1
|
Mirzaei S, Ahangari F, Faramarzi F, Khoshnazar SM, Khormizi FZ, Aghagolzadeh M, Rostami M, Asghariazar V, Alimohammadi M, Rahimzadeh P, Farahani N. MicroRNA-146 family: Molecular insights into their role in regulation of signaling pathways in glioma progression. Pathol Res Pract 2024; 264:155707. [PMID: 39536541 DOI: 10.1016/j.prp.2024.155707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Glioma is a highly lethal brain cancer in humans. Despite advancements in treatment, the prognosis for patients remains unfavorable. Epigenetic factors, along with their interactions and non-coding RNAs (ncRNAs), are crucial in glioma cells' development and aggressive characteristics. MicroRNAs (miRNAs) are a class of small non-coding RNAs (ncRNAs) that modulate the expression of various genes by binding to target mRNA molecules. They play a critical role in regulating essential biological mechanisms such as cell proliferation and differentiation, cell cycle, and apoptosis. MiR-146a/miR-146b is a significant and prevalent miRNA whose expression alterations are linked to various pathological changes in cancer cells, as well as the modulation of several cellular signaling pathways, including NF-κB, TGF-β, PI3K/Akt, and Notch-1. Scientists may identify novel targets in clinical settings by studying the complicated link between Mir-146a/mir-146b, drug resistance, molecular pathways, and pharmacological intervention in gliomas. Additionally, its interactions with other ncRNAs, such as circular RNA and long non-coding RNA, contribute to the pathogenesis of glioma. As well as miR-146 holds potential as both a diagnostic and therapeutic biomarker for patients with this condition. In the current review, we investigate the significance of miRNAs in the context of glioma, with a particular focus on the critical role of Mir-146a/mir-146b in glioma tumors. Additionally, we examined the clinical relevance of this miRNA, highlighting its potential implications for diagnosis and treatment.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Fatemeh Ahangari
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Faramarzi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mahboobeh Aghagolzadeh
- Department of Biology, Faculty of Basic Sciences, University of Shahid Chamran of Ahvaz, Ahvaz, Iran
| | - Mohammadreza Rostami
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Food Science and Nutrition Group (FSAN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Vahid Asghariazar
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Shi H, Xie X, Zheng S, Chen H, Liu C, Li S, Lu M. Endotoxin tolerance ameliorates lipopolysaccharide/D-galactosamine-induced acute liver failure by negative regulation of the NF-κB/NLRP3 and activation of Nrf2/HO-1 via Sitr1. Int Immunopharmacol 2024; 132:111994. [PMID: 38581992 DOI: 10.1016/j.intimp.2024.111994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
Acute liver failure (ALF) is a potentially fatal disorder characterized by extensive hepatocyte necrosis and rapid decline in liver function. Numerous factors, including oxidative stress, cell death, and inflammatory responses, are associated with its pathogenesis. Endotoxin tolerance (ET) refers to the phenomenon in which the body or cells exhibit low or no response to high-dose lipopolysaccharide (LPS) stimulation after pre-stimulation with low-dose LPS. However, the specific mechanism through which ET regulates LPS/D-galactosamine (D-GalN)-induced ALF remains unclear. An ALF mouse model was established by intraperitoneal injection of D-GalN (400 mg/kg) and LPS (10 mg/kg). A low dose of LPS (0.1 mg/kg/d) was continuously administered to mice for 5 d before modeling to assess the protective effect of ET. The data from this study showed that ET alleviated the inflammatory response in mice with LPS/D-GalN-induced ALF. ET inhibited LPS-induced oxidative damage and pyroptosis in macrophages in vitro. RNA sequencing analysis showed that the NF-κB/NLRP3 pathway was linked to the anti-inflammatory and antioxidative effects of ET. Furthermore, using western blot, RT-qPCR, and immunofluorescence, we verified that ET inhibited the NF-κB/NLRP3 pathway and triggered the Nrf2/HO-1 signaling pathway to attenuate oxidative stress and cell pyroptosis. Sirt1 knockdown reversed this protective effect. In summary, our research elucidates that ET prevents ALF advancement by upregulating Sirt1 levels, triggering the Nrf2/HO-1 signaling axis, and suppressing the NF-κB/NLRP3 signaling cascade to inhibit oxidative stress and cell pyroptosis. Our results provide a mechanistic explanation for the protective effect of ET against ALF.
