1
|
Wu Z, Yin Y, Liu R, Li X, Wang Z, Wu C, Tan J, Fu Z, Song C, Lee Wong N, Peng X, Lai S, Cui J, Han M, Peng Y, Sun Y, Wu L, Adzic M, Zeng L, Zhang H, Yau SY, Chen G. Chronic treatment of mixture of two iridoids proportional to prescriptional dose of Yueju improves hippocampal PACAP-related neuroinflammation and neuroplasticity signaling in the LPS-induced depression model. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119031. [PMID: 39522842 DOI: 10.1016/j.jep.2024.119031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Geniposide (GP) and shanzhiside methyl ester (SM) are the two important bioactive compounds in the classical traditional Chinese herbal medicine Yueju Pill, which is currently used as an over-the-counter (OTC) medicine in China. Yueju has been demonstrated with antidepressant-like effects with the prescriptional dose. As GP and SM both have antidepressant potential, the synergism of them could be crucial to the function of Yueju. OBJECTIVES The neuropeptide pituitary adenylyl cyclase-activating polypeptide (PACAP) has been implicated in the onset of antidepressant-like response. Here we investigated the synergism of the chronic treatment with GP and SM, at proportional doses to Yueju, on antidepressant-like effects, and underlying mechanism of PACAP-related signaling in a neuroinflammation-based depression model. MATERIALS AND METHODS Depression-related behaviors were tested in the lipopolysaccharide (LPS)-induced depression model. The molecular signaling of neuroinflammation and neuroplasticity was investigated using Western blot analysis, immunofluorescence and pharmacological inhibition of mTOR signaling. RESULTS Chronic treatment of GP and SM (GS) at the dose which is proportional to the prescriptional dose of Yueju synergistically elicited antidepressant-like effects. Chronic treatment of the GS or the conventional antidepressant fluoxetine (FLX) showed antidepressant-like effects in LPS-injected mice. In vitro analysis indicated the synergism of GS on PACAP expression. In the hippocampus of LPS-injected mice, both GS and FLX enhanced PACAP expression, downregulated the inflammatory signaling of Iba-1/NF-кB/IL-1β and NLRP3, and upregulated the neuroplasticity signaling of mTOR-BDNF/PSD95. Additionally, both treatments reduced microglia activation indicated by Iba-1 immunofluorescent staining. Rapamycin, an mTOR inhibitor, blunted the antidepressant-like effects and the upregulation of BDNF expression induced by chronic GS. CONCLUSION The antidepressant-like effects elicited by chronic fluoxetine or by synergistic doses of GS were involved in the upregulation of hippocampal PACAP levels, in association with ameliorated neuroinflammation and neuroplasticity signaling in LPS-injected mice. GS synergism may play a key part in the antidepressant-like effects of the prescriptional dose of Yueju.
Collapse
Affiliation(s)
- Zhangjie Wu
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, China; Zhuhai Institute of Jinan University, Zhuhai, 519070, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China; Guangdong-Hong Kong-Macau Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral omeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, China
| | - Ying Yin
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, China; Zhuhai Institute of Jinan University, Zhuhai, 519070, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China; Guangdong-Hong Kong-Macau Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral omeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, China
| | - Ruiyi Liu
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, China; Zhuhai Institute of Jinan University, Zhuhai, 519070, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China; Guangdong-Hong Kong-Macau Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral omeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, China
| | - Xianhui Li
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, China; Zhuhai Institute of Jinan University, Zhuhai, 519070, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China; Guangdong-Hong Kong-Macau Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral omeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, China
| | - Ziying Wang
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, China; Zhuhai Institute of Jinan University, Zhuhai, 519070, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China; Guangdong-Hong Kong-Macau Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral omeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, China
| | - Changyu Wu
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, China; Zhuhai Institute of Jinan University, Zhuhai, 519070, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China; Guangdong-Hong Kong-Macau Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral omeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, China
| | - Jingwen Tan
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, China; Zhuhai Institute of Jinan University, Zhuhai, 519070, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China; Guangdong-Hong Kong-Macau Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral omeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, China
| | - Zhenzhen Fu
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, China; Zhuhai Institute of Jinan University, Zhuhai, 519070, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China; Guangdong-Hong Kong-Macau Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral omeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, China
| | - Chenghao Song
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, China; Zhuhai Institute of Jinan University, Zhuhai, 519070, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China; Guangdong-Hong Kong-Macau Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral omeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, China
| | - Nga Lee Wong
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, China; Zhuhai Institute of Jinan University, Zhuhai, 519070, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China; Guangdong-Hong Kong-Macau Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral omeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, China
| | - Xiangyi Peng
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, China; Zhuhai Institute of Jinan University, Zhuhai, 519070, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China; Guangdong-Hong Kong-Macau Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral omeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, China
| | - Shixiong Lai
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, China; Zhuhai Institute of Jinan University, Zhuhai, 519070, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China; Guangdong-Hong Kong-Macau Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral omeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, China
| | - Jinshuai Cui
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, China; Zhuhai Institute of Jinan University, Zhuhai, 519070, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China; Guangdong-Hong Kong-Macau Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral omeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, China
| | - Mingzhi Han
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, China; Zhuhai Institute of Jinan University, Zhuhai, 519070, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China; Guangdong-Hong Kong-Macau Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral omeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, China
| | - Yuhan Peng
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, China; Zhuhai Institute of Jinan University, Zhuhai, 519070, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China; Guangdong-Hong Kong-Macau Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral omeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, China
| | - Yan Sun
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lei Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Miroslav Adzic
- "Vinča Institute" of Nuclear Sciences, Laboratory of Molecular Biology and Endocrinology 090, University of Belgrade, 11001, Belgrade, Serbia
| | - Li Zeng
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, 999078, China
| | - Hailou Zhang
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, China; Zhuhai Institute of Jinan University, Zhuhai, 519070, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China; Guangdong-Hong Kong-Macau Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral omeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, China.
