629741 DOI: 10.1016/j.brainres.2017.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Although hypothermic-targeted temperature management (HTTM) holds great potential for the treatment of traumatic brain injury (TBI), translation of the efficacy of hypothermia from animal models to TBI patientshas no entire consistency. This study aimed to find an ideal time window model in experimental rats which was more in accordance with clinical practice through the delayed HTTM intervention. Sprague-Dawley rats were subjected to unilateral cortical contusion injury and received therapeutic hypothermia at 15mins, 2 h, 4 h respectively after TBI. The neurological function was evaluated with the modified neurological severity score and Morris water maze test. The brain edema and morphological changes were measured with the water content and H&E staining. Brain sections were immunostained with antibodies against DCX (a neuroblast marker) and GFAP (an astrocyte marker). The apoptosis levels in the ipsilateral hippocampi and cortex were examined with antibodies against the apoptotic proteins Bcl-2, Bax, and cleaved caspase-3 by the immunofluorescence and western blotting. The results indicated that each hypothermia therapy group could improve neurobehavioral and cognitive function, alleviate brain edema and reduce inflammation. Furthermore, we observed that therapeutic hypothermia increased DCX expression, decreased GFAP expression, upregulated Bcl-2 expression and downregulated Bax and cleaved Caspase-3 expression. The above results suggested that HTTM at 2h or even at 4h post-injury revealed beneficial brain protection similarly, despite the best effect at 15min post-injury. These findings may provide relatively ideal time window models, further making the following experimental results more credible and persuasive.
Collapse
|
15
|
Shao S, Xu M, Zhou J, Ge X, Chen G, Guo L, Luo L, Li K, Zhu Z, Zhang F. Atorvastatin Attenuates Ischemia/Reperfusion-Induced Hippocampal Neurons Injury Via Akt-nNOS-JNK Signaling Pathway. Cell Mol Neurobiol 2017; 37:753-762. [PMID: 27488855 PMCID: PMC11482104 DOI: 10.1007/s10571-016-0412-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/29/2016] [Indexed: 12/29/2022]
Abstract
Ischemia-induced brain damage leads to apoptosis like delayed neuronal death in selectively vulnerable regions, which could further result in irreversible damages. Previous studies have demonstrated that neurons in the CA1 area of hippocampus are particularly sensitive to ischemic damage. Atorvastatin (ATV) has been reported to attenuate cognitive deficits after stroke, but precise mechanism for neuroprotection remains unknown. Therefore, the aims of this study were to investigate the neuroprotective mechanisms of ATV against ischemic brain injury induced by cerebral ischemia reperfusion. In this study, four-vessel occlusion model was established in rats with cerebral ischemia. Rats were divided into five groups: sham group, I/R group, I/R+ATV group, I/R+ATV+LY, and I/R+SP600125 group. Cresyl violet staining was carried out to examine the neuronal death of hippocampal CA1 region. Immunoblotting was used to detect the expression of the related proteins. Results showed that ATV significantly protected hippocampal CA1 pyramidal neurons against cerebral I/R. ATV could increase the phosphorylation of protein kinase B (Akt1) and nNOS, diminished the phosphorylation of JNK3 and c-Jun, and further inhibited the activation of caspase-3. Whereas, all of the aforementioned effects of ATV were reversed by LY294002 (an inhibitor of Akt1). Furthermore, pretreatment with SP600125 (an inhibitor of JNK) diminished the phosphorylation of JNK3 and c-Jun, and further inhibited the activation of caspase-3 after cerebral I/R. Taken together, our results implied that Akt-mediated phosphorylation of nNOS is involved in the neuroprotection of ATV against ischemic brain injury via suppressing JNK3 signaling pathway that provide a new experimental foundation for stroke therapy.
Collapse
Affiliation(s)
- Sen Shao
- The Xixi Hospital of Hangzhou Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310023, People's Republic of China.
