1
|
Du J, Li Y, Su Y, Zhi W, Zhang J, Zhang C, Wang J, Deng W, Zhao S. LncRNA Pnky Positively Regulates Neural Stem Cell Migration by Modulating mRNA Splicing and Export of Target Genes. Cell Mol Neurobiol 2023; 43:1199-1218. [PMID: 35748966 PMCID: PMC11414454 DOI: 10.1007/s10571-022-01241-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 06/06/2022] [Indexed: 11/28/2022]
Abstract
Directed migration of neural stem cells (NSCs) is critical for embryonic neurogenesis and the healing of neurological injuries. The long noncoding RNA (lncRNA) Pnky has been reported to regulate neuronal differentiation of NSCs by interacting with PTBP1. However, its regulatory effect on NSC migration remains to be determined. Herein, we identified that Pnky is also a key regulator of NSC migration in mice, as underscored by the finding that Pnky silencing suppressed but Pnky overexpression promoted the in vitro migration of both C17.2 and NE4C murine NSCs. Additionally, in vivo cell tracking demonstrated that Pnky depletion attenuated but Pnky overexpression facilitated the migration of NE4C cells in the spinal canal after transplantation via injection into the spinal canal. Mechanistically, Pnky regulated the expression of a core set of critical regulators that direct NSC migration, including MMP2, MMP9, Connexin43, Paxillin, AKT, ERK, and P38MAPK. Using catRAPID, a web server for large-scale prediction of protein-RNA interactions, the splicing factors U2AF1 and U2AF1L4, as well as the mRNA export adaptors SARNP, Aly/Ref, and THOC7, were predicted to interact strongly with Pnky. Further investigations using colocalization and RNA immunoprecipitation (RIP) assays confirmed the direct binding of Pnky to U2AF1, SARNP, Aly/Ref, and THOC7. Transcriptomic profiling revealed that as many as 5319 differential splicing events of 3848 genes, which were highly enriched in focal adhesion, PI3K-Akt and MAPK signaling pathways, were affected by Pnky depletion. The predominant subtype of differential splicing by Pnky depletion is intron retention, followed by alternative 5' and 3' splice sites and mutually exclusive exons. Moreover, Pnky knockdown substantially blocked but Pnky overexpression facilitated the export of MMP2, Paxillin, AKT, p38MAPK, and other mRNAs to the cytosol. Collectively, our data showed that through interacting with U2AF1, SARNP, Aly/Ref, and THOC7, Pnky couples and modulates the splicing and export of target mRNAs, which consequently controlling NSC migration. These findings provide a possible theoretical basis of NSC migration regulation.
Collapse
Affiliation(s)
- Jiannan Du
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China
| | - Yuan Li
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China
| | - Yuting Su
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China
| | - Wenqian Zhi
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China
| | - Jiale Zhang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China
| | - Cheng Zhang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China
| | - Juan Wang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China
| | - Wensheng Deng
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China.
| | - Shasha Zhao
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, People's Republic of China.
| |
Collapse
|
2
|
McIntosh R, Hidalgo M, Lobo J, Dillon K, Szeto A, Hurwitz BE. Circulating endothelial and angiogenic cells predict hippocampal volume as a function of HIV status. J Neurovirol 2023; 29:65-77. [PMID: 36418739 DOI: 10.1007/s13365-022-01101-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/27/2022]
Abstract
Circulating endothelial cells (CECs) and myeloid angiogenic cells (MACs) have the capacity to stabilize human blood vessels in vivo. Evidence suggests that these cells are depleted in dementia and in persons living with HIV (PWH), who have a higher prevalence of dementia and other cognitive deficits associated with aging. However, the associations of CECs and MACs with MRI-based measures of aging brain health, such as hippocampal gray matter volume, have not been previously demonstrated. The present study examined differences in these associations in 51 postmenopausal women with and without HIV infection. Gray matter volume was quantified using MRI. CECs and MACs were enumerated using fluorescence-activated cell sorting. Analyses examined the association of these cell counts with left and right hippocampal gray matter volume while controlling for age and hypertension status. The main finding was an interaction suggesting that compared to controls, postmenopausal PWH with greater levels of CECs and MACs had significantly greater hippocampus GMV. Further research is necessary to examine potential underlying pathophysiological mechanisms in HIV infection linking morpho-functional circulatory reparative processes with more diminished hippocampal volume in postmenopausal women.
Collapse
Affiliation(s)
- Roger McIntosh
- Department of Psychology, College of Arts and Sciences, University of Miami, Miami, FL, USA.