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hong Kong, 999077, China; Mental Health Research Center (MHRC), The Hong Kong Polytechnic University, Hong Kong S.A.R, 999077, China.
| | - Gang Chen
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, China; Zhuhai Institute of Jinan University, Zhuhai, 519070, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China; Guangdong-Hong Kong-Macau Joint Laboratory of Traditional Chinese Medicine on Brain-Peripheral omeostasis and Comprehensive Health, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
2
|
Lu C, Gao ZW, Xing S, Wang HH, Huang YK, Zhou H, Wu L. Rapid Antidepressant-Like Potential of Chaihu Shugan San Depends on Suppressing Glutamate Neurotransmission and Activating Synaptic Proteins in Hippocampus of Female Mice. Chin J Integr Med 2024; 30:692-700. [PMID: 38733455 DOI: 10.1007/s11655-024-3906-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2023] [Indexed: 05/13/2024]
Abstract
OBJECTIVE To explore the rapid antidepressant potential and the underlying mechanism of Chaihu Shugan San (CSS) in female mice. METHODS Liquid chromatography mass spectrometry (LC-MS)/MS was used to determine the content of main components in CSS to determine its stability. Female C57BL/6J mice were randomly divided into 4 groups, including control (saline), vehicle (saline), CSS (4 g/kg) and ketamine (30 mg/kg) groups. Mice were subjected to irregular stress stimulation for 4 weeks to establish the chronic mild stress (CMS) model, then received a single administration of drugs. Two hours later, the behavioral tests were performed, including open field test, tail suspension test (TST), forced swimming test (FST), novelty suppression feeding test (NSF), and sucrose preference test (SPT). Western blot analysis was used to detect the expression levels of N-methyl-D-aspartate receptor (NMDA) subtypes [N-methyl-D-aspartate receptor 1 (NR1), NR2A, NR2B], synaptic proteins [synapsin1 and post synaptic density protein 95 (PSD95)], and brain-derived neurotrophic factor (BDNF). Moreover, the rapid antidepressant effect of CSS was tested by pharmacological technologies and optogenetic interventions that activated glutamate receptors, NMDA. RESULTS Compared with the vehicle group, a single administration of CSS (4 g/kg) reversed all behavioral defects in TST, FST, SPT and NSF caused by CMS (P<0.05 or P<0.01). CSS also significantly decreased the expressions of NMDA subtypes (NR1, NR2A, NR2B) at 2 h in hippocampus of mice (all P<0.01). In addition, similar to ketamine, CSS increased levels of synaptic proteins and BDNF (P<0.05 or P<0.01). Furthermore, the rapid antidepressant effects of CSS were blocked by transient activation of NMDA receptors in the hippocampus (all P<0.01). CONCLUSION Rapid antidepressant effects of CSS by improving behavioral deficits in female CMS mice depended on rapid suppression of NMDA receptors and activation of synaptic proteins.
Collapse
Affiliation(s)
- Chao Lu
- Department of Chinese Medicine Preparations, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Zi-Wei Gao
- Department of Chinese Medicine Preparations, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Shan Xing
- Department of Chinese Medicine Preparations, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
- College of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Hui-Hui Wang
- Department of Chinese Medicine Preparations, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Yun-Ke Huang
- Department of Chinese Medicine, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Hang Zhou
- Department of Chinese Medicine Preparations, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Lei Wu
- Department of Chinese Medicine Preparations, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
3
|
Zhang B, Su D, Song Y, Li H, Chen C, Liao L, Zhang H, Luo J, Yang M, Zhu G, Ai Z. Yueju volatile oil plays an integral role in the antidepressant effect by up-regulating ERK/AKT-mediated GLT-1 expression to clear glutamate. Fitoterapia 2023; 169:105583. [PMID: 37336418 DOI: 10.1016/j.fitote.2023.105583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Phytochemical investigation of the volatile oil of Yueju (YJVO) and its constituent herbs induced the detection of 52 compounds in YJVO, mainly monoterpenes and sesquiterpenes as well as a small amount of aromatic and aliphatic compounds. 5 of these compounds were found only in the YJVO instead of the volatile oil of its constituent herbs. The anti-depressant effect of YJVO was proved by behavioral tests in chronic unpredictable mild stress (CUMS) mice. An acute oral toxicity evaluation determined the LD50 of YJVO was 5.780 mL/kg. Doppler ultrasound and laser speckle imaging have detected that the YJVO could improve depression-related cerebral blood flow. In addition, related neurotransmitters and proteins were analyzed through targeted metabolomics and immunofluorescence. The potential antidepressant mechanisms of YJVO related to significantly decreasing Glu in CUMS mice by up-regulating the ERK/AKT-mediated expression of GLT-1.
Collapse
Affiliation(s)
- Bike Zhang
- Key Laboratory of Evaluation of Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, Jiangxi Province, China
| | - Dan Su
- Key Laboratory of Evaluation of Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, Jiangxi Province, China
| | - Yonggui Song
- Key Laboratory of Evaluation of Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, Jiangxi Province, China
| | - Huizhen Li
- Key Laboratory of Evaluation of Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, Jiangxi Province, China
| | - Changlian Chen
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Liangliang Liao
- Key Laboratory of Evaluation of Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, Jiangxi Province, China
| | - Hongjie Zhang
- Key Laboratory of Evaluation of Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, Jiangxi Province, China
| | - Jian Luo
- Key Laboratory of Evaluation of Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, Jiangxi Province, China
| | - Ming Yang
- Jiangxi Guxiang Jinyun Comprehensive Health Industry Co., Ltd., Nanchang, China
| | - Genhua Zhu
- Key Laboratory of Evaluation of Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, Jiangxi Province, China
| | - Zhifu Ai
- Key Laboratory of Evaluation of Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, Jiangxi Province, China.