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China.
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China.
| | - Mingwei Xu
- The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Jiajun Zhou
- The Xixi Hospital of Hangzhou Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310023, People's Republic of China
| | - Xiaoling Ge
- The Xixi Hospital of Hangzhou Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310023, People's Republic of China
| | - Guanfeng Chen
- The Xixi Hospital of Hangzhou Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310023, People's Republic of China
| | - Lili Guo
- The Xixi Hospital of Hangzhou Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310023, People's Republic of China
| | - Lian Luo
- The Xixi Hospital of Hangzhou Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310023, People's Republic of China
| | - Kun Li
- The Xixi Hospital of Hangzhou Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310023, People's Republic of China
| | - Zhou Zhu
- The Xixi Hospital of Hangzhou Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310023, People's Republic of China
| | - Fayong Zhang
- Department of Neurosurgery, Huashan Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.
| |
Collapse
|
16
|
Hatok J, Racay P. Bcl-2 family proteins: master regulators of cell survival. Biomol Concepts 2017; 7:259-70. [PMID: 27505095 DOI: 10.1515/bmc-2016-0015] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023] Open
Abstract
The most prominent function of proteins of the Bcl-2 family is regulation of the initiation of intrinsic (mitochondrial) pathways of apoptosis. However, recent research has revealed that in addition to regulation of mitochondrial apoptosis, proteins of the Bcl-2 family play important roles in regulating other cellular pathways with a strong impact on cell survival like autophagy, endoplasmic reticulum (ER) stress response, intracellular calcium dynamics, cell cycle progression, mitochondrial dynamics and energy metabolism. This review summarizes the recent knowledge about functions of Bcl-2 family proteins that are related to cell survival.
Collapse
|
17
|
Pro-apoptotic Action of Corticosterone in Hippocampal Organotypic Cultures. Neurotox Res 2016; 30:225-38. [PMID: 27189478 PMCID: PMC4947107 DOI: 10.1007/s12640-016-9630-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/06/2016] [Accepted: 05/07/2016] [Indexed: 01/31/2023]
Abstract
Elevated levels of glucocorticoids exert neurotoxic effects, and the hippocampus is particularly sensitive to the effects of glucocorticoids. Because some data have indicated that an increased action of glucocorticoids in the perinatal period enhances the susceptibility of brain tissue to adverse substances later in life, the main purpose of the present study was to compare necrotic/apoptotic corticosterone action in hippocampal organotypic cultures obtained from control animals with the effect of this steroid in tissue from prenatally stressed rats. Because the adverse effects of glucocorticoid action on nerve cell viability appear to result mainly from an increase in the intensity of the effects of glutamate and changes in growth factor and pro-inflammatory cytokine synthesis, the involvement of these factors in corticosterone action were also determined. In stress-like concentration (1 μM), corticosterone, when added to hippocampal cultures for 1 and 3 days, alone or jointly with glutamate, did not induce necrosis. In contrast, in 3-day cultures, corticosterone (1 μM) increased caspase-3 activity and the mRNA expression of the pro-apoptotic Bax. Moreover, corticosterone’s effect on caspase-3 activity was stronger in hippocampal cultures from prenatally stressed compared to control rats. Additionally, 24 h of exposure to corticosterone and glutamate, when applied separately and together, increased Bdnf, Ngf, and Tnf-α expression. In contrast, after 72 h, a strong decrease in the expression of both growth factors was observed, while the expression of TNF-α remained high. The present study showed that in stress-like concentrations, corticosterone exerted pro-apoptotic but not necrotic effects in hippocampal organotypic cultures. Prenatal stress increased the pro-apoptotic effects of corticosterone. Increased synthesis of the pro-inflammatory cytokine TNF-α may be connected with the adverse effects of corticosterone on brain cell viability.