Collapse
Affiliation(s)
- Huifang Shi
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xueting Xie
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sijie Zheng
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hong Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chenyi Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shu Li
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mingqin Lu
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
3
|
Charoensaensuk V, Huang BR, Huang ST, Lin C, Xie SY, Chen CW, Chen YC, Cheng HT, Liu YS, Lai SW, Shen CK, Lin HJ, Yang LY, Lu DY. LPS priming-induced immune tolerance mitigates LPS-stimulated microglial activation and social avoidance behaviors in mice. J Pharmacol Sci 2024; 154:225-235. [PMID: 38485340 DOI: 10.1016/j.jphs.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/19/2024] Open
Abstract
In this study, we investigated the regulatory mechanisms underlying the effects of LPS tolerance on the inflammatory homeostasis of immune cells. LPS priming-induced immune tolerance downregulated cyclooxygenase-2, and lowered the production of prostaglandin-E2 in microglial cells. In addition, LPS tolerance downregulated the expression of suppressor of cytokine signaling 3, and inducible nitric oxide synthase/nitric oxide; suppressed the LPS-mediated induction of tumor necrosis factor-α, interleukin (IL)-6, and IL-1; and reduced reactive oxygen species production in microglial cells. LPS stimulation increased the levels of the adaptive response-related proteins heme oxygenase-1 and superoxide dismutase 2, and the levels of heme oxygenase-1 (HO-1) enhanced after LPS priming. Systemic administration of low-dose LPS (0.5 mg/kg) to mice for 4 consecutive days attenuated high-dose LPS (5 mg/kg)-induced inflammatory response, microglial activation, and proinflammatory cytokine expression. Moreover, repeated exposure to low-dose LPS suppressed the recruitment of peripheral monocytes or macrophages to brain regions and downregulated the expression of proinflammatory cytokines. Notably, LPS-induced social avoidance behaviors in mice were mitigated by immune tolerance. In conclusion, immune tolerance may reduce proinflammatory cytokine expression and reactive oxygen species production. Our findings provide insights into the effects of endotoxin tolerance on innate immune cells and social behaviors.
Collapse
Affiliation(s)
- Vichuda Charoensaensuk
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Bor-Ren Huang
- Department of Neurosurgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan; School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Sian-Ting Huang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chingju Lin
- Department of Physiology, School of Medicine, China Medical University, Taichung, 404328, Taiwan
| | - Sheng-Yun Xie
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chao-Wei Chen
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Yen-Chang Chen
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Han-Tsung Cheng
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Shu Liu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Sheng-Wei Lai
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Ching-Kai Shen
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Hui-Jung Lin
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, China Medical University, Taichung, 404328, Taiwan; Laboratory for Neural Repair, China Medical University Hospital, Taichung, 404327, Taiwan; Biomedical Technology R&D Center, China Medical University Hospital, Taichung, 404327, Taiwan.
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan; Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan.
| |
Collapse
|
4
|
Carloni E, Ramos A, Hayes LN. Developmental Stressors Induce Innate Immune Memory in Microglia and Contribute to Disease Risk. Int J Mol Sci 2021; 22:13035. [PMID: 34884841 PMCID: PMC8657756 DOI: 10.3390/ijms222313035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/26/2022] Open
Abstract
Many types of stressors have an impact on brain development, function, and disease susceptibility including immune stressors, psychosocial stressors, and exposure to drugs of abuse. We propose that these diverse developmental stressors may utilize a common mechanism that underlies impaired cognitive function and neurodevelopmental disorders such as schizophrenia, autism, and mood disorders that can develop in later life as a result of developmental stressors. While these stressors are directed at critical developmental windows, their impacts are long-lasting. Immune activation is a shared pathophysiology across several different developmental stressors and may thus be a targetable treatment to mitigate the later behavioral deficits. In this review, we explore different types of prenatal and perinatal stressors and their contribution to disease risk and underlying molecular mechanisms. We highlight the impact of developmental stressors on microglia biology because of their early infiltration into the brain, their critical role in brain development and function, and their long-lived status in the brain throughout life. Furthermore, we introduce innate immune memory as a potential underlying mechanism for developmental stressors' impact on disease. Finally, we highlight the molecular and epigenetic reprogramming that is known to underlie innate immune memory and explain how similar molecular mechanisms may be at work for cells to retain a long-term perturbation after exposure to developmental stressors.
