1
|
Bäckström F, Ahl M, Wickham J, Ekdahl CT. Reduced epilepsy development in synapsin 2 knockout mice with autistic behavior following early systemic treatment with interleukin-6 receptor antibody. Epilepsy Res 2023; 191:107114. [PMID: 36870094 DOI: 10.1016/j.eplepsyres.2023.107114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
BACKGROUND Individuals with autism spectrum disorder (ASD) have an increased risk of developing epilepsy. Both ASD and epilepsy have been associated with increased levels of immune factors in the blood, including the proinflammatory cytokine interleukin 6 (IL-6). Mice lacking the synapsin 2 gene (Syn2 KO) exhibit ASD-like behavior and develop epileptic seizures. Their brains display neuroinflammatory changes including elevated IL-6 levels. We aimed to investigate the effect of systemic IL-6 receptor antibody (IL-6R ab) treatment on seizure development and frequency in Syn2 KO mice. MATERIAL AND METHODS Weekly systemic (i.p.) injections of IL-6R ab or saline were given to Syn2 KO mice starting either early in life at 1 month of age, before seizure debut or at 3 months of age, directly after seizure debut and continued for 4 or 2 months, respectively. Seizures were provoked by handling the mice three times per week. The neuroinflammatory response and synaptic protein levels in the brain were determined by ELISA, immunohistochemistry and western blots. In an additional group of Syn2 KO mice, with IL-6R ab treatment early in life, ASD-related behavioral tests including social interaction and repetitive self-grooming, as well as cognitive memory and depressive-/anxiety-like tests, and actigraphy measurements of circadian sleep-awake rhythm were analyzed. RESULTS The IL-6R ab treatment reduced seizure development and frequency in Syn2 KO mice when initiated before, but not after, seizure debut. However, early treatment did not reverse the neuroinflammatory response or the imbalance in synaptic protein levels in the brain previously reported in Syn2 KO mice. The treatment did not affect social interaction, performance in memory, depressive-/anxiety-like tests or the sleep-awake rhythm of Syn2 KO mice. CONCLUSION These findings suggest the involvement of IL-6 receptor signaling during epilepsy development in Syn2 KO mice, without significant alterations of the immune reaction in the brain, and independently of cognitive performance, mood and circadian sleep-awake rhythm.
Collapse
Affiliation(s)
- Filip Bäckström
- Inflammation and Stem Cell Therapy Group, Division of Clinical Neurophysiology, Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Epilepsy Center, Department of Clinical Sciences, Lund University, Lund, Sweden; Translational Neurogenetics Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Matilda Ahl
- Inflammation and Stem Cell Therapy Group, Division of Clinical Neurophysiology, Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Epilepsy Center, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jenny Wickham
- Inflammation and Stem Cell Therapy Group, Division of Clinical Neurophysiology, Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Epilepsy Center, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Christine T Ekdahl
- Inflammation and Stem Cell Therapy Group, Division of Clinical Neurophysiology, Department of Clinical Sciences, Lund University, Lund, Sweden; Lund Epilepsy Center, Department of Clinical Sciences, Lund University, Lund, Sweden.
| |
Collapse
|
2
|
Hisaoka-Nakashima K, Moriwaki K, Yoshimoto N, Yoshii T, Nakamura Y, Ago Y, Morioka N. Anti-interleukin-6 receptor antibody improves allodynia and cognitive impairment in mice with neuropathic pain following partial sciatic nerve ligation. Int Immunopharmacol 2022; 112:109219. [PMID: 36084541 DOI: 10.1016/j.intimp.2022.109219] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/05/2022]
Abstract
Neuropathic pain caused by nerve injury presents with severe spontaneous pain and a range of comorbidities, including deficits in higher executive functioning, none of which are adequately treated with current analgesics. Interleukin-6 (IL-6), a proinflammatory cytokine, is critically involved in the development and maintenance of central sensitization. However, the roles of IL-6 in neuropathic pain and related comorbidities have yet to be fully clarified. The present study examined the effect of MR16-1, an anti-IL-6 receptor antibody and inhibits IL-6 activity, on allodynia and cognitive impairment in mice with neuropathic pain following partial sciatic nerve ligation (PSNL). Significant upregulation of IL-6 expression was observed in the hippocampus in PSNL mice. Intranasal administration of MR16-1 significantly improved cognitive impairment but not allodynia in PSNL mice. Intranasal MR16-1 blocked PSNL-induced degenerative effects on hippocampal neurons. Intraperitoneal administration of MR16-1 suppressed allodynia but not cognitive impairment of PSNL mice. The findings suggest that cognitive impairment associated with neuropathic pain is mediated through changes in hippocampus induced by IL-6. These data also suggest that IL-6 mediated peripheral inflammation underlies allodynia, and IL-6 mediated inflammation in the central nervous system underlies cognitive impairment associated with neuropathic pain, and further suggest the therapeutic potential of blocking IL-6 functioning by blocking its receptor.
