1
|
Moradikhah F, Shabani I, Tafazzoli Shadpour M. Fabrication of a tailor-made conductive polyaniline/ascorbic acid-coated nanofibrous mat as a conductive and antioxidant cell-free cardiac patch. Biofabrication 2024; 16:035004. [PMID: 38507809 DOI: 10.1088/1758-5090/ad35e9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/20/2024] [Indexed: 03/22/2024]
Abstract
Polyaniline (PANI) wasin-situpolymerized on nanofibrous polycaprolactone mats as cell-free antioxidant cardiac patches (CPs), providing electrical conductivity and antioxidant properties. The fabricated CPs took advantage of intrinsic and additive antioxidant properties in the presence of PANI backbone and ascorbic acid as a biocompatible dopant of PANI. The antioxidant nature of CPs may reduce the serious repercussions of oxidative stress, produced during the ischemia-reperfusion (I/R) process following myocardial infarction. The polymerization parameters were considered as aniline (60 mM, 90 mM, and 120 mM), ascorbic acid concentrations ([aniline]:[ascorbic acid] = 3:0, 3:0.5, 3:1, 3:3), and polymerization time (1 h and 3 h). Mainly, the more aniline concentrations and polymerization time, the less sheet resistance was obtained. 1,1 diphenyl-2-picrylhydrazyl (DPPH) assay confirmed the dual antioxidant properties of prepared samples. The advantage of the employedin-situpolymerization was confirmed by the de-doping/re-doping process. Non-desirable groups were excluded based on their electrical conductivity, antioxidant properties, and biocompatibility. The remained groups protected H9c2 cells against oxidative stress and hypoxia conditions. Selected CPs reduced the intracellular reactive oxygen species content and mRNA level of caspase-3 while the Bcl-2 mRNA level was improved. Also, the selected cardiac patch could attenuate the hypertrophic impact of hydrogen peroxide on H9c2 cells. Thein vivoresults of the skin flap model confirmed the CP potency to attenuate the harmful impact of I/R.
Collapse
Affiliation(s)
- Farzad Moradikhah
- Department of Biomedical Engineering, Amirkabir University of Technology, 1591634311 Tehran, Iran
| | - Iman Shabani
- Department of Biomedical Engineering, Amirkabir University of Technology, 1591634311 Tehran, Iran
| | | |
Collapse
|
2
|
Lu C, Wang X, Ma J, Wang M, Liu W, Wang G, Ding Y, Lin Z, Li Y. Chemical substances and their activities in sea cucumber Apostichopus japonicus: A review. Arch Pharm (Weinheim) 2024; 357:e2300427. [PMID: 37853667 DOI: 10.1002/ardp.202300427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023]
Abstract
Apostichopus japonicus, also known as Stichopus japonicus, with medicinal and food homologous figures, is a globally recognized precious ingredient with extremely high nutritional value. There is no relevant review available through literature search, so this article selects the research articles through the keywords "sea cucumber" and "Apostichopus japonicus (Stichopus japonicus)" in six professional databases, such as Wiley, PubMed, ScienceDirect, ACS, Springer, and Web of Science, from 2000 to the present, summarizing the extraction, isolation, and purification methods for the four major categories (polysaccharides, proteins and peptides, saponins, and other components) of the A. japonicus chemical substances and 10 effective biological activities of A. japonicus. Included are anticoagulation, anticancer/antitumor activities, hematopoiesis, regulation of gut microbiota, and immune regulatory activities that correspond to traditional efficacy. Literature support is provided for the development of medicines and functional foods and related aspects that play a leading role in future directions.
Collapse
Affiliation(s)
- Chang Lu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xueyu Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jiahui Ma
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Mengtong Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Wei Liu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Guangyue Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yuling Ding
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhe Lin
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yong Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
3
|
Zhang D, Chen X, Liu B, Yuan Y, Cui W, Zhu D, Zhu J, Duan S, Li C. The Temporal and Spatial Changes of Autophagy and PI3K Isoforms in Different Neural Cells After Hypoxia/Reoxygenation Injury. Mol Neurobiol 2023; 60:5366-5377. [PMID: 37316758 DOI: 10.1007/s12035-023-03421-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 06/02/2023] [Indexed: 06/16/2023]
Abstract
There are limited therapeutic options for patient with traumatic spinal cord injury (SCI). Phosphoinositide 3-kinase family (PI3Ks) are the key molecules for regulating cell autophagy, which is a possible way of treating SCI. As we know, PI3K family are composed of eight isoforms, which are distributed into three classes. While the role of PI3Ks in regulating autophagy is controversial and the effects may be in a cell-specific manner. Different isoforms do not distribute in neural cells consistently and it is not clear how the PI3K isoforms regulate and interact with autophagy. Therefore, we explored the distributions and expression of different PI3K isoforms in two key neural cells (PC12 cells and astrocytes). The results showed that the expression of LC3II/I and p62, which are the markers of autophagy, changed in different patterns in PC12 cells and astrocytes after hypoxia/reoxygenation injury (H/R). Furthermore, the mRNA level of eight PI3K isoforms did not change in the same way, and even for the same isoform the mRNA activities are different between PC12 cells and astrocytes. What is more, the results of western blot of PI3K isoforms after H/R were inconsistent with the relevant mRNA. Based on this study, the therapeutic effects of regulating autophagy on SCI are not confirmed definitely, and its molecular mechanisms may be related with different temporal and spatial patterns of activation and distributions of PI3K isoforms.