Collapse
Affiliation(s)
- Elisa Carloni
- Department of Molecular and Cellular Biology, Dartmouth College, Hanover, NH 03755, USA;
| | - Adriana Ramos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA;
| | - Lindsay N. Hayes
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
5
|
Mizobuchi H, Soma GI. Low-dose lipopolysaccharide as an immune regulator for homeostasis maintenance in the central nervous system through transformation to neuroprotective microglia. Neural Regen Res 2021; 16:1928-1934. [PMID: 33642362 PMCID: PMC8343302 DOI: 10.4103/1673-5374.308067] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/26/2020] [Accepted: 12/16/2020] [Indexed: 12/25/2022] Open
Abstract
Microglia, which are tissue-resident macrophages in the brain, play a central role in the brain innate immunity and contribute to the maintenance of brain homeostasis. Lipopolysaccharide is a component of the outer membrane of gram-negative bacteria, and activates immune cells including microglia via Toll-like receptor 4 signaling. Lipopolysaccharide is generally known as an endotoxin, as administration of high-dose lipopolysaccharide induces potent systemic inflammation. Also, it has long been recognized that lipopolysaccharide exacerbates neuroinflammation. In contrast, our study revealed that oral administration of lipopolysaccharide ameliorates Alzheimer's disease pathology and suggested that neuroprotective microglia are involved in this phenomenon. Additionally, other recent studies have accumulated evidence demonstrating that controlled immune training with low-dose lipopolysaccharide prevents neuronal damage by transforming the microglia into a neuroprotective phenotype. Therefore, lipopolysaccharide may not a mere inflammatory inducer, but an immunomodulator that can lead to neuroprotective effects in the brain. In this review, we summarized current studies regarding neuroprotective microglia transformed by immune training with lipopolysaccharide. We state that microglia transformed by lipopolysaccharide preconditioning cannot simply be characterized by their general suppression of proinflammatory mediators and general promotion of anti-inflammatory mediators, but instead must be described by their complex profile comprising various molecules related to inflammatory regulation, phagocytosis, neuroprotection, anti-apoptosis, and antioxidation. In addition, microglial transformation seems to depend on the dose of lipopolysaccharide used during immune training. Immune training of neuroprotective microglia using low-dose lipopolysaccharide, especially through oral lipopolysaccharide administration, may represent an innovative prevention or treatment for neurological diseases; however more vigorous studies are still required to properly modulate these treatments.
Collapse
Affiliation(s)
- Haruka Mizobuchi
- Control of Innate Immunity, Technology Research Association, Kagawa, Japan
| | - Gen-Ichiro Soma
- Control of Innate Immunity, Technology Research Association, Kagawa, Japan
- Macrophi Inc., Kagawa, Japan
- Research Institute for Healthy Living, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| |
Collapse
|
6
|
Nguyen TH, Turek I, Meehan-Andrews T, Zacharias A, Irving H. Analysis of interleukin-1 receptor associated kinase-3 (IRAK3) function in modulating expression of inflammatory markers in cell culture models: A systematic review and meta-analysis. PLoS One 2020; 15:e0244570. [PMID: 33382782 PMCID: PMC7774834 DOI: 10.1371/journal.pone.0244570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/13/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND IRAK3 is a critical modulator of inflammation in innate immunity. IRAK3 is associated with many inflammatory diseases, including sepsis, and is required in endotoxin tolerance to maintain homeostasis of inflammation. The impact of IRAK3 on inflammatory markers such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in cell culture models remains controversial. OBJECTIVE To analyse temporal effects of IRAK3 on inflammatory markers after one- or two-challenge interventions in cell culture models. METHODS A systematic search was performed to identify in vitro cell studies reporting outcome measures of expression of IRAK3 and inflammatory markers. Meta-analyses were performed where sufficient data were available. Comparisons of outcome measures were performed between different cell lines and human and mouse primary cells. RESULTS The literature search identified 7766 studies for screening. After screening titles, abstracts and full-texts, a total of 89 studies were included in the systematic review. CONCLUSIONS The review identifies significant effects of IRAK3 on decreasing NF-κB DNA binding activity in cell lines, TNF-α protein level at intermediate time intervals (4h-15h) in cell lines or at long term intervals (16h-48h) in mouse primary cells following one-challenge. The patterns of TNF-α protein expression in human cell lines and human primary cells in response to one-challenge are more similar than in mouse primary cells. Meta-analyses confirm a negative correlation between IRAK3 and inflammatory cytokine (IL-6 and TNF-α) expression after two-challenges.