| |
Collapse
|
4
|
Tran KN, Nguyen NPK, Nguyen LTH, Shin HM, Yang IJ. Screening for Neuroprotective and Rapid Antidepressant-like Effects of 20 Essential Oils. Biomedicines 2023; 11:biomedicines11051248. [PMID: 37238920 DOI: 10.3390/biomedicines11051248] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Depression is a serious psychiatric disorder with high prevalence, and the delayed onset of antidepressant effects remains a limitation in the treatment of depression. This study aimed to screen essential oils that have the potential for rapid-acting antidepressant development. PC12 and BV2 cells were used to identify essential oils with neuroprotective effects at doses of 0.1 and 1 µg/mL. The resulting candidates were treated intranasally (25 mg/kg) to ICR mice, followed by a tail suspension test (TST) and an elevated plus maze (EPM) after 30 min. In each effective essential oil, five main compounds were computationally analyzed, targeting glutamate receptor subunits. As a result, 19 essential oils significantly abolished corticosterone (CORT)-induced cell death and lactate dehydrogenase (LDH) leakage, and 13 reduced lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6). From in vivo experiments, six essential oils decreased the immobility time of mice in the TST, in which Chrysanthemum morifolium Ramat. and Myristica fragrans Houtt. also increased time and entries into the open arms of the EPM. Four compounds including atractylon, α-curcumene, α-farnesene, and selina-4(14),7(11)-dien-8-one had an affinity toward GluN1, GluN2B, and Glu2A receptor subunits surpassed that of the reference compound ketamine. Overall, Atractylodes lancea (Thunb.) DC and Chrysanthemum morifolium Ramat essential oils are worthy of further research for fast-acting antidepressants through interactions with glutamate receptors, and their main compounds (atractylon, α-curcumene, α-farnesene, and selina-4(14),7(11)-dien-8-one) are predicted to underlie the fast-acting effect.
Collapse
Affiliation(s)
- Khoa Nguyen Tran
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Nhi Phuc Khanh Nguyen
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Ly Thi Huong Nguyen
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Heung-Mook Shin
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - In-Jun Yang
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| |
Collapse
|
5
|
Wang G, Yang H, Zuo W, Mei X. Antidepressant-like effect of acute dose of Naringin involves suppression of NR1 and activation of protein kinase A/cyclic adenosine monophosphate response element-binding protein/brain-derived neurotrophic factor signaling in hippocampus. Behav Pharmacol 2023; 34:101-111. [PMID: 36503881 DOI: 10.1097/fbp.0000000000000713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Naringin (Nr) has been identified to have antidepressant-like effects through repeated treatment. However, the underlying mechanism of the rapid antidepressant-like effects of Nr was still unclear. The present study used behavioral tests, classic depressive model and pharmacological methods to reveal the rapid antidepressant-like potential of Nr. We found that a single dose of Nr (20 mg/kg) produced antidepressant-like action after 2 h in the tail suspension test (TST) and forced swimming test (FST). Moreover, ketamine-like effects were also demonstrated by using the chronic mild stress model (CMS) and learned helplessness (LH), and the results showed that Nr reversed all behavioral defects, TST, FST, source preference test (SPT) in CMS, and LH testing, TST, FST in LH model, at 2 h after a single administration. In addition, Nr (20 mg/kg) could improve the abnormal expressions of NMDA receptor NR1 and PKA/CREB/BDNF pathway in hippocampus 2 h after a single administration in CMS mice. Further investigation revealed that activation of NMDA receptors by NMDA (750 mg/kg) could block the antidepressant effects of acute administration of Nr (20 mg/kg). However, the inhibition of NMDA receptors by MK-801 (0.05 mg/kg) promoted the subdose of Nr (10 mg/kg) to have antidepressant effect, which was similar to the effective dose Nr (20 mg/kg). Taken together, acute dose of Nr produces rapid antidepressant-like action, and the underlying mechanism could be through inhibiting NMDA receptors in the hippocampus.
Collapse
Affiliation(s)
- Guangyao Wang
- Department of Basic Theory of Chinese Medicine, College of Chinese Medicine, Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine
| | - Haixia Yang
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenren Zuo
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoyun Mei
- Department of Basic Theory of Chinese Medicine, College of Chinese Medicine, Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine
| |
Collapse
|
6
|
Lu J, Li W, Gao T, Wang S, Fu C, Wang S. The association study of chemical compositions and their pharmacological effects of Cyperi Rhizoma (Xiangfu), a potential traditional Chinese medicine for treating depression. JOURNAL OF ETHNOPHARMACOLOGY 2022; 287:114962. [PMID: 34968659 DOI: 10.1016/j.jep.2021.114962] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/13/2021] [Accepted: 12/26/2021] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cyperi Rhizoma (CR) derives from the rhizome or tuber of Cyperus rotundus L. of Cyperaceae. It is an herbal medicine which has been widely used in different healthcare systems like in China, India, Iran, and Japan. In Chinese medicine, CR could promote the flow of Qi in the Liver and Sanjiao channels, regulate menstruation and alleviate pain. Clinically, CR is used for depression, flatulence, hypochondriac pain, and dysmenorrhea. Thus, it has a long history and significant curative effect for the treatment of various Qi stagnation symptoms. AIM OF THIS REVIEW This review focuses on explaining the major antidepressant mechanisms of CR, and assessing the shortcomings of existing work. Besides, clinical applications, pharmacological effects and their corresponding chemical compositions and quality control of CR have been researched. MATERIALS AND METHODS The search terms "Cyperus rotundus L." was used to obtain the literatures from electronic databases such as Web of Science, ScienceDirect, PubMed, and China National Knowledge Infrastructure (CNKI). The information provided in this review to illustrate material basis of CR were only limited to papers which reported on the chemical compositions and pharmacological effects simultaneously. RESULT The study showed that CR has significant application in Qi stagnation, like depressed liver, stomach, and bowel disorders, etc. in different countries or districts. Aqueous extract, EtOH extract, essential oil, total oligomeric flavonoids and five other extracts were effective constituents displaying pharmacological activities such as antibacterial, antioxidant, neuroprotective, antihemolytic, and anti-inflammatory effect. 41 kinds of specific components like α-cyperone, nootkatone exhibited corresponding pharmacological activities mentioned above. Different concentrations of ethanol extract, essential oil, decoction of CR and monomer composition like α-cyperone, rotunduside G had anti-depressant effects. CONCLUSIONS In the present study, we have provided scientific information and research developments on traditional uses, phytochemical compositions and corresponding pharmacological activities, and quality control status on CR. The antidepression effect and its corresponding chemical compositions were generalized separately. The pharmacological activities studies should be more focused on the reflection of traditional clinical values. CR could be a significant potential herbal medicine to develop antidepressant drugs with lower side effects.