Collapse
Affiliation(s)
- Duo Zhang
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xuanyu Chen
- Department of Orthopedics, Capital Medical University Electric Power Hospital, Beijing, 100073, China
| | - Baoge Liu
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| | - Yuan Yuan
- Department of Spinal Cord Injury Rehabilitation, China Rehabilitation Research Center, Beijing, 100068, China
| | - Wei Cui
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Di Zhu
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Jichao Zhu
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Shuo Duan
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Chenxi Li
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| |
Collapse
|
4
|
Chen Y, Gao Y, Yuan M, Zheng Z, Yin J. Anti- Candida albicans Effects and Mechanisms of Theasaponin E1 and Assamsaponin A. Int J Mol Sci 2023; 24:ijms24119350. [PMID: 37298302 DOI: 10.3390/ijms24119350] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/27/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Candida albicans is an opportunistic human fungal pathogen, and its drug resistance is becoming a serious problem. Camellia sinensis seed saponins showed inhibitory effects on resistant Candida albicans strains, but the active components and mechanisms are unclear. In this study, the effects and mechanisms of two Camellia sinensis seed saponin monomers, theasaponin E1 (TE1) and assamsaponin A (ASA), on a resistant Candida albicans strain (ATCC 10231) were explored. The minimum inhibitory concentration and minimum fungicidal concentration of TE1 and ASA were equivalent. The time-kill curves showed that the fungicidal efficiency of ASA was higher than that of TE1. TE1 and ASA significantly increased the cell membrane permeability and disrupted the cell membrane integrity of C. albicans cells, probably by interacting with membrane-bound sterols. Moreover, TE1 and ASA induced the accumulation of intracellular ROS and decreased the mitochondrial membrane potential. Transcriptome and qRT-PCR analyses revealed that the differentially expressed genes were concentrated in the cell wall, plasma membrane, glycolysis, and ergosterol synthesis pathways. In conclusion, the antifungal mechanisms of TE1 and ASA included the interference with the biosynthesis of ergosterol in fungal cell membranes, damage to the mitochondria, and the regulation of energy metabolism and lipid metabolism. Tea seed saponins have the potential to be novel anti-Candida albicans agents.
Collapse
Affiliation(s)
- Yuhong Chen
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ying Gao
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| | - Mingan Yuan
- Jinhua Academy of Agricultural Science, Jinhua 321000, China
| | - Zhaisheng Zheng
- Jinhua Academy of Agricultural Science, Jinhua 321000, China
| | - Junfeng Yin
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| |
Collapse
|
5
|
Liu P, Yang X, Niu J, Hei C. Hyperglycemia aggravates ischemic brain damage via ERK1/2 activated cell autophagy and mitochondrial fission. Front Endocrinol (Lausanne) 2022; 13:928591. [PMID: 35992111 PMCID: PMC9388937 DOI: 10.3389/fendo.2022.928591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Hyperglycemia is one of the major risk factors for stroke and stroke recurrence, leading to aggravated neuronal damage after cerebral ischemia/reperfusion (I/R). ERK1/2 signaling pathway plays a vital role in cerebral ischemic injury. However, the role of the ERK1/2 pathway in hyperglycemia-aggravated ischemic brain damage is not clear. METHODS Streptozotocin (STZ; 50 mg/kg)-induced diabetes (blood glucose ≥12 mmol/L) or control groups in adult Sprague-Dawley rats were further subdivided into I/R (carotid artery/vein clamping), I/R + PD98059 (I/R plus ERK1/2 inhibitor), and Sham-operated groups (n = 10 each). Neurobehavioral status (Neurological behavior scores) and the volume of the cerebral infarction (TTC staining); brain mitochondrial potential (JCI ratio test) and cell apoptosis (TUNEL assay); RAS protein expression, phosphorylated/total ERK1/2 and Drp-1 (Dynamic-related protein 1) protein levels (Western blotting); mitochondrial fusion-related proteins mitofusin-1/2 (Mfn1/2), optic atrophy (OPA-1) and mitochondrial fission 1 (Fis1), and autophagy-associated proteins Beclin-1, LC3-I/II and P62 (Western blotting and immunohistochemistry) were analyzed. RESULTS The I/R + PD98059 group demonstrated better neurobehavior on the 1st (p < 0.05) and the 3rd day (p < 0.01) than the I/R group. Compared to the Sham group, cerebral ischemia/reperfusion brought about neuronal damage in the I/R group (p <0.01). However, treatment with PD98059 showed an improved situation with faster recovery of mitochondrial potential and less apoptosis of neuronal cells in the I/R + PD98059 group (p < 0.01). The I/R group had a higher-level expression of RAS and phosphorylated ERK1/2 and Drp-1 than the diabetes mellitus (DM) group (p < 0.01). The PD98059 treated group showed decreased expression of p-ERK1/2, p-Drp-1, Fis1, and Beclin-1, LC3-I/II and P62, but increased Mfn1/2 and OPA-1 than the I/R group (p < 0.01). CONCLUSION Hyperglycemia worsens cerebral ischemia/reperfusion-induced neuronal damage via ERK1/2 activated cell autophagy and mitochondrial fission.