Collapse
Affiliation(s)
- Trang Hong Nguyen
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| | - Ilona Turek
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| | - Terri Meehan-Andrews
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| | - Anita Zacharias
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| | - Helen Irving
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| |
Collapse
|
7
|
Mizobuchi H, Yamamoto K, Tsutsui S, Yamashita M, Nakata Y, Inagawa H, Kohchi C, Soma GI. A unique hybrid characteristic having both pro- and anti-inflammatory phenotype transformed by repetitive low-dose lipopolysaccharide in C8-B4 microglia. Sci Rep 2020; 10:8945. [PMID: 32488176 PMCID: PMC7265460 DOI: 10.1038/s41598-020-65998-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022] Open
Abstract
Although lipopolysaccharide (LPS) is regarded as an inducer of inflammation, previous studies have suggested that repetitive low-dose LPS has neuroprotective effects via immunomodulation of microglia, resident macrophages of brain. However, microglia transformed by the stimulus of repetitive low-dose LPS (REPELL-microglia) are not well characterized, whereas microglia transformed by repetitive high-dose LPS are well studied as an endotoxin tolerance model in which the induction of pro-inflammatory molecules is suppressed. In this study, to characterize REPELL-microglia, the gene expression and phagocytic activity of REPELL-microglia were analyzed with the murine C8-B4 microglia cell line. The REPELL-microglia were characterized by a high expression of pro-inflammatory molecules (Nos2, Ccl1, IL-12B, and CD86), anti-inflammatory molecules (IL-10, Arg1, Il13ra2, and Mrc1), and neuroprotective molecules (Ntf5, Ccl7, and Gipr). In addition, the phagocytic activity of REPELL-microglia was promoted as high as that of microglia transformed by single low-dose LPS. These results suggest the potential of REPELL-microglia for inflammatory regulation, neuroprotection, and phagocytic clearance. Moreover, this study revealed that gene expression of REPELL-microglia was distinct from that of microglia transformed by repetitive high-dose LPS treatment, suggesting the diversity of microglia transformation by different doses of LPS.
Collapse
Affiliation(s)
- Haruka Mizobuchi
- Control of Innate Immunity, Technology Research Association, Kagawa, Japan
| | - Kazushi Yamamoto
- Control of Innate Immunity, Technology Research Association, Kagawa, Japan
| | | | - Masafumi Yamashita
- Control of Innate Immunity, Technology Research Association, Kagawa, Japan
| | | | - Hiroyuki Inagawa
- Control of Innate Immunity, Technology Research Association, Kagawa, Japan.,Macrophi Inc., Kagawa, Japan.,Research Institute for Healthy Living, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | | | - Gen-Ichiro Soma
- Control of Innate Immunity, Technology Research Association, Kagawa, Japan. .,Macrophi Inc., Kagawa, Japan. .,Research Institute for Healthy Living, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan.
| |
Collapse
|
8
|
Twayana KS, Chaudhari N, Ravanan P. Prolonged lipopolysaccharide exposure induces transient immunosuppression in BV2 microglia. J Cell Physiol 2018; 234:1889-1903. [PMID: 30054903 DOI: 10.1002/jcp.27064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022]
Abstract
Continuous pre-exposure of immune cells to low level of inflammatory stimuli makes them hyporesponsive to subsequent exposure. This pathophysiological adaptation; known as endotoxin tolerance is a general paradigm behind several disease pathogenesis. Current study deals with this immunosuppression with respect to BV2 microglia. We attempted to investigate their immune response under prolonged endotoxin exposure and monitor the same upon withdrawal of the stimuli. BV2 microglia cells were maintained under continual exposure of lipopolysaccharide (LPS) for weeks with regular passage after 72 hr (prolonged LPS exposed cells [PLECs]). PLECs were found to be immunosuppressed with diminished expression of proinflammatory cytokines (IL6, IL1β, TNF-α, and iNOS) and production of nitric oxide, as compared to once LPS exposed cells. Upon remaintenance of cells in normal media without LPS exposure (LPS withdrawal cells [LWCs]), the induced immunosuppression reversed and cells started responding to inflammatory stimuli; revealed by significant expression of proinflammatory cytokines. LWCs showed functional similarities to never LPS exposed cells (NLECs) in phagocytosis activity and their response to anti-inflammatory agents like dexamethasone. Despite their immunoresponsiveness, PLECs were inflamed and showed higher autophagy rate than NLECs. Additionally, we investigated the role of inhibitor of apoptotic proteins (IAPs) in PLECs to understand whether IAPs aids in the survival of microglial cells under stress conditions. Our results revealed that cIAP1 and cIAP2 are induced in PLECs which might play a role in retaining the viability. Furthermore, antagonism of IAPs has significantly induced cell death in PLECs suggesting the role of IAPs in microglial survival under stress condition. Conclusively, our data suggest that continuous exposure of BV2 microglia cells to LPS results in transient immunosuppression and indicates the involvement of IAPs in retaining their viability under inflammatory stress.