Collapse
Affiliation(s)
- Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Kodai Moriwaki
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Natsuki Yoshimoto
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Toshiki Yoshii
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Yukio Ago
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan.
| |
Collapse
|
3
|
Mitsui K, Kotoda M, Hishiyama S, Takamino A, Morikawa S, Ishiyama T, Matsukawa T. Propofol ameliorates ischemic brain injury by blocking TLR4 pathway in mice. Transl Neurosci 2022; 13:246-254. [PMID: 36117859 PMCID: PMC9438965 DOI: 10.1515/tnsci-2022-0238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/21/2022] [Accepted: 08/01/2022] [Indexed: 11/15/2022] Open
Abstract
Ischemic brain injury is one of the most serious perioperative complications. However, effective preventative methods have not yet been established. This study aimed to investigate whether propofol has neuroprotective effects against ischemic brain injury, with a specific focus on Toll-like receptor 4 (TLR4). Focal brain ischemia was induced via a combination of left common carotid artery occlusion and distal left middle cerebral artery coagulation in mice. Either propofol (10 mg/kg) or vehicle was intravenously injected 10 min prior to the induction of brain ischemia in wild-type and TLR4 knockout mice. Infarct volume, pro-inflammatory cytokine expression, inflammatory cell infiltration, and neurobehavioral function were assessed. Propofol administration significantly reduced infarct volume in wild-type mice (26.9 ± 2.7 vs 15.7 ± 2.0 mm3 at day 7), but not in TLR4 knockout mice. Compared with the control mice, the propofol-treated wild-type mice exhibited lower levels of IL-6 (0.57 ± 0.23 vs 1.00 ± 0.39 at 24 h), and smaller numbers of TLR4-expressing microglia in the penumbra (11.7 ± 3.1 vs 25.1 ± 4.7 cells/0.1 mm2). In conclusion, propofol administration prior to ischemic brain insult attenuated brain injury by blocking the TLR4-dependent pathway and suppressing pro-inflammatory cytokine production.
Collapse
Affiliation(s)
- Kazuha Mitsui
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Masakazu Kotoda
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Sohei Hishiyama
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Ayasa Takamino
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Sho Morikawa
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Tadahiko Ishiyama
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Takashi Matsukawa
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| |
Collapse
|
4
|
Poutoglidou F, Pourzitaki C, Manthou ME, Saitis A, Malliou F, Kouvelas D. Infliximab and tocilizumab reduce anxiety-like behavior, improve cognitive performance and reverse neuropathological alterations in juvenile rats with severe autoimmune arthritis. Int Immunopharmacol 2021; 99:107917. [PMID: 34217991 DOI: 10.1016/j.intimp.2021.107917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/08/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022]
Abstract
Several studies have demonstrated that rheumatic diseases, including Juvenile Idiopathic Arthritis (JIA), are associated with anxiety-like behavior and a cognitive decline. Infliximab, a Tumor Necrosis Factor-alpha (TNF-a) inhibitor, and tocilizumab, an antibody against Interleukin-6 (IL-6) receptor, are commonly used in the treatment of JIA. Here, we aimed to evaluate the effects of infliximab and tocilizumab on anxiety symptoms and cognitive function in a juvenile model of severe autoimmune arthritis. We found that both infliximab and tocilizumab improved anxiety-like behavior in the elevated-plus and elevated-zero maze tests. Tocilizumab, also, improved cognitive performance in the passive avoidance and olfactory social memory tests. Histological examination showed that anti-cytokine treatment reversed the histopathological alterations in the brain induced by arthritis. Further, infliximab and tocilizumab treatment increased Brain-Derived Neurotrophic Factor (BDNF) expression in the hippocampal and amygdaloid area of rat brain. In summary, our findings provide evidence that infliximab and tocilizumab have a beneficial effect on anxiety-like behavior and cognitive function and alleviate neuropathological alterations in a juvenile rat model of severe arthritis, suggesting that inhibition of TNF-a and IL-6 in the periphery, may be associated with a mood and memory enhancement in JIA patients.