Collapse
Affiliation(s)
- Ping Liu
- Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiao Yang
- Neuroscience Center, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jianguo Niu
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, China
| | - Changchun Hei
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, China
- Department of Human Anatomy, Histology and Embryology, Ningxia Medical University, Yinchuan, China
- *Correspondence: Changchun Hei,
| |
Collapse
|
6
|
Cinar I, Yayla M, Tavaci T, Toktay E, Ugan RA, Bayram P, Halici H. In Vivo and In Vitro Cardioprotective Effect of Gossypin Against Isoproterenol-Induced Myocardial Infarction Injury. Cardiovasc Toxicol 2022; 22:52-62. [PMID: 34599475 DOI: 10.1007/s12012-021-09698-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
The aim of the study was to examine the protective effects and possible mechanism of gossypin against isoproterenol (ISO)-mediated myocardial damage in vivo and H9c2 cell damage in vitro. H9c2 cells were categorized into five groups. Viability was evaluated with MTT and LDH release in H9c2 cells. Apoptotic parameter analysis was performed with cytochrome c (Cyt-c), caspase-3 (CASP-3), and BCL2/Bax mRNA expression levels. In vivo, gossypin was administered orally to mice at doses of 5, 10, and 20 mg/kg for 7 days. ISO groups were injected with isoproterenol (150 mg/kg) subcutaneously (on 8th and 9th) for 2 days. Afterward, lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB) levels and Troponin-I (Tn-I) amount from their serum, oxidative stress parameters superoxide dismutase (SOD) activity, glutathione (GSH) and malondialdehyde (MDA) levels, and tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1 β), and NF-kB mRNA expression levels with inflammatory markers from heart tissue were evaluated. In addition, IL-1B, BCL-2, and cas-3 immunohistochemical staining was performed from heart tissue and TNF-a level was measured by ELISA method. Administration of Gossypin protected the cells by dose-dependent, eliminating the reduced cell viability and increased LDH release of ISO in H9c2 cells. In mice serum analyses, increased LDH, CK-MB levels, and Tn-I levels were normalized by gossypin. ISO administration in heart tissue is regulated by gossypin with increased SOD activity, GSH amount, TNF-α, IL-6, IL-1β, and NF-kB mRNA expression levels and decreased MDA amount. Overall, the present results demonstrated that gossypin has a potential cardioprotective treatment for ischemic heart disease on in vivo and in vitro.
Collapse
Affiliation(s)
- Irfan Cinar
- Department of Pharmacology, Faculty of Medicine, Kastamonu University, 3700, Kastamonu, Turkey.
| | - Muhammed Yayla
- Faculty of Medicine, Department of Pharmacology, Kafkas University, Kars, Turkey
| | - Taha Tavaci
- Faculty of Medicine, Department of Pharmacology, Atatürk University, Erzurum, Turkey
| | - Erdem Toktay
- Faculty of Medicine, Department of Histology and Embriology, Kafkas University, Kars, Turkey
| | - Rustem Anil Ugan
- Faculty of Pharmacy, Department of Pharmacology, Atatürk University, Erzurum, Turkey
| | - Pınar Bayram
- Faculty of Medicine, Department of Histology and Embriology, Kafkas University, Kars, Turkey
| | - Hamza Halici
- Faculty of Medicine, Department of Pharmacology, Atatürk University, Erzurum, Turkey
| |
Collapse
|
7
|
MicroRNA-21-5p Reduces Hypoxia/Reoxygenation-Induced Neuronal Cell Damage through Negative Regulation of CPEB3. Anal Cell Pathol (Amst) 2021; 2021:5543212. [PMID: 34900520 PMCID: PMC8660214 DOI: 10.1155/2021/5543212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 09/04/2021] [Accepted: 11/07/2021] [Indexed: 11/26/2022] Open
Abstract
Objectives To explore the role of microRNA-21-5p (miR-21-5p) in hypoxia/reoxygenation- (H/R-) induced HT22 cell damage. Methods The hypoxia/reoxygenation (H/R) model was established in mouse neuronal cells HT22. Cell Counting Kit-8 (CCK-8) and qRT-PCR were used to determine the effects of H/R treatment on cell viability and miR-21-5p expression. HT22 cells were transfected with miR-21-5p mimic or negative control (NC) followed by the induction of H/R; cell viability, apoptosis, and SOD, MDA, and LDH activities were detected. Besides, the apoptosis-related proteins including BAX, BCL2, cleaved caspase-3, and caspase-3 as well as proteins of EGFR/PI3K/AKT signaling pathways were measured by Western blot. To verify the target relation between cytoplasmic polyadenylation element binding protein 3 (CPEB3) and miR-21-5p, luciferase reporter gene experiment was performed. After cotransfection with miR-21-5p mimic and CPEB3 plasmids, the reversal effects of CPEB3 on miR-21-5p in H/R damage were studied. Results H/R treatment could significantly reduce the cell viability (P < 0.05) and miR-21-5p levels (P < 0.05) in HT22 cells. After overexpressing miR-21-5p, cell viability was increased (P < 0.05) under H/R treatment, and the apoptosis rate and the levels of apoptosis-related proteins were suppressed (all P < 0.05). Furthermore, SOD activity was increased (P < 0.05), while MDA and LDH activity was decreased (both P < 0.05). Besides, miR-21-5p could restore the activation of the EGFR/PI3K/AKT signaling pathway inhibited by H/R treatment (all P < 0.05). The luciferase reporter gene experiment verified that CPEB3 is the target of miR-21-5p (P < 0.05). When coexpressing miR-21-5p mimic and CPEB3 in the cells, the protective effects of miR-21-5p under H/R were reversed (all P < 0.05), and the activation of the EGFR/PI3K/AKT pathway was also inhibited (all P < 0.05). Conclusion This study showed that miR-21-5p may regulate the EGFR/PI3K/AKT signaling pathway by targeting CPEB3 to reduce H/R-induced cell damage and apoptosis.