Collapse
Affiliation(s)
- Krishna Sundar Twayana
- Apoptosis and Cell Survival Research Lab, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, India
| | - Namrata Chaudhari
- Apoptosis and Cell Survival Research Lab, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, India
| | - Palaniyandi Ravanan
- Apoptosis and Cell Survival Research Lab, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, India
| |
Collapse
|
9
|
Microglial SMAD4 regulated by microRNA-146a promotes migration of microglia which support tumor progression in a glioma environment. Oncotarget 2018; 9:24950-24969. [PMID: 29861845 PMCID: PMC5982777 DOI: 10.18632/oncotarget.25116] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/19/2018] [Indexed: 12/28/2022] Open
Abstract
Glioma tumors constitute a significant portion of microglial cells, which are known to support tumor progression. The present study demonstrates that transforming growth factor-β (TGFβ) signaling pathway in microglia in a glioma environment is involved in tumor progression and pathogenesis. It has been shown that the TGFβ level is elevated in higher grades of gliomas and its signaling pathway regulates tumor progression through phosphorylation of SMAD2 and SMAD3, which form a complex with SMAD4 to regulate target gene transcription. In an in vitro cell line-based model increased protein levels of pSMAD2/3, total SMAD2/3 and SMAD4 were observed in murine BV2 microglia cultured in glioma conditioned medium (GCM), indicative of the activated TGFβ signaling pathway in microglia associated with glioma environment. Immunofluorescence labeling further revealed the expression of SMAD4 in microglial and non-microglial cells of human glioblastomas tissue in vivo. Functional analysis through shRNA-mediated stable knockdown of SMAD4 in microglia revealed the downregulation of the expression of matrix metalloproteinase 9 (MMP9), which has been shown to be involved in tumor progression and cell migration. Further, knockdown of SMAD4 in microglia decreased the migration of microglial cells towards GCM, indicating that SMAD4 promotes microglial migration in glioma environment. In addition, SMAD4 has been shown to be post-transcriptionally regulated by microRNA-146a, which was downregulated in microglia treated with GCM. Overexpression of miR-146a resulted in decreased expression of SMAD4 together with tumor supportive gene MMP9 in microglia, and subsequently suppressed microglial migration towards GCM, possibly through regulation of SMAD4. On the other hand, the cell viability assay revealed decreased viability of glioma cells when they were treated with conditioned medium derived from SMAD4 knockdown microglia or miR-146a overexpressed microglia as compared to glioma cells treated with the medium from control microglial cells. Taken together, the present study suggests that microglial SMAD4 which is epigenetically regulated by miR-146a promotes microglial migration in gliomas and glioma cell viability.
Collapse
|
10
|
Li P, Liu H, Zhang Y, Liao R, He K, Ruan X, Gong J. Endotoxin Tolerance Inhibits Degradation of Tumor Necrosis Factor Receptor-Associated Factor 3 by Suppressing Pellino 1 Expression and the K48 Ubiquitin Ligase Activity of Cellular Inhibitor of Apoptosis Protein 2. J Infect Dis 2016; 214:906-915. [PMID: 27377744 DOI: 10.1093/infdis/jiw279] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023] Open
Abstract
Pellino 1 positively regulates Toll-like receptor 4 signaling by regulating tumor necrosis factor receptor-associated factor 3 (TRAF3) degradation and is suppressed with the induction of endotoxin tolerance. However, the role of TRAF3 in endotoxin tolerance is largely unknown. In this study, we found that lipopolysaccharide (LPS) stimulation decreased TARF3 protein expression in mouse Kupffer cells (KCs) and liver tissues, whereas endotoxin tolerization abrogated this effect. Degradative TRAF3 K48-linked ubiquitination and the cytoplasmic translocation of the MYD88-associated multiprotein complex were significantly inhibited in tolerized KCs, which led to markedly impaired activation of MYD88-dependent JNK and p38 and downregulation of inflammatory cytokines. TRAF3 ablation failed to induce a fully endotoxin-tolerant state in RAW264.7 cells. Pellino 1 knockdown in Raw264.7 cells did not impair induction of cIAP2 in response to LPS but inhibited the K63-linked ubiquitination of cellular inhibitor of apoptosis protein 2 (cIAP2) and K48-linked ubiquitination of TRAF3 protein. We also found upregulation of Pellino 1 and downregulation of TRAF3 in liver tissues of patients with cholangitis. Our findings reveal a novel mechanism that endotoxin tolerance reprograms mitogen-activated protein kinase signaling by suppressing Pellino 1-mediated K63-linked ubiquitination of cIAP2, K48-linked ubiquitination, and degradation of TRAF3.
Collapse
Affiliation(s)
| | | | | | - Rui Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, China
| | - Kun He
- Department of Hepatobiliary Surgery
| | - Xiongzhong Ruan
- Centre for Lipid Research, & Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University
| | | |
Collapse
|