Collapse
Affiliation(s)
- Junrong Lu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu, 611137, Sichuan, China; West China School of Pharmacy, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Wenbing Li
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Institute of Qinghai-Tibetan plateau, Southwest Minzu University, Chengdu, 610225, Sichuan, China.
| | - Tianhui Gao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu, 611137, Sichuan, China.
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, SAR, China.
| | - Chaomei Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu, 611137, Sichuan, China.
| | - Shu Wang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
7
|
Shi Y, Chen M, Zhao Z, Pan J, Huang S. Network Pharmacology and Molecular Docking Analyses of Mechanisms Underlying Effects of the Cyperi Rhizoma- Chuanxiong Rhizoma Herb Pair on Depression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5704578. [PMID: 34976096 PMCID: PMC8716227 DOI: 10.1155/2021/5704578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVE We aimed to investigate the mechanisms underlying the effects of the Cyperi Rhizoma-Chuanxiong Rhizoma herb pair (CCHP) against depression using a network pharmacology approach. METHODS A network pharmacology approach, including screening of active compounds, target prediction, construction of a protein-protein interaction (PPI) network, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and molecular docking, molecular dynamics (MD) simulations, and molecular mechanics Poisson-Boltzmann surface area (MMPBSA), were used to explore the mechanisms of CCHP against depression. RESULTS Twenty-six active compounds and 315 and 207 targets of CCHP and depression, respectively, were identified. The PPI network suggested that AKT1, IL-6, TP53, DRD2, MAPK1, NR3C1, TNF, etc., were core targets. GO enrichment analyses showed that positive regulation of transcription from RNA polymerase II promoter, plasma membrane, and protein binding were of great significance. Neuroactive ligand-receptor interaction, PI3K-Akt signaling pathway, dopaminergic synapse, and mTOR signaling pathway were important pathways. Molecular docking results revealed good binding affinities for the core compounds and core targets. MD simulations and MMPBSA validated that quercetin can stably bind to 6hhi. CONCLUSIONS The effects of CCHP against depression involve multiple components, targets, and pathways, and these findings will promote further research on and clinical application of CCHP.
Collapse
Affiliation(s)
- Yanan Shi
- Research and Development Center of Traditional Chinese Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Mingqi Chen
- Research and Development Center of Traditional Chinese Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zehua Zhao
- Research and Development Center of Traditional Chinese Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Juhua Pan
- Research and Development Center of Traditional Chinese Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Shijing Huang
- Research and Development Center of Traditional Chinese Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
8
|
Zhang Y, Cui B, Wang T, Lu Y, Chen Z, Zou Z, Miao J, Zhao X, Yuan Y, Wang H, Chen G. Early Enhancement of Neuroplasticity Index, the Ratio of Serum Brain-Derived Neurotrophic Factor Level to HAMD-24 Score, in Predicting the Long-Term Antidepressant Efficacy. Front Behav Neurosci 2021; 15:712445. [PMID: 34776888 PMCID: PMC8578865 DOI: 10.3389/fnbeh.2021.712445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/05/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Current mainstream treatment of major depressive disorder (MDD) has a disadvantage in delayed onset of efficacy, making detection of early signatures predicative of the long-term treatment efficacy urgent. Methods: MDD patients were scored with HAMD-24 and serum brain-derived neurotrophic factor (BDNF) levels were measured at different times in two independent trials: a single-arm observation of Yueju pill, a clinically approved traditional multiherbal medicine, and a two-arm random placebo-controlled trial for Yueju vs escitalopram. The ratio of the BDNF level to HAMD-24 score, or neuroplasticity index (NI), and its derived parameters were used for correlation analysis and receiver operating characteristic (ROC) analysis. Results: On both the early (4th) and final (28th) days, Yueju and escitalopram significantly reduced HAMD-24 scores, compared to baselines, but only Yueju increased BDNF at both times. For either Yueju or escitalopram treatment, NI, but not BDNF, at baseline was correlated to NIs at the early or final treatment day. NI at early time was significantly correlated to early NI enhancement from the baseline for both Yueju and escitalopram, and to final NI enhancement from the baseline for Yueju in both trials. ROC analysis supported the predictability of Yueju’s final treatment efficacy from early NI enhancement. Limitations: The small sample size and 28 days of treatment time may lead to the impossibility of ROC analysis of escitalopram. Conclusion: Early NI enhancement is useful for prediction of long-term efficacy of Yueju and presumably some other antidepressants. Clinical Trial Registration: [www.ClinicalTrials.gov], identifier [ChiCTR1900021114].