Collapse
|
8
|
Wang X, Zhang Z, Zhang S, Yang F, Yang M, Zhou J, Hu Z, Xu X, Mao G, Chen G, Xiang W, Sun X, Xu N. Antiaging compounds from marine organisms. Food Res Int 2021; 143:110313. [DOI: 10.1016/j.foodres.2021.110313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023]
|
9
|
Lu Y, Yang M, Peng M, Xie L, Shen A, Lin S, Huang B, Chu J, Peng J. Kuanxiong aerosol inhibits apoptosis and attenuates isoproterenol-induced myocardial injury through the mitogen-activated protein kinase pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113757. [PMID: 33359915 DOI: 10.1016/j.jep.2020.113757] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/02/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kuanxiong aerosol (KXA) is a common clinical drug based on Fangxiang Wentong (FXWT) therapy in the treatment of angina pectoris. However, the pharmacological mechanism of KXA in the prevention and treatment of myocardial injury (MI) is not clear. AIM OF THE STUDY The purpose of this study was to explore the protective effect of KXA on isoproterenol (ISO)-induced MI in rats. MATERIALS AND METHODS The study included male Wistar Kyoto rats (age: 6 weeks). The rats were randomly divided into the following 5 groups (n = 6 per group): control group, ISO group, isosorbide mononitrate (ISMN) group (5 mg/kg), KXA-L group (0.1 mL/kg), and KXA-H group (0.3 mL/kg). The rats in the last three groups were given intragastric administration for 14 days, and rats in control group and ISO group were given the same amount of normal saline daily. ISO (120 mg/kg) was used to induce MI on the 13th and 14th days. We assessed electrocardiograms (ECGs), myocardial specific enzymes, histopathological changes, and apoptosis. RESULTS We found that KXA reduced the increase in the ST-segment amplitude (elevation or depression) and the levels of myocardial marker enzymes induced by ISO in MI rats, improved the pathological changes in myocardial tissue, and reduced cardiomyocyte apoptosis. At the same time, KXA significantly inhibited the up-regulation of caspase-3 and Bax expression and down-regulation of Bcl-2 expression induced by ISO. RNA sequencing showed that 90 up-regulated genes induced by ISO were down-regulated after KXA treatment, whereas 27 down-regulated genes induced by ISO were up-regulated after KXA treatment. In addition, KEGG pathway enrichment analysis showed that the mitogen-activated protein kinase (MAPK) signaling pathway may be an important target of KXA in the treatment of ISO-induced MI in rats. The results of RNA sequencing verified by Western blot analysis showed that KXA significantly inhibited the activation of the ISO-induced MAPK pathway. CONCLUSIONS KXA improves cardiac function in MI rats by inhibiting apoptosis mediated by the MAPK signaling pathway.
Collapse
Affiliation(s)
- Yan Lu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Meiling Yang
- The Third People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Meizhong Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Lingling Xie
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Shan Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Bin Huang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Jianfeng Chu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| |
Collapse
|
10
|
Lin C, Zhu X, Jin Q, Sui A, Li J, Shen L. Effects of Holothurian Glycosaminoglycan on the Sensitivity of Lung Cancer to Chemotherapy. Integr Cancer Ther 2021; 19:1534735420911430. [PMID: 32202167 PMCID: PMC7092648 DOI: 10.1177/1534735420911430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sea cucumber is a kind of food. Holothurian glycosaminoglycan (hGAG) is extracted from the body wall of the sea cucumber. Administration of hGAG and cisplatin (DDP) together to treat lung cancer was investigated. Lung adenocarcinoma A549 cells were cultured and divided into 4 groups: control group, hGAG 100 µg/mL group, DDP 3 µg/mL group, and hGAG 100 µg/mL + DDP 3 µg/mL group. Cell inhibition and apoptosis was evaluated by CCK8 and Hoechst33258 staining. Cell cycle was tested by Annexin V-FITC/PI (propidium iodide) double-staining and flow cytometry. The expression of mRNA and protein of Bcl-2, Bax, caspase-3, and survivin were detected by reverse transcriptase-polymerase chain reaction and Western blot, respectively. The results showed that hGAG combined with DDP enhanced the inhibitory effect of DDP on A549 lung cells through apoptosis pathway. The mechanism of apoptosis may be related to the reduction of Bcl-2 and survivin, as well as the ascension of Bax and caspase-3. hGAG could promote A549 cell cycle arrest in G1 and G2 phase and improve the DDP chemotherapy effects on A549 cells.
Collapse
Affiliation(s)
- Cunzhi Lin
- Department of Pulmonary Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xinhong Zhu
- Internal Medicine, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Qing Jin
- Department of Intensive Care Unit, The 903rd Hospital of People's Liberation Army, Hangzhou, Zhejiang, China
| | - Aihua Sui
- Department of Respiratory & Critical Care Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jinfeng Li
- Department of Respiratory & Critical Care Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Liyan Shen
- Department of Respiratory & Critical Care Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
11
|
Anti-cerebral ischemia reperfusion injury of polysaccharides: A review of the mechanisms. Biomed Pharmacother 2021; 137:111303. [PMID: 33517189 DOI: 10.1016/j.biopha.2021.111303] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Cerebral ischemia-reperfusion injury can lead to a series of serious brain diseases and cause death or different degrees of disability. Polysaccharide is a kind of biological macromolecule with multiple pharmacological activities and has been proven that it may be used for the treatment of cerebral I/R injury in the future. By sorting out all relevant research from 2000 to 2020, we selected 74 references and identified 22 kinds of polysaccharides. Almost all of these polysaccharides are extracted from traditional Chinese medicine. Research shows that these polysaccharides can improve cerebral ischemia-reperfusion injury through anti-oxidative stress, inhibiting the neuroinflammation, glutamate neurotoxicity and neuronal apoptosis, and exerting neurotrophic effect. The specific mechanisms include clearing ROS and RNS, inhibiting the expression of inflammatory factors, maintaining mitochondrial homeostasis and blocking caspase cascade, regulating NMDA receptor and promoting angiogenesis. We hoped this review is instructive for researchers to design, research and develop polysaccharides.