Collapse
Affiliation(s)
- Frideriki Poutoglidou
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, University Campus 54124 Thessaloniki, Greece.
| | - Chryssa Pourzitaki
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, University Campus 54124 Thessaloniki, Greece
| | - Maria Eleni Manthou
- Laboratory of Histology and Embryology, School of Medicine, Aristotle University of Thessaloniki, University Campus 54124 Thessaloniki, Greece
| | - Athanasios Saitis
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, University Campus 54124 Thessaloniki, Greece
| | - Foteini Malliou
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, University Campus 54124 Thessaloniki, Greece
| | - Dimitrios Kouvelas
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, University Campus 54124 Thessaloniki, Greece
| |
Collapse
|
5
|
Poutoglidou F, Pourzitaki C, Manthou ME, Malliou F, Saitis A, Tsimoulas I, Panagiotopoulos S, Kouvelas D. Effects of long-term infliximab and tocilizumab treatment on anxiety-like behavior and cognitive function in naive rats. Pharmacol Rep 2021; 74:84-95. [PMID: 34569017 DOI: 10.1007/s43440-021-00328-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Circulating cytokines have been proposed to be implicated in the development of mood disorders and cognitive impairment. This study aims to examine the effect of chronic treatment with infliximab, a tumor necrosis factor-alpha (TNF-alpha) inhibitor, and tocilizumab, an antibody against interleukin-6 (IL-6) receptor on anxiety-like behavior and cognitive function. METHODS Twenty-eight male, Wistar rats were randomly allocated into negative control, vehicle, infliximab and tocilizumab groups. After 8 weeks of intraperitoneal drug administration, rats performed the elevated-plus maze, the elevated-zero maze, the olfactory social memory and the passive avoidance tests. Brain sections at the level of the hippocampus, the amygdala and the prefrontal cortex were histologically examined. Finally, hippocampal and amygdaloid brain-derived neurotrophic factor (BDNF) expression was determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). RESULTS Infliximab group exhibited a significantly higher number of entries and time spent into the open arms of the mazes, showing a lower level of anxiety. In the olfactory social memory test, tocilizumab significantly increased the ratio of interaction. Both infliximab- and tocilizumab-treated animals had a significantly lower latency time in the passive avoidance test that suggests an improved memory. Histological examination revealed similar morphology and neuronal density between groups. BDNF expression levels were significantly increased in the groups receiving anti-cytokine treatment. CONCLUSIONS Our findings suggest that long-term peripheral TNF-alpha and IL-6 inhibition improves anxiety and cognitive function in rats and leads to an increased BDNF expression in the brain.
Collapse
Affiliation(s)
- Frideriki Poutoglidou
- Department of Clinical Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloníki, Greece. .,Department of Clinical Pharmacology, School of Health Sciences, Aristotle University of Thessaloniki, PO Box 1532, 54006, Thessaloníki, Greece.