Collapse
|
18
|
Zhao EY, Efendizade A, Cai L, Ding Y. The role of Akt (protein kinase B) and protein kinase C in ischemia-reperfusion injury. Neurol Res 2016; 38:301-8. [PMID: 27092987 DOI: 10.1080/01616412.2015.1133024] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Stroke is a leading cause of long-term disability and death in the United States. Currently, tissue plasminogen activator (tPA), is the only Food and Drug Administration-approved treatment for acute ischemic stroke. However, the use of tPA is restricted to a small subset of acute stroke patients due to its limited 3-h therapeutic time window. Given the limited therapeutic options at present and the multi-factorial progression of ischemic stroke, emphasis has been placed on the discovery and use of combination therapies aimed at various molecular targets contributing to ischemic cell death. Protein kinase C (PKC) and Akt (protein kinase B) are serine/threonine kinases that play a critical role in mediating ischemic-reperfusion injury and cellular growth and survival, respectively. The present review will examine the role of PKC and Akt in the cellular response to ischemic-reperfusion injury.
Collapse
Affiliation(s)
- Ethan Y Zhao
- a Departmentof Neurosurgery , Wayne State University School of Medicine , Detroit , MI 48201 , USA
| | - Aslan Efendizade
- b Michigan State University College of Osteopathic Medicine , East Lansing , MI 48825 , USA
| | - Lipeng Cai
- c Department of Neurology , China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University , Beijing , China
| | - Yuchuan Ding
- a Departmentof Neurosurgery , Wayne State University School of Medicine , Detroit , MI 48201 , USA.,c Department of Neurology , China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University , Beijing , China
| |
Collapse
|
19
|
Ethylene glycol ethers induce apoptosis and disturb glucose metabolism in the rat brain. Pharmacol Rep 2016; 68:162-71. [DOI: 10.1016/j.pharep.2015.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/29/2015] [Accepted: 08/07/2015] [Indexed: 11/15/2022]
|
20
|
Iron Loading Selectively Increases Hippocampal Levels of Ubiquitinated Proteins and Impairs Hippocampus-Dependent Memory. Mol Neurobiol 2015; 53:6228-6239. [DOI: 10.1007/s12035-015-9514-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/27/2015] [Indexed: 12/30/2022]
|
21
|
Sharma HS, Patnaik R, Sharma A, Lafuente JV, Miclescu A, Wiklund L. Cardiac Arrest Alters Regional Ubiquitin Levels in Association with the Blood-Brain Barrier Breakdown and Neuronal Damages in the Porcine Brain. Mol Neurobiol 2015; 52:1043-53. [PMID: 26108181 DOI: 10.1007/s12035-015-9254-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Indexed: 01/06/2023]
Abstract
The possibility that ubiquitin expression is altered in cardiac arrest-associated neuropathology was examined in a porcine model using immunohistochemical and biochemical methods. Our observations show that cardiac arrest induces progressive increase in ubiquitin expression in the cortex and hippocampus in a selective and specific manner as compared to corresponding control brains using enzyme-linked immunoassay technique (enzyme-linked immunosorbent assay (ELISA)). Furthermore, immunohistochemical studies showed ubiquitin expression in the neurons exhibiting immunoreaction in the cytoplasm and karyoplasm of distorted or damaged cells. Separate Nissl and ubiquitin staining showed damaged and distorted neurons and in the same cortical region ubiquitin expression indicating that ubiquitin expression after cardiac arrest represents dying neurons. The finding that methylene blue treatment markedly induced neuroprotection following identical cardiac arrest and reduced ubiquitin expression strengthens this view. Taken together, our observations are the first to show that cardiac arrest enhanced ubiquitin expression in the brain that is related to the magnitude of neuronal injury and the finding that methylene blue reduced ubiquitin expression points to its role in cell damage, not reported earlier.