Collapse
|
12
|
Meng H, Jin W, Yu L, Xu S, Wan H, He Y. Protective effects of polysaccharides on cerebral ischemia: A mini-review of the mechanisms. Int J Biol Macromol 2020; 169:463-472. [PMID: 33347928 DOI: 10.1016/j.ijbiomac.2020.12.124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/08/2023]
Abstract
Cerebral ischemia, a common cerebrovascular disease, is one of the great threats to human health. Nowadays, many drugs used in the treatment of cerebral ischemia such as clot busting drugs, antiplatelet drugs, and neuroprotective drugs have limits. It is urgent finding new effective treatments for the patients. Researches have confirmed that many kinds of polysaccharides from natural resources possess therapeutic effects on cerebral ischemia, but are still lack of a comprehensively understanding. In this paper, based on the pathophysiology of cerebral ischemic injury, we summarize the latest discoveries and advancements of 29 kinds of polysaccharides, focusing on their ameliorating effects on cerebral ischemia and the underlying mechanisms. Several mechanisms are involved, mainly including antioxidant activities, anti-inflammatory activities, regulating neuron apoptosis, as well as resisting nitrosative stress injury. Besides, polysaccharides show protective effects through certain signaling pathways including PI3K/Akt, MAPK, and NF-κB, PARP-1/AIF, JNK3/c-Jun/Fas-L, and Nrf2/HO-1 signaling pathways. The main goal of this mini-review is to emphasize the important roles of polysaccharides in attenuating cerebral ischemic injury through the elucidation of mechanisms.
Collapse
Affiliation(s)
- Huanhuan Meng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Weifeng Jin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Li Yu
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shouchao Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Haitong Wan
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Yu He
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
13
|
Liu WG, Han LL, Xiang R. Retracted: Protection of miR-19b in hypoxia/reoxygenation-induced injury by targeting PTEN. J Cell Physiol 2019; 234:16226-16237. [PMID: 30767206 DOI: 10.1002/jcp.28286] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/22/2018] [Accepted: 11/30/2018] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To study the role and mechanism of microRNA 19b (miR-19b) in hypoxia/reoxygenation (H/R)-induced injury by targeting PTEN. METHODS PC12 and BV2 cells induced by H/R were treated with miR-19b mimics/inhibitors or small interfering PTEN (si-PTEN), respectively. Lactate dehydrogenase (LDH) level, malondialdehyde (MDA), and superoxide dismutase (SOD) content was detected. Besides, cell viability and apoptosis were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, Hoechst33342 staining, and flow cytometry, whereas mitochondrial membrane potential (MMP) tested by JC-1 assay, and reactive oxygen species (ROS) evaluated by the dichloro-dihydro-fluorescein diacetate assay. The ischemia/reperfusion (I/R) rats model was used to investigate the effects of miR-19b in vivo test. The infarct area and apoptosis rates in brain tissues were detected by 2,3,5-triphenyltetrazolium chloride and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling staining, respectively. miR-19b and PTEN/PI3K/Akt pathway-related proteins were detected by quantitative reverse-transcription polymerase chain reaction and western blot analysis. RESULTS miR-19b mimics could reduce LDH, MDA, and ROS levels and decline cell apoptosis, but enhance the viability, MMP, and SOD activity with decreased PTEN and cleaved caspase, as well as increased p-Akt/Akt and Bcl-2/Bax ratios in H/R-induced PC12 and BV2 cells. However, miR-19b inhibitors led to completely opposite results to aggravate H/R-induced cell injury. Meanwhile, si-PTEN could reverse the effect of miR-19b inhibitors on H/R-induced injury. Moreover, treatment with miR-19b agomir after I/R in vivo sufficiently decreased infarct area and reduced apoptosis rates by targeting PTEN through the regulation of the PI3K/Akt pathway. CONCLUSION miR-19b could inhibit oxidative stress, enhance cell MMP, promote cell survival, and inhibit cell apoptosis by targeting PTEN via the regulation of the PI3K/Akt pathway, thus playing the neuronal protective effects.