| | - Chryssa Pourzitaki
- Department of Clinical Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloníki, Greece
| | - Maria Eleni Manthou
- Laboratory of Histology and Embryology, Medical School, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloníki, Greece
| | - Foteini Malliou
- Department of Clinical Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloníki, Greece
| | - Athanasios Saitis
- Department of Clinical Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloníki, Greece
| | - Ioannis Tsimoulas
- Department of Clinical Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloníki, Greece
| | - Spyridon Panagiotopoulos
- Department of Clinical Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloníki, Greece
| | - Dimitrios Kouvelas
- Department of Clinical Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloníki, Greece
| |
Collapse
|
6
|
Arterial Stiffness and Indices of Left Ventricular Diastolic Dysfunction in Patients with Embolic Stroke of Undetermined Etiology. DISEASE MARKERS 2019; 2019:9636197. [PMID: 31612072 PMCID: PMC6757252 DOI: 10.1155/2019/9636197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/04/2019] [Accepted: 07/27/2019] [Indexed: 12/31/2022]
Abstract
Purpose The study is aimed at identifying echocardiographic and circulating biomarkers as well as hemodynamic indices of embolic stroke of undetermined etiology (ESUS) in patients aged <65. Methods We prospectively investigated 520 patients with confirmed ischemic stroke and selected those 65 patients who were diagnosed with ESUS (age 54 (47-58) years, 42% male). An additional 36 without stroke but with a similar risk profile were included as a control group (age 53 (47-58) years, 61% male). All patients underwent echocardiography, noninvasive assessment of hemodynamic parameters using a SphygmoCor tonometer (AtCor Med., Australia), and measurements of selected biomarkers. Results ESUS patients and controls were well matched for baseline characteristics including blood pressure and left ventricular ejection fraction (LVEF). Compared to controls, patients with ESUS had lower mean early diastolic (E') and systolic (S') mitral annular velocities and a higher ratio of the peak velocity of early diastolic transmitral flow to the peak velocity of early diastolic mitral annular motion (all p < 0.01). The peak velocity flow in the late diastole (A wave) value and LV mass indexed to the body surface area (LVMI) (g/m2) were higher in the ESUS group than in the control group (both p < 0.01). The isovolumetric relaxation time (IVRT) was longer and the mean left atrial volume index (LAVI) was higher in ESUS patients compared to the control group. Parameters of arterial stiffness such as augmentation pressure, augmentation index, and augmentation index adjusted to a heart rate of 75 bpm (AIx75) were higher in ESUS patients compared to controls (p < 0.05). Patients in the ESUS group had higher levels of asymmetric dimethylarginine, interleukin 6, and N-terminal probrain natriuretic peptide (NT-proBNP, all p < 0.05) than those in the control group. In multivariate analysis, the following factors were significantly associated with the presence of ESUS: AIx75 (odds ratio (OR) 1.095, 95% confidence interval (CI) 1.004-1.194; p = 0.04), IVRT (OR 1.045, 95% CI: 1.009-1.082; p = 0.014), LAVI (OR 1.3, 95% CI: 1.099-1.537; p = 0.002), and NT-proBNP (OR 1.003, 95% CI: 1.001-1.005; p = 0.005). Conclusions Increased arterial stiffness and indices of diastolic dysfunction as well as a higher NT-proBNP level are significantly associated with ESUS. These parameters require further scrutiny over time to understand their impact on the development of symptomatic heart failure. The ClinicalTrials.gov identifier is NCT03377465.
Collapse
|
7
|
Neuroprotective effects of neurotropin in a mouse model of hypoxic-ischemic brain injury. J Anesth 2019; 33:495-500. [PMID: 31115666 DOI: 10.1007/s00540-019-02655-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/14/2019] [Indexed: 01/22/2023]
Abstract
PURPOSE Ischemic-hypoxic insult leads to detrimental effects on multiple organs. The brain is especially vulnerable, and it is hard to regenerate once damaged. Currently, therapeutic options are very limited. Previous studies have reported neuroprotective effects of neurotropin, a non-protein extract derived from the inflamed skin of rabbits inoculated with vaccinia virus, using a murine model of peripheral nerve injury and cultured cell lines. However, whether neurotropin might have protective effects against brain injuries remains unclear. We, therefore, investigated the neuroprotective effect of neurotropin and possible underlying mechanisms, using a mouse model of hypoxic-ischemic brain injury. METHODS Hypoxic-ischemic brain injury was induced via a combination of the left common carotid artery occlusion and exposure to hypoxic environment (8% oxygen) in adult male C57BL/6 mice. Immediately following induction of hypoxia-ischemia, mice received either saline or 2.4 units of neurotropin. The survival rate, neurological function, infarct volume, and expression of inflammatory cytokines were evaluated. RESULTS Compared to the control group, the neurotropin group exhibited a significantly higher survival rate (100% vs. 62.5%, p < 0.05) and lower neurological deficit scores (1; 0-2 vs. 3; 0-5, median; range, p < 0.05) after the hypoxic-ischemic insult. The administration of neurotropin also reduced infarct volume (18.3 ± 5.1% vs. 38.3 ± 7.2%, p < 0.05) and mRNA expression of pro-inflammatory cytokines. CONCLUSIONS The post-treatment with neurotropin improved survival and neurological outcomes after hypoxic-ischemic insult. Our results indicate that neurotropin has neuroprotective effects against hypoxic-ischemic brain injury by suppressing pro-inflammatory cytokines.