Collapse
Affiliation(s)
- Hari S Sharma
- Laboratory of Cerebrovascular Research, Department of Surgical Sciences, Anesthesiology and Intensive Care Medicine, Uppsala University, S-75185, Uppsala, Sweden,
| | | | | | | | | | | |
Collapse
|
22
|
Chen H, Liu C, Yin J, Chen Z, Xu J, Wang D, Zhu J, Zhang Z, Sun Y, Li A. Mitochondrial Cyclophilin D as a Potential Therapeutic Target for Ischemia-Induced Facial Palsy in Rats. Cell Mol Neurobiol 2015; 35:931-41. [PMID: 25820785 PMCID: PMC11486281 DOI: 10.1007/s10571-015-0188-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/25/2015] [Indexed: 10/23/2022]
Abstract
Many studies have demonstrated that ischemia could induce facial nerve (FN) injury. However, there is a lack of a suitable animal model for FN injury study and thus little knowledge is available about the precise mechanism for FN injury. The aims of this study were to establish a reliable FN injury model induced by blocking the petrosal artery and to investigate whether dysfunctional interaction between cyclophilin D (CypD) and mitochondrial permeability transition pore (MPTP) can mediate cell dysfunction in ischemic FN injury. The outcomes of ischemia-induced FN injury rat model were evaluated by behavioral assessment, histological observation, electrophysiology, and electron microscopy. Then the levels of CypD and protein that forms the MPTP were evaluated under the conditions with or without the treatment of Cyclosporin A (CsA), which has been found to disrupt MPTP through the binding of CypD. The blocking of petrosal artery caused significant facial palsy signs in the ischemia group but not in the sham group. Furthermore, ischemia can induce the dysfunction of facial nucleus neurons and destruction of the myelin sheath and increase the protein levels of CypD and MPTP protein compared with sham group. Interestingly, treatment with CsA significantly improved neurological function and reversed the ischemia-induced increase of CypD and MPTP proteins in ischemia group. These results demonstrated that blocking of petrosal artery in rats can induce FN injury and the mechanism may be related to the disruption of MPTP by CypD.
Collapse
Affiliation(s)
- Huizhen Chen
- Department of Neurosurgery, The First People's Hospital of Lianyungang, 182 Tong Guan North Road, Lianyungang, Jiangsu, 222002, People's Republic of China
| | - Chnagtao Liu
- Department of Neurosurgery, The First People's Hospital of Lianyungang, 182 Tong Guan North Road, Lianyungang, Jiangsu, 222002, People's Republic of China
| | - Jie Yin
- Department of Neurosurgery, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221009, People's Republic of China
| | - Zhen Chen
- Department of Neurosurgery, The First People's Hospital of Lianyungang, 182 Tong Guan North Road, Lianyungang, Jiangsu, 222002, People's Republic of China
| | - Jinwang Xu
- Department of Neurosurgery, The First People's Hospital of Lianyungang, 182 Tong Guan North Road, Lianyungang, Jiangsu, 222002, People's Republic of China
| | - Duanlei Wang
- Department of Neurosurgery, The First People's Hospital of Lianyungang, 182 Tong Guan North Road, Lianyungang, Jiangsu, 222002, People's Republic of China
| | - Jiaqiu Zhu
- Department of Neurosurgery, The First People's Hospital of Lianyungang, 182 Tong Guan North Road, Lianyungang, Jiangsu, 222002, People's Republic of China
| | - Ziyuan Zhang
- Department of Neurosurgery, The First People's Hospital of Lianyungang, 182 Tong Guan North Road, Lianyungang, Jiangsu, 222002, People's Republic of China
| | - Yong Sun
- Department of Neurosurgery, The First People's Hospital of Lianyungang, 182 Tong Guan North Road, Lianyungang, Jiangsu, 222002, People's Republic of China
| | - Aimin Li
- Department of Neurosurgery, The First People's Hospital of Lianyungang, 182 Tong Guan North Road, Lianyungang, Jiangsu, 222002, People's Republic of China.
| |
Collapse
|