Collapse
Affiliation(s)
- Wan-Gen Liu
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Li-Li Han
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Rong Xiang
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| |
Collapse
|
14
|
Echinocystic acid, a natural plant extract, alleviates cerebral ischemia/reperfusion injury via inhibiting the JNK signaling pathway. Eur J Pharmacol 2019; 861:172610. [PMID: 31425684 DOI: 10.1016/j.ejphar.2019.172610] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 01/19/2023]
Abstract
Echinocystic acid (EA) was found to possess antiviral, anti-inflammatory and antioxidation activities. A recent study showed the antiapoptotic effects of EA on acute myocardial infarction. In this study, we demonstrated the potential neuroprotective effects of EA on cerebral ischemia/reperfusion (I/R) injury in mice. Intraperitoneal injection of EA 1 h before ischemia significantly reduced the cerebral infarct volume and neurological deficit after 60 min of ischemia and 24 h of reperfusion. The neuroprotective effects of EA occurred in a dose-dependent manner. Then, we explored the mechanisms of neuroprotection by EA. This compound exerted antiapoptotic activity by upregulating the level of Bcl-2 and simultaneously downregulating the levels of cleaved caspase-3 and Bax. Furthermore, EA also possessed anti-inflammatory activity and prevented the excessive phosphorylation of NF-κB (p-P65) and the increase in IL-1β and IL-6 levels. Finally, our data indicated that EA treatment decreased the level of phosphorylated JNK in vivo, and the JNK activator anisomycin (AN) reversed the neuroprotective effects of EA, indicating that the JNK pathway is involved in the antiapoptotic and anti-inflammatory mechanisms of EA. In summary, our findings suggest that EA provides neuroprotective effects through its antiapoptotic and anti-inflammatory activities by inhibiting the JNK signaling pathway in cerebral I/R injury. Due to its safety and lack of toxicity, EA is a potential candidate for the treatment of ischemic stroke in future clinical trials.
Collapse
|
15
|
MicroRNA-141 protects PC12 cells against hypoxia/reoxygenation-induced injury via regulating Keap1-Nrf2 signaling pathway. J Bioenerg Biomembr 2019; 51:291-300. [DOI: 10.1007/s10863-019-09804-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/24/2019] [Indexed: 12/13/2022]
|
16
|
Structure and Neuroprotective Effect of Polysaccharide from Viscera Autolysates of Squid Ommastrephes bartrami. Mar Drugs 2019; 17:md17030188. [PMID: 30909471 PMCID: PMC6470927 DOI: 10.3390/md17030188] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/05/2019] [Accepted: 03/15/2019] [Indexed: 01/10/2023] Open
Abstract
To explore bioactive polysaccharides from the byproducts of squid processing, a heteropolysaccharide, named SV2-1, was isolated from the viscera of squid Ommastrephes bartrami by autolysis, anion-exchange and gel-permeation chromatography and measured for its neuroprotective activity. It was a homogeneous polysaccharide with a molecular weight of 2.3 kDa by HPSEC analysis. SV2-1 contained glucuronic acid, galactosamine and fucose in the ratio of 1.0:1.1:1.2. Its structural characteristics were elucidated by methylation analysis, gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic resonance (NMR). The backbone of SV2-1 was composed of alternant →4)-α-l-Fucp-(1→ and →3)-β-d-GlcUA-(1→ Most of →4)-α-l-Fucp-(1→ (90%) was substituted by single α-d-GlcNAc as the branches. SV2-1 can protect against the death of PC12 induced by 6-OHDA, and effectively improves cell viability and reduces extracellular LDH release in PC12 cells after injury. Moreover, SV2-1 significantly increases SOD activity but decreases MDA levels.
Collapse
|
17
|
Cyclosporin A Protected Cardiomyocytes Against Oxidative Stress Injury by Inhibition of NF-κB Signaling Pathway. Cardiovasc Eng Technol 2019; 10:329-343. [PMID: 30725434 DOI: 10.1007/s13239-019-00404-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/30/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE This study aims to investigate the effects and the molecular mechanism of cyclosporin A (CsA) against oxidative stress injury in cultured neonatal rat cardiomyocytes. METHODS Bax/Bcl-2, cl-casp-9/casp-9, cl-casp-3/casp-3, and iNOS/β-actin ratios and p-IκB and IκB levels were analyzed by western blot. IL-1β and TNF-α levels were analyzed by ELISA. RESULTS CsA effectively improved the cell viability and reduced the extracellular lactate dehydrogenase release in cardiomyocytes after H2O2-induced oxidative damage. CsA significantly increased the superoxide dismutase activity, glutathione production, and catalase activity but decreased the malonaldehyde level. CsA treatment considerably reduced the H2O2-induced intracellular generation of reactive oxygen species, mitochondrial dysfunction, and release of cytochrome c. CsA could act against H2O2-induced ATP reduction, TCA cycle enzymes, mitochondrial complex I enzyme, and complex V enzyme in cardiomyocytes. CsA significantly decreased the Bax/Bcl-2 ratio, cl-casp-9/casp-9, and cl-casp-3/casp-3 in a concentration-dependent manner. CsA also remarkably reduced the cleaved PARP level and DNA fragmentation. NF-κB was closely related to oxidative stress injury. CsA inhibited NF-κB activation, thereby preventing the upregulation of IL-1β, TNF-α, iNOS, and intracellular NO release. CONCLUSIONS CsA protected cardiomyocytes against H2O2-induced cell injury. Hence, CsA may be developed as a candidate drug to prevent or treat myocardial ischemia reperfusion injury.