Collapse
|
8
|
Hort J, Vališ M, Kuča K, Angelucci F. Vascular Cognitive Impairment: Information from Animal Models on the Pathogenic Mechanisms of Cognitive Deficits. Int J Mol Sci 2019; 20:E2405. [PMID: 31096580 PMCID: PMC6566630 DOI: 10.3390/ijms20102405] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 12/16/2022] Open
Abstract
Vascular cognitive impairment (VCI) is the second most common cause of cognitive deficit after Alzheimer's disease. Since VCI patients represent an important target population for prevention, an ongoing effort has been made to elucidate the pathogenesis of this disorder. In this review, we summarize the information from animal models on the molecular changes that occur in the brain during a cerebral vascular insult and ultimately lead to cognitive deficits in VCI. Animal models cannot effectively represent the complex clinical picture of VCI in humans. Nonetheless, they allow some understanding of the important molecular mechanisms leading to cognitive deficits. VCI may be caused by various mechanisms and metabolic pathways. The pathological mechanisms, in terms of cognitive deficits, may span from oxidative stress to vascular clearance of toxic waste products (such as amyloid beta) and from neuroinflammation to impaired function of microglia, astrocytes, pericytes, and endothelial cells. Impaired production of elements of the immune response, such as cytokines, and vascular factors, such as insulin-like growth factor 1 (IGF-1), may also affect cognitive functions. No single event could be seen as being the unique cause of cognitive deficits in VCI. These events are interconnected, and may produce cascade effects resulting in cognitive impairment.
Collapse
Affiliation(s)
- Jakub Hort
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic.
- International Clinical Research Centre, St. Anne's University Hospital, 656 91 Brno, Czech Republic.
| | - Martin Vališ
- Department of Neurology, University Hospital Hradec Králové, Charles University in Prague, Faculty of Medicine in Hradec Králové, Sokolská Street 581, 500 05 Hradec Králové, Czech Republic.
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 500 05 Hradec Kralove, Czech Republic.
| | - Francesco Angelucci
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic.
| |
Collapse
|
9
|
Yu L, Duan Y, Zhao Z, He W, Xia M, Zhang Q, Cao X. Hydroxysafflor Yellow A (HSYA) Improves Learning and Memory in Cerebral Ischemia Reperfusion-Injured Rats via Recovering Synaptic Plasticity in the Hippocampus. Front Cell Neurosci 2018; 12:371. [PMID: 30405354 PMCID: PMC6200869 DOI: 10.3389/fncel.2018.00371] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/28/2018] [Indexed: 12/31/2022] Open
Abstract
Hydroxysafflor yellow A (HSYA) is the major active chemical component of the safflower plant flower, which is widely used in Chinese medicine for cerebrovascular and cardiovascular disease treatment. Recent studies have demonstrated that HSYA exerts neuroprotective effect on cerebral ischemia, such as neuronal anti-apoptosis, antioxidant activity and oxygen free radical-scavenging. However, whether and how HSYA has a protective effect on cognitive impairment induced by cerebral ischemia reperfusion remains elusive. In the present study, by using the middle cerebral artery occlusion (MCAO) model, we found that 8 mg/kg and 16 mg/kg HSYA administration by common carotid artery (CCA) injection improved impaired cognitive function in Morris water maze (MWM) and passive avoidance tasks, but not 4 mg/kg HSYA treatment, suggesting that HSYA treatment in a certain concentration can improve cognitive impairment in MCAO rats. Furthermore, we found that 8 mg/kg HSYA treatment rescued the impaired long-term potentiation (LTP) in hippocampus of MCAO rats. Taken together, these results for the first time demonstrate that HSYA has the capacity to protect cognitive function and synaptic plasticity against cerebral ischemia-reperfusion injury, and provide a new insight that HSYA may be a promising alternative for recovery of cognitive dysfunction after brain ischemic injury.
Collapse
Affiliation(s)
- Lu Yu
- Comprehensive Department of Traditional Chinese Medicine, Putuo Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanhong Duan
- Shanghai Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zheng Zhao
- Shanghai Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, China
| | - Wendi He
- Shanghai Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, China
| | - Ming Xia
- Comprehensive Department of Traditional Chinese Medicine, Putuo Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiujuan Zhang
- Department of Neurology, Yueyang Hospital of Integrated Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaohua Cao
- Shanghai Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|