- Behavioral Medicine Research Center, University of Miami, Miami, FL, USA.
- Division of Public Health Sciences, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Melissa Hidalgo
- Department of Internal Medicine, Broward Health North, Fort Lauderdale, FL, USA
| | - Judith Lobo
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Kaitlyn Dillon
- Department of Psychology, College of Arts and Sciences, University of Miami, Miami, FL, USA
| | - Angela Szeto
- Department of Psychology, College of Arts and Sciences, University of Miami, Miami, FL, USA
| | - Barry E Hurwitz
- Department of Psychology, College of Arts and Sciences, University of Miami, Miami, FL, USA
- Behavioral Medicine Research Center, University of Miami, Miami, FL, USA
- Division of Endocrinology, Diabetes and Metabolism, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
3
|
Taché Y, Saavedra JM. Introduction to the Special Issue "The Brain-Gut Axis". Cell Mol Neurobiol 2022; 42:311-313. [PMID: 34652580 PMCID: PMC11441172 DOI: 10.1007/s10571-021-01155-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 10/01/2021] [Indexed: 02/07/2023]
Abstract
This special Issue presents comprehensive and state-of-the-art advances in supporting the crucial role of the bidirectional interactions between the Brain-Gut Axis in health and diseases with an emphasis on the microbiome-gut-brain axis and its implications in variety of neurological disorders. There are intimate connections between the brain and the digestive system. Gut microbiota dysbiosis activates the intestinal immune system, enhances intestinal permeability and bacterial translocation, leading to neuroinflammation, epigenetic changes, cerebrovascular alterations, amyloid β formation and α-synuclein protein aggregates. These alterations may participate in the development of hypertension, Alzheimer, Parkinson, stroke, epilepsy and autism. Brainstem nuclei such as the nucleus tractus solitarius (NTS) and the dorsal motor nucleus of the vagus (DMV) regulate gastric motor function by way of bidirectional inputs through the vagus nerve.
Collapse
Affiliation(s)
- Yvette Taché
- David Geffen School of Medicine at UCLA, 11301 Wilshire Boulevard, CURE Building 115, Room 117, Los Angeles, CA, 90073, USA
| | - Juan M Saavedra
- Department of Pharmacology and Physiology, Georgetown University Medical Center, SE402 Med/Dent, 3900, Reservoir Road, Washington, DC, 20057, USA.
| |
Collapse
|
4
|
Li C, Huang S, Zhou W, Xie Z, Xie S, Li M. Effects of the Notch Signaling Pathway on Secondary Brain Changes Caused by Spinal Cord Injury in Mice. Neurochem Res 2022; 47:1651-1663. [PMID: 35211828 DOI: 10.1007/s11064-022-03558-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/22/2022] [Accepted: 02/14/2022] [Indexed: 12/15/2022]
Abstract
Spinal cord injury (SCI) can cause secondary brain changes, leading to hypomyelination in the dorsolateral prefrontal cortex (dlPFC). Some studies have shown that notch signaling pathway activation can regulate oligodendrocyte maturation and myelination. The aim of this study was to investigate whether inhibition of the Notch signaling pathway can alleviate hypomyelination in the dlPFC caused by SCI. Moreover, we further investigated whether the changes in myelination in the dlPFC are associated with neuropathic pain following SCI. We established a mouse model of SCI and observed the changes in mechanical and thermal hyperalgesia. Western blotting and immunofluorescence were used to analyze the changes in myelination in the dlPFC. The results indicated the existence of a relationship between activation of the Notch signaling pathway and hypomyelination in the dlPFC and confirmed the existence of a relationship between hypomyelination in the dlPFC and decreases in mechanical and thermal hyperalgesia thresholds. In conclusion, these results suggested that the Notch signaling pathway is activated after SCI, leading to hypomyelination in the dlPFC, and that DAPT can inhibit the Notch signaling pathway and improve mechanical and thermal hyperalgesia thresholds. Our findings provide a new target for the treatment of neuropathic pain caused by SCI.
Collapse
Affiliation(s)
- Chengcai Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, NO17 Yong Wai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Shaoxin Huang
- School of Basic Medicine, Jiujiang University, Jiujiang, 332005, Jiangxi, People's Republic of China
| | - Wu Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, NO17 Yong Wai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Zhiping Xie
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, NO17 Yong Wai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Shenke Xie
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, NO17 Yong Wai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, NO17 Yong Wai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|