Collapse
|
18
|
Zhao ZY, Gao YY, Gao L, Zhang M, Wang H, Zhang CH. Protective effects of bellidifolin in hypoxia-induced in pheochromocytoma cells (PC12) and underlying mechanisms. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:1187-1192. [PMID: 28895799 DOI: 10.1080/15287394.2017.1367114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bellidifolin, a xanthone compound derived from plants of Gentiana species, is known to exert a variety of pharmacological activities including anti-oxidation, anti-inflammatory and antitumor actions as well as a protective effect on cerebral ischemic nerve injury. The aim of this study was to examine the protective effects of bellidifolin on nerve injury produced by hypoxia and possible underlying mechanisms using pheochromocytoma cells (PC12). Data showed that the viability of PC12 cells subjected to hypoxia resulted in a significant decrease; however; pretreatment with certain concentrations of bellidifolin (20 or 40 μmol/L) prior to hypoxia significantly increased the survival rate. The results of immunohistochemical staining analysis revealed that there were no marked alterations in the expression of pERK protein between all bellidifolin groups while the expression of p-p38MAPK protein was significantly enhanced by hypoxia. Pretreatment with different concentrations of bellidifolin followed by hypoxia significantly decreased the expression of p-p38MAPK protein. The results of western blot analysis showed that hypoxia induced the expression of the MAPK signaling pathway downstream of the key apoptosis factor caspase-3. Compared to hypoxia, the expression of caspase-3 in the presence of belliidifolin was significantly lower. Data suggest that bellidifolin may contribute to the protective effects associated with nerve injury initiated by hypoxia by mechanisms related to inhibition of cell apoptosis independent of the ERK pathway, but may involve blockade of p38MAPK signaling pathway activation and downstream caspase-3 expression.
Collapse
Affiliation(s)
- Zhi-Ying Zhao
- a Department of Anatomy , Baotou Medical College , Inner Mongolia , China
| | - Yang-Yang Gao
- a Department of Anatomy , Baotou Medical College , Inner Mongolia , China
| | - Li Gao
- b The third affiliated hospital , Baotou Medical College , Inner Mongolia , China
| | - Ming Zhang
- a Department of Anatomy , Baotou Medical College , Inner Mongolia , China
| | - He Wang
- c School of Health Sciences , University of Newcastle , Newcastle , Australia
| | - Chun-Hong Zhang
- d Department of Pharmacy , Baotou Medical College , Inner Mongolia , China
| |
Collapse
|
19
|
Ma XT, Sun XY, Yu K, Gui BS, Gui Q, Ouyang JM. Effect of Content of Sulfate Groups in Seaweed Polysaccharides on Antioxidant Activity and Repair Effect of Subcellular Organelles in Injured HK-2 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2542950. [PMID: 28785372 PMCID: PMC5529655 DOI: 10.1155/2017/2542950] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/30/2017] [Indexed: 12/24/2022]
Abstract
This study aims to investigate the repair effect of subcellular structure injuries of the HK-2 cells of four degraded seaweed polysaccharides (DSPs), namely, the degraded Porphyra yezoensis, Gracilaria lemaneiformis, Sargassum fusiform, and Undaria pinnatifida polysaccharides. The four DSPs have similar molecular weight, but with different content of sulfate groups (i.e., 17.9%, 13.3%, 8.2%, and 5.5%, resp.). The damaged model was established using 2.8 mmol/L oxalate to injure HK-2 cells, and 60 μg/mL of various DSPs was used to repair the damaged cells. With the increase of sulfate group content in DSPs, the scavenging activity of radicals and their reducing power were all improved. Four kinds of DSPs have repair effect on the subcellular organelles of damaged HK-2 cells. After being repaired by DSPs, the release amount of lactate dehydrogenase was decreased, the integrity of cell membrane and lysosome increased, the Δψm increased, the cell of G1 phase arrest was inhibited, the proportion of S phase increased, and cell apoptotic and necrosis rates were significantly reduced. The greater the content of sulfate group is, the stronger is the repair ability of the polysaccharide. These DSPs, particularly the polysaccharide with higher sulfate group content, may be a potential drug for the prevention and cure of kidney stones.
Collapse
Affiliation(s)
- Xiao-Tao Ma
- Department of Nephrology, The Second Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xin-Yuan Sun
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Kai Yu
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Bao-Song Gui
- Department of Nephrology, The Second Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Qin Gui
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| |
Collapse
|
20
|
Zhang JJ, Zhu KQ. A novel antitumor compound nobiliside D isolated from sea cucumber ( Holothuria nobilis Selenka). Exp Ther Med 2017; 14:1653-1658. [PMID: 28810632 DOI: 10.3892/etm.2017.4656] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 11/25/2016] [Indexed: 11/05/2022] Open
Abstract
An anticancer compound, triterpene glycoside, was isolated from Holothuria nobilis Selenka. Its chemical structure and configuration were determined by two-dimensional nuclear magnetic resonance spectroscopy and electrospray ionization mass spectrometry. The novel active compound was identified as nobiliside D, with the molecular formula C40H61O17SNa and chemical name 3-O-[-β-D-pyranosyl (1-2)-4'-O-sulfon-ate-β-D-xylopyranosyl]-alkoxy-9-ene-3β, 12α, 17α, 25β-4 alcohol. An antitumor test was performed using xCELLigence Real-Time Cell Analysis. Nobiliside D exhibited inhibitory effects on human leukemic cell line K562, human leukemia cell line U937, human lung cancer cell line A-549, human cervix carcinoma cell line HeLa, human breast cancer cell line MCF-7 and human liver carcinoma cell line HepG2. Nobiliside exhibited the greatest inhibitory effect on K562 and MCF-7 cells with an IC50 of 0.83±0.14 and 0.82±0.11 µg/ml, respectively. When human tumor cell lines K562 and MCF-7 were treated by nobiliside D (0.5 µg/ml) for 24 h, 45.8% of K562 cells and 58.7% of MCF-7 cells were apoptotic, whereas only 0.5% of un-treated control cells were apoptotic. These data indicate the compound should offer potential as a novel drug for the treatment of a range of cancers.