Collapse
Affiliation(s)
- Yuxuan Zhang
- Key Laboratory of Integrative Biomedicine for Brain Diseases, Center for Translational Systems Biology and Neuroscience, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bo Cui
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, China
| | - Tianyu Wang
- Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China.,School of Medicine, Institute of Psychosomatics, Southeast University, Nanjing, China
| | - Yan Lu
- The Fourth People's Hospital of Taizhou, Taizhou, China
| | - Zhenlin Chen
- The Fourth People's Hospital of Taizhou, Taizhou, China
| | - Zhilu Zou
- Hubei University of Chinese Medicine, Wuhan, China
| | - Jinlin Miao
- The Fourth People's Hospital of Taizhou, Taizhou, China
| | - Xiuli Zhao
- The Fourth People's Hospital of Taizhou, Taizhou, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China.,School of Medicine, Institute of Psychosomatics, Southeast University, Nanjing, China
| | - Haosen Wang
- The Fourth People's Hospital of Taizhou, Taizhou, China
| | - Gang Chen
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
9
|
Yu Y, Song H, Liu J, Wang P, Wang C. Efficiency and safety of yueju antidepressant for primary depression patients: a meta-analysis of randomized controlled trials. J Herb Med 2021. [DOI: 10.1016/j.hermed.2020.100329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Piva A, Caffino L, Mottarlini F, Pintori N, Castillo Díaz F, Fumagalli F, Chiamulera C. Metaplastic Effects of Ketamine and MK-801 on Glutamate Receptors Expression in Rat Medial Prefrontal Cortex and Hippocampus. Mol Neurobiol 2021; 58:3443-3456. [PMID: 33723767 PMCID: PMC8257545 DOI: 10.1007/s12035-021-02352-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/05/2021] [Indexed: 12/16/2022]
Abstract
Ketamine and MK-801 by blocking NMDA receptors may induce reinforcing effects as well as schizophrenia-like symptoms. Recent results showed that ketamine can also effectively reverse depressive signs in patients' refractory to standard therapies. This evidence clearly points to the need of characterization of effects of these NMDARs antagonists on relevant brain areas for mood disorders. The aim of the present study was to investigate the molecular changes occurring at glutamatergic synapses 24 h after ketamine or MK-801 treatment in the rat medial prefrontal cortex (mPFC) and hippocampus (Hipp). In particular, we analyzed the levels of the glutamate transporter-1 (GLT-1), NMDA receptors, AMPA receptors subunits, and related scaffolding proteins. In the homogenate, we found a general decrease of protein levels, whereas their changes in the post-synaptic density were more complex. In fact, ketamine in the mPFC decreased the level of GLT-1 and increased the level of GluN2B, GluA1, GluA2, and scaffolding proteins, likely indicating a pattern of enhanced excitability. On the other hand, MK-801 only induced sparse changes with apparently no correlation to functional modification. Differently from mPFC, in Hipp, both substances reduced or caused no changes of glutamate receptors and scaffolding proteins expression. Ketamine decreased NMDA receptors while increased AMPA receptors subunit ratios, an effect indicative of permissive metaplastic modulation; conversely, MK-801 only decreased the latter, possibly representing a blockade of further synaptic plasticity. Taken together, these findings indicate a fine tuning of glutamatergic synapses by ketamine compared to MK-801 both in the mPFC and Hipp.
Collapse
Affiliation(s)
- Alessandro Piva
- Neuropsychopharmacology Lab, Section Pharmacology, Department Diagnostic & Public Health, University of Verona, Policlinico GB Rossi, P.le Scuro 10, 37134, Verona, Italy.
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti 9, 20133, Milano, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti 9, 20133, Milano, Italy
| | - Nicholas Pintori
- Neuropsychopharmacology Lab, Section Pharmacology, Department Diagnostic & Public Health, University of Verona, Policlinico GB Rossi, P.le Scuro 10, 37134, Verona, Italy
| | - Fernando Castillo Díaz
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti 9, 20133, Milano, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti 9, 20133, Milano, Italy
| | - Cristiano Chiamulera
- Neuropsychopharmacology Lab, Section Pharmacology, Department Diagnostic & Public Health, University of Verona, Policlinico GB Rossi, P.le Scuro 10, 37134, Verona, Italy
| |
Collapse
|
11
|
Li C, Huang J, Cheng YC, Zhang YW. Traditional Chinese Medicine in Depression Treatment: From Molecules to Systems. Front Pharmacol 2020; 11:586. [PMID: 32457610 PMCID: PMC7221138 DOI: 10.3389/fphar.2020.00586] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/16/2020] [Indexed: 12/26/2022] Open
Abstract
Depression is a multigenetic or multifactorial syndrome. The central neuron system (CNS)-orientated, single target, and conventional antidepressants are insufficient and far from ideal. Traditional Chinese Medicine (TCM) has historically been used to treat depression up till today, particularly in Asia. Its holistic, multidrug, multitarget nature fits well with the therapeutic idea of systems medicine in depression treatment. Over the past two decades, although efforts have been made to understand TCM herbal antidepressants at the molecular level, many fundamental questions regarding their mechanisms of action remain to be addressed at the systems level in order to better understand the complicated herbal formulations in depression treatment. In this Mini Review, we review and discuss the mechanisms of action of herbal antidepressants and their acting targets in the pathological systems in the brain, such as monoamine neurotransmissions, hypothalamic–pituitary–adrenal (HPA) axis, neurotropic factor brain-derived neurotrophic factor (BDNF) cascade, and glutamate transmission. Some herbal molecules, constituents, and formulas are highlighted as examples to discuss their mechanisms of action and future directions for comprehensive researches at the systems level. Furthermore, we discuss pharmacological approaches to integrate the mechanism of action from the molecular level into the systems level for understanding of systems pharmacology of TCM formulations. Integration of the studies at the molecular level into the systems level not only represents a trend in TCM study but also promotes our understanding of the system-wide mechanism of action of herbal antidepressant formulations.