Collapse
Affiliation(s)
- Jia-Jia Zhang
- School of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, P.R. China
| | - Ke-Qi Zhu
- Department of Traditional Chinese Internal Medicine, Ningbo No. 1 Hospital, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
21
|
Lin X, Wu S, Wang Q, Shi Y, Liu G, Zhi J, Wang F. Saikosaponin-D Reduces H 2O 2-Induced PC12 Cell Apoptosis by Removing ROS and Blocking MAPK-Dependent Oxidative Damage. Cell Mol Neurobiol 2016; 36:1365-1375. [PMID: 26961382 PMCID: PMC11482298 DOI: 10.1007/s10571-016-0336-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/25/2016] [Indexed: 10/22/2022]
Abstract
Neuronal oxidative stress (OS) injury has been proven to be associated with many neurodegenerative diseases, and thus, antioxidation treatment is an effective method for treating these diseases. Saikosaponin-D (SSD) is a sapogenin extracted from Bupleurum falcatum and has been shown to have many pharmacological activities. The main purpose of this study was to investigate whether and how SSD protects PC12 cells from H2O2-induced apoptosis. The non-toxic level of SSD significantly mitigated the H2O2-induced decrease in cell viability, reduced the apoptosis rate, improved the nuclear morphology, and reduced caspase-3 activation and poly ADP-ribose polymerase (PARP) cleavage. Additionally, exogenous H2O2-induced apoptosis by damaging the intracellular antioxidation system. SSD significantly slowed the H2O2-induced release of malonic dialdehyde (MDA) and lactate dehydrogenase and increased the activity of superoxide dismutase (SOD) and the total antioxidant capacity, thereby reducing apoptosis. More importantly, SSD effectively blocked H2O2-induced phosphorylation of extracellular-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38MAPK), and specific inhibitors of ERK, JNK, and p38-reduced OS injury and apoptosis, suggesting that SSD reduces OS injury and apoptosis via MAPK signalling pathways. Finally, we confirmed that SSD significantly reduced H2O2-induced reactive oxygen species (ROS) accumulation, and the ROS inhibitor blocked the apoptosis caused by MAPK activation and cellular oxidative damage. In short, our study confirmed that SSD reduces H2O2-induced PC12 cell apoptosis by removing ROS and blocking MAPK-dependent oxidative damage.
Collapse
Affiliation(s)
- Xuemei Lin
- Department of Neurology, The First Hospital of Xi'an, No. 30, Powder Lane, South Street, Xi'an, 710002, China
| | - Songdi Wu
- Department of Neurology, The First Hospital of Xi'an, No. 30, Powder Lane, South Street, Xi'an, 710002, China
| | - Qing Wang
- Department of Neurology, The First Hospital of Xi'an, No. 30, Powder Lane, South Street, Xi'an, 710002, China
| | - Yaling Shi
- Department of Neurology, The First Hospital of Xi'an, No. 30, Powder Lane, South Street, Xi'an, 710002, China
| | - Guozheng Liu
- Department of Neurology, The First Hospital of Xi'an, No. 30, Powder Lane, South Street, Xi'an, 710002, China
| | - Jin Zhi
- Department of Neurology, The First Hospital of Xi'an, No. 30, Powder Lane, South Street, Xi'an, 710002, China
| | - Fang Wang
- Department of Neurology, The First Hospital of Xi'an, No. 30, Powder Lane, South Street, Xi'an, 710002, China.
| |
Collapse
|
22
|
Wang G, Cui J, Guo Y, Wang Y, Kang L, Liu L. Cyclosporin A Protects H9c2 Cells Against Chemical Hypoxia-Induced Injury via Inhibition of MAPK Signaling Pathway. Int Heart J 2016; 57:483-9. [PMID: 27357441 DOI: 10.1536/ihj.16-091] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study aimed to investigate the effects and molecular mechanism of cyclosporin A (CsA) on cobalt chloride (CoCl2)-induced injury in H9c2 embryonic rat cardiac cells. The results showed that CsA could protect H9c2 cells against CoCl2-induced hypoxic injury. CsA effectively improved cell viability, and decreased LDH leakage, cell apoptosis, MDA concentration, and ROS generation, and increased SOD activity, GSH production, and CAT activity in a dosedependent manner. In addition, CsA treatment blocked the CoCl2-induced increases in ROS production and mitochondrial dysfunction, including a decrease in membrane potential, cytochrome c (cyto-c) release, Bax/Bcl-2 imbalance, as well as the ratios of cl-casp-9/casp-9 and cl-casp-3/casp-3 ratios, via the inhibition of p38 and ERK MAPK signaling pathways. The results also suggested that CsA protected H9c2 cells against CoCl2-induced hypoxic injury, possibly by suppressing the MAPK signaling pathway. Thus, CsA is a potential therapeutic agent for cardiac hypoxic injury.
Collapse
Affiliation(s)
- Gang Wang
- Department of Cardiology, Affiliated Hospital of Taishan Medical College
| | | | | | | | | | | |
Collapse
|
23
|
Cui C, Cui N, Wang P, Song S, Liang H, Ji A. Neuroprotective effect of sulfated polysaccharide isolated from sea cucumber Stichopus japonicus on 6-OHDA-induced death in SH-SY5Y through inhibition of MAPK and NF-κB and activation of PI3K/Akt signaling pathways. Biochem Biophys Res Commun 2016; 470:375-383. [DOI: 10.1016/j.bbrc.2016.01.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 01/06/2016] [Indexed: 10/22/2022]
|