Collapse
Affiliation(s)
- Chan Li
- School of Life Sciences, Guangzhou University, Guangzhou, China.,Department of Pharmacology, School of Medicine Yale University, New Haven, CT, United States
| | - Junying Huang
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yung-Chi Cheng
- Department of Pharmacology, School of Medicine Yale University, New Haven, CT, United States
| | - Yuan-Wei Zhang
- School of Life Sciences, Guangzhou University, Guangzhou, China.,Department of Pharmacology, School of Medicine Yale University, New Haven, CT, United States
| |
Collapse
|
12
|
Zhang H, Sun Y, Qian S, Ge R, Guo X, Shen Q, Sheng L, Nie C, Zhang Y, Yao Y, Zhou T, Wang W, Xue W, Chen G. Yueju-Ganmaidazao Decoction confers rapid antidepressant-like effects and the involvement of suppression of NMDA/NO/cGMP signaling. JOURNAL OF ETHNOPHARMACOLOGY 2020; 250:112380. [PMID: 31707048 DOI: 10.1016/j.jep.2019.112380] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 10/24/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yueju-Ganmaidazao Decoction (YG) is a multiherbal medicine prescribed for treatment of mood disorder, consisting of two classical traditional Chinese herbal medicine Yueju and Ganmaidazao. Yueju and Ganmaidazao both are used for depression treatment. The combined decoction of Yueju and Ganmaidazao is prescribed to achieve optimal clinical outcomes by dealing with different symptoms of depression. Recent studies indicated ethanol extract of Yueju was capable to confer rapid antidepressant-like response. The antidepressant activity of YG decoction with fast-onset feature remains to be investigated. AIM OF THE STUDY Rapid and safe antidepressant treatment is urgently needed. This study aimed to assess the rapid antidepressant-like activity of YG and the underlying mechanism, focusing on NMDA/NO/cGMP signaling. MATERIALS AND METHODS The optimal doses for immediate and persistent antidepressant-like response were first screened using tail suspension test (TST) and forced swimming test (FST) post a single administration of YG. The rapid action was further confirmed by using the chronic mild stress (CMS) and learned helplessness (LH) paradigms. The expressions of NMDA receptor subunits were evaluated post stress and YG. The contributions of NMDA, NO, and cGMP signaling to the antidepressant effect of YG were investigated systematically using pharmacological interventions. RESULTS The optimal dose for immediate and persistent antidepressant potential, evidenced with reduced immobility times in TST or FST from 30 min to 7 days, was determined. The rapid antidepressant-like effect was confirmed in CMS and LH paradigms, including instant normalization of sucrose preference behavior. The expression of NMDA subunit NR1 in the hippocampus was reduced from 30 min to 5 days post YG. In animals subjected to CMS and LH, hippocampal NR1 expression increased, reversed by YG. YG's antidepressant-like effect was blunted by pretreatment with the agonists along the signalings including NMDA (75 mg/kg), L-arginine (750 mg/kg) and sildenafil (5 mg/kg) in TST or FST. Conversely, administration of subeffective dose of individual antagonists, including MK-801 (0.05 mg/kg), 7-nitroindazole (30 mg/kg), methylene blue (10 mg/kg), in combination with a subeffective dose of YG, elicited antidepressant effects. CONCLUSION YG conferred rapid antidepressant-like effects, and the antidepressant response was essentially dependent on suppression of NMDA/NO/cGMP signaling.
Collapse
Affiliation(s)
- Hailou Zhang
- Key Laboratory of Integrative Biomedicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, China
| | - Yan Sun
- Key Laboratory of Integrative Biomedicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shiyu Qian
- Key Laboratory of Integrative Biomedicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Rui Ge
- Key Laboratory of Integrative Biomedicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaoyan Guo
- Key Laboratory of Integrative Biomedicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qinqin Shen
- Key Laboratory of Integrative Biomedicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Li Sheng
- Key Laboratory of Integrative Biomedicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chunying Nie
- Key Laboratory of Integrative Biomedicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yi Zhang
- Key Laboratory of Integrative Biomedicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yao Yao
- Key Laboratory of Integrative Biomedicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tong Zhou
- Key Laboratory of Integrative Biomedicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wei Wang
- Key Laboratory of Integrative Biomedicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wenda Xue
- Key Laboratory of Integrative Biomedicine for Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, China.
| | - Gang Chen
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders and Research Center for TCM Fang-Zheng, Jinan University, Guangzhou, 510632, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
13
|
NMDA receptors and L-arginine/nitric oxide/cyclic guanosine monophosphate pathway contribute to the antidepressant-like effect of Yueju pill in mice. Biosci Rep 2019; 39:BSR20190524. [PMID: 31467174 PMCID: PMC6746996 DOI: 10.1042/bsr20190524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/19/2019] [Accepted: 08/26/2019] [Indexed: 11/17/2022] Open
Abstract
The present study aims to evaluate the involvement of N-methyl-d-aspartate receptor and nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) system in antidepressant-like effects of Yueju pill (YJ), a Chinese herbal medicine. The immobility time in tail suspension test (TST) and forced swim test (FST) was used to assess the antidepressant effects. Prior administration of L-arginine (750 mg/kg, intraperitoneal [i.p.]), a NO synthase substrate that enhances NO signaling or sildenafil (5 mg/kg, i.p.), a phosphodiesterase 5 inhibitor that enhances cGMP, blunted the antidepressant-like activity of YJ (2.7 g/kg, i.g.). Co-treatment of ineffective dose of YJ (1.35 g/kg, i.g.) with one of the reagents that suppress the NO/cGMP signaling, including methylene blue (10 mg/kg, i.p.), an inhibitor of NO synthase; 7-NI (7-nitroinidazole, 30 mg/kg, i.p.), an nNOS specific inhibitor; L-NAME (10 mg/kg, i.p.), a non-specific inhibitor of NO synthase; and MK-801 (0.05 mg/kg, i.p.), an NMDA receptor antagonist, reduced the immobility time in TST and FST, compared with those in vehicle or single drug treatment groups. Neither above drugs alone or co-administrated with YJ affected locomotor activity or anxiety behavior in open field test. Thus, our results suggest that the antidepressant-like action of YJ may depend on the inhibition of NMDA/NO/cGMP pathway.
Collapse
|
14
|
Neural Plasticity Associated with Hippocampal PKA-CREB and NMDA Signaling Is Involved in the Antidepressant Effect of Repeated Low Dose of Yueju Pill on Chronic Mouse Model of Learned Helplessness. Neural Plast 2017; 2017:9160515. [PMID: 29075536 PMCID: PMC5623799 DOI: 10.1155/2017/9160515] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 07/16/2017] [Accepted: 08/03/2017] [Indexed: 12/28/2022] Open
Abstract
Yueju pill is a traditional Chinese medicine formulated to treat syndromes of mood disorders. Here, we investigated the therapeutic effect of repeated low dose of Yueju in the animal model mimicking clinical long-term depression condition and the role of neural plasticity associated with PKA- (protein kinase A-) CREB (cAMP response element binding protein) and NMDA (N-methyl-D-aspartate) signaling. We showed that a single low dose of Yueju demonstrated antidepressant effects in tests of tail suspension, forced swim, and novelty-suppressed feeding. A chronic learned helplessness (LH) protocol resulted in a long-term depressive-like condition. Repeated administration of Yueju following chronic LH remarkably alleviated all of depressive-like symptoms measured, whereas conventional antidepressant fluoxetine only showed a minor improvement. In the hippocampus, Yueju and fluoxetine both normalized brain-derived neurotrophic factor (BDNF) and PKA level. Only Yueju, not fluoxetine, rescued the deficits in CREB signaling. The chronic LH upregulated the expression of NMDA receptor subunits NR1, NR2A, and NR2B, which were all attenuated by Yueju. Furthermore, intracerebraventricular administration of NMDA blunted the antidepressant effect of Yueju. These findings supported the antidepressant efficacy of repeated routine low dose of Yueju in a long-term depression model and the critical role of CREB and NMDA signaling.
Collapse
|
15
|
Ren L, Chen G. Rapid antidepressant effects of Yueju: A new look at the function and mechanism of an old herbal medicine. JOURNAL OF ETHNOPHARMACOLOGY 2017; 203:226-232. [PMID: 28347831 DOI: 10.1016/j.jep.2017.03.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yueju is a traditional herbal medicine which consists of five herbs and formulated to treat depression-related syndromes 800 years ago. Yueju is still widely prescribed to treat conditions which include digestive dysfunction and depression. Recently, Yueju has been shown to promote a fast-onset antidepressant effect clinically and in preclinical studies. Because conventional antidepressants have a delayed onset in treating depression, the novelty of Yueju's rapid antidepressant effect and its underlying mechanism are of great significance both clinically and scientifically. AIM OF THE STUDY To review the use of Yueju for treatment of mood-related syndromes, and particularly its use in depression. To evaluate recent evidence of Yueju rapid antidepressant actions, based on new findings at behavioral and molecular levels. To suggest direction for future studies to address further scientific issues. MATERIALS AND METHODS Reports regarding to the history and current use of Yueju are summarized. Recent progress on rapid antidepressant effects of Yueju, the crucial constituent, Gardenia jasminoides J.Ellis (GJ) and other herbs, are reviewed. RESULTS The medical need for rapid antidepressant actions, as well as breakthrough findings using ketamine and its limitations are introduced. Studies with Yueju using a number of acute, subacute and chronic behavioral paradigms are compared with ketamine. Findings from clinical reports also support the rapid action of Yueju. Studies examine the contribution of the constituent herb GJ, in rapid antidepressant effects. Importantly, research into the mechanism of Yueju or GJ's antidepressant response indicate the importance of up-regulation in the neural circuit responsible for antidepressant activity, and highlight common and specific molecular signaling by Yueju that may explain why this herb formula has unique antidepressant activity. CONCLUSION Preclinical and clinical studies demonstrate that Yueju confers rapid antidepressant effects. The common mechanisms shared both for ketamine and Yueju, as well as the novel mechanism specific to Yueju are examined. Yueju and GJ may have great clinic applicability and further more detailed studies are warranted.
Collapse
Affiliation(s)
- Li Ren
- Center for Translational Systems and Neuroscience, and Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Gang Chen
- Center for Translational Systems and Neuroscience, and Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
16
|
Neurobiology of Chinese Herbal Medicine on Major Depressive Disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 135:77-95. [DOI: 10.1016/bs.irn.2017.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Wu R, Tao W, Zhang H, Xue W, Zou Z, Wu H, Cai B, Doron R, Chen G. Instant and Persistent Antidepressant Response of Gardenia Yellow Pigment Is Associated with Acute Protein Synthesis and Delayed Upregulation of BDNF Expression in the Hippocampus. ACS Chem Neurosci 2016; 7:1068-76. [PMID: 27203575 DOI: 10.1021/acschemneuro.6b00011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Gardenia yellow pigment (GYP) is a collection of compounds with shared structure of crocin, which confers antidepressant activity. GYP is remarkably enriched in Gardenia jasminoides Ellis, implicated in rapid antidepressant effects that are exerted through enhanced neuroplasticity. This study aims to investigate the rapid antidepressant-like activity of GYP and its underlying mechanism. After the optimal dose was determined, antidepressant responses in tail suspension test or forced swim test were monitored at 30 min, 1 day, 3 days, and 7 days post a single GYP administration. Rapid antidepressant potential was tested using learned helplessness paradigm. The expression of proteins involved in hippocampal neuroplasticity was determined. The effect of blockade of protein synthesis on GYP's antidepressant response was examined. Antidepressant response was detected at 30 min, and lasted for at least 3 days post a single administration of GYP. A single administration of GYP also reversed the deficits in learned helplessness test. Thirty minutes post GYP administration, ERK signaling was activated, and its downstream effector phosphorylated eukaryotic elongation factor 2 was inhibited, contributing to increased protein translation. Expression of synaptic proteins GluR1 and synapsin 1 was upregulated. Blockade of protein synthesis with anisomycin blunted the immediate antidepressant response of GYP. CREB signaling and BDNF expression were upregulated at 24 h, but not at 30 min. In conclusion, GYP-induced immediate antidepressant response was dependent on synthesis of proteins, including synaptic proteins. This was followed by enhanced expression of CREB and BDNF, which likely mediated the persistent antidepressant responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ravid Doron
- School
of Behavioral Sciences, The Academic College of Tel Aviv-Yaffo, Tel- Aviv 61083, Israel
- Department
of Education and Psychology, The Open University of Israel, 108 Ravutski
St., P.O. BOX 808, Raanana 43107, Israel
| | | |
Collapse
|
18
|
Ren L, Tao W, Zhang H, Xue W, Tang J, Wu R, Xia B, Wu H, Chen G. Two standardized fractions of Gardenia jasminoides Ellis with rapid antidepressant effects are differentially associated with BDNF up-regulation in the hippocampus. JOURNAL OF ETHNOPHARMACOLOGY 2016; 187:66-73. [PMID: 27108051 DOI: 10.1016/j.jep.2016.04.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 03/13/2016] [Accepted: 04/19/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gardenia jasminoides Ellis (GJ) is one of the five constituents of Yueju pill, a Traditional Chinese Medicine for treatment of syndromes associated with mood disorders. Recently, preclinical and clinical studies suggest that Yueju pill confers rapid antidepressant effects. GJ is identified as the constituent primary for Yueju pill's rapid antidepressant effects. GJ's antidepressant action is temporally associated with up-regulated expression of brain-derived neurotrophic factor (BDNF) in the hippocampus. The present study aimed to identify chemical fractions responsible for the rapid antidepressant efficacy of GJ and its association with BDNF signaling. MATERIALS AND METHODS Four fractions of GJ were extracted using standardized procedure. The four fractions were screened for rapid antidepressant potential, using the behavioral paradigm of forced swimming test (FST) and tail suspension test (TST) assessed at 24h post a single administration. A single dose of the putatively effective fractions was further tested in mice exposed to chronic mild stress (CMS), followed with a comprehensive behavioral testing including TST, FST, sucrose preference test (SPT), and novelty suppressed-feeding (NSF). To test the association of BDNF signaling with rapid antidepressant effects of effective factions, the expressions of BDNF and its receptor tropomyosin receptor kinase B (TrkB) in the hippocampus were assessed at different times post a single administration of effective fractions. RESULTS Both petroleum ether (GJ-PE) and n-butyl alcohol fraction (GJ-BO) fractions of GJ displayed rapid antidepressant potential in the FST. In the TST, the antidepressant effects of GJ-PE lasted for a longer time than GJ-BO. Acute administration of either GJ-PE or GJ-BO significantly reversed the behavioral deficits in the tests of TST, FST, SPT and NSF in chronically stressed mice, confirming both fractions conferred rapid antidepressant efficacy. Interestingly, GJ-PE, but not GJ-BO, increased the expression of BDNF and TrkB in the hippocampus post a single administration. CONCLUSION Two standardized fractions GJ-PE and GJ-BO exhibited comparable rapid antidepressant-like effects on the CMS mice. However, only the effects of GJ-PE was associated with BDNF signaling.
Collapse
Affiliation(s)
- Li Ren
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weiwei Tao
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hailou Zhang
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenda Xue
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Juanjuan Tang
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ruyan Wu
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Baomei Xia
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Haoxing Wu
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Gang Chen
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
19
|
Feng DD, Tang T, Lin XP, Yang ZY, Yang S, Xia ZA, Wang Y, Zheng P, Wang Y, Zhang CH. Nine traditional Chinese herbal formulas for the treatment of depression: an ethnopharmacology, phytochemistry, and pharmacology review. Neuropsychiatr Dis Treat 2016; 12:2387-2402. [PMID: 27703356 PMCID: PMC5036551 DOI: 10.2147/ndt.s114560] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Depression is a major mental disorder, and is currently recognized as the second-leading cause of disability worldwide. However, the therapeutic effect of antidepressants remains unsatisfactory. For centuries, Chinese herbal formulas (CHFs) have been widely used in the treatment of depression, achieving better therapeutic effects than placebo and having fewer side effects than conventional antidepressants. Here, we review the ethnopharmacology, phytochemistry, and pharmacology studies of nine common CHFs: "banxia houpo" decoction, "chaihu shugansan", "ganmaidazao" decoction, "kaixinsan", "shuganjieyu" capsules, "sinisan", "wuling" capsules, "xiaoyaosan", and "yueju". Eight clinical trials and seven meta-analyses have supported the theory that CHFs are effective treatments for depression, decreasing Hamilton Depression Scale scores and showing few adverse effects. Evidence from 75 preclinical studies has also elucidated the multitarget and multipathway mechanisms underlying the antidepressant effect of the nine CHFs. Decoctions, capsules, and pills all showed antidepressant effects, ranked in descending order of efficacy. According to traditional Chinese medicine theory, these CHFs have flexible compatibility and mainly act by soothing the liver and relieving depression. This review highlights the effective treatment choices and candidate compounds for patients, practitioners, and researchers in the field of traditional Chinese medicine. In summary, the current evidence supports the efficacy of CHFs in the treatment of depression, but additional large-scale randomized controlled clinical trials and sophisticated pharmacology studies should be performed.
Collapse
Affiliation(s)
- Dan-Dan Feng
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Tao Tang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Xiang-Ping Lin
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zhao-Yu Yang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Shu Yang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zi-An Xia
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yun Wang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Piao Zheng
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yang Wang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Chun-Hu Zhang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|