1
|
Li Y, Liang SH. Novel 2-Pyrrolidone Derivatives as Negative Allosteric Modulators of GluN2B-Containing NMDA Receptors. ACS Med Chem Lett 2025; 16:719-720. [PMID: 40365407 PMCID: PMC12067126 DOI: 10.1021/acsmedchemlett.5c00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Indexed: 05/15/2025] Open
Abstract
This patent highlight describes a series of novel 2-pyrrolidone derivatives that act as negative allosteric modulators (NAMs) of GluN2B-containing N-methyl-d-aspartic acid receptors (NMDARs). These compounds target the ifenprodil binding site of the NMDA receptor and exhibit enhanced metabolic stability compared to traditional phenolic-based molecules.
Collapse
Affiliation(s)
- Yinlong Li
- Department of Radiology and
Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Steven H. Liang
- Department of Radiology and
Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| |
Collapse
|
2
|
Li Y, Liang SH. Novel Piperazine Derivatives as Selective Antagonists of GluN2B-Containing NMDARs under Acidic pH Conditions. ACS Med Chem Lett 2025; 16:354-355. [PMID: 40104803 PMCID: PMC11912267 DOI: 10.1021/acsmedchemlett.5c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Indexed: 03/20/2025] Open
Abstract
This highlight describes novel piperazine derivatives as negative allosteric modulators targeting GluN2B-containing N-methyl-d-aspartic acid receptors (NMDARs). These compounds exhibit enhanced binding affinities to GluN2B under acidic conditions. Additionally, their binding selectivity and pharmaceutical formulations are discussed.
Collapse
Affiliation(s)
- Yinlong Li
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| |
Collapse
|
3
|
Okubo R, Okada M, Motomura E. Dysfunction of the NMDA Receptor in the Pathophysiology of Schizophrenia and/or the Pathomechanisms of Treatment-Resistant Schizophrenia. Biomolecules 2024; 14:1128. [PMID: 39334894 PMCID: PMC11430065 DOI: 10.3390/biom14091128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
For several decades, the dopamine hypothesis contributed to the discovery of numerous typical and atypical antipsychotics and was the sole hypothesis for the pathophysiology of schizophrenia. However, neither typical nor atypical antipsychotics, other than clozapine, have been effective in addressing negative symptoms and cognitive impairments, which are indices for the prognostic and disability outcomes of schizophrenia. Following the development of atypical antipsychotics, the therapeutic targets for antipsychotics expanded beyond the blockade of dopamine D2 and serotonin 5-HT2A receptors to explore the partial agonism of the D2 receptor and the modulation of new targets, such as D3, 5-HT1A, 5-HT7, and metabotropic glutamate receptors. Despite these efforts, to date, psychiatry has not successfully developed antipsychotics with antipsychotic properties proven to be superior to those of clozapine. The glutamate hypothesis, another hypothesis regarding the pathophysiology/pathomechanism of schizophrenia, was proposed based on clinical findings that N-methyl-D-aspartate glutamate receptor (NMDAR) antagonists, such as phencyclidine and ketamine, induce schizophrenia-like psychotic episodes. Large-scale genome-wide association studies (GWASs) revealed that approximately 30% of the risk genes for schizophrenia (the total number was over one hundred) encode proteins associated with glutamatergic transmission. These findings supported the validation of the glutamate hypothesis, which was inspired by the clinical findings regarding NMDAR antagonists. Additionally, these clinical and genetic findings suggest that schizophrenia is possibly a syndrome with complicated pathomechanisms that are affected by multiple biological and genetic vulnerabilities. The glutamate hypothesis has been the most extensively investigated pathophysiology/pathomechanism hypothesis, other than the dopamine hypothesis. Studies have revealed the possibility that functional abnormalities of the NMDAR play important roles in the pathophysiology/pathomechanism of schizophrenia. However, no antipsychotics derived from the glutamatergic hypothesis have yet been approved for the treatment of schizophrenia or treatment-resistant schizophrenia. Considering the increasing evidence supporting the potential pro-cognitive effects of glutamatergic agents and the lack of sufficient medications to treat the cognitive impairments associated with schizophrenia, these previous setbacks cannot preclude research into potential novel glutamate modulators. Given this background, to emphasize the importance of the dysfunction of the NMDAR in the pathomechanism and/or pathophysiology of schizophrenia, this review introduces the increasing findings on the functional abnormalities in glutamatergic transmission associated with the NMDAR.
Collapse
Affiliation(s)
| | - Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (R.O.); (E.M.)
| | | |
Collapse
|
4
|
Jiang L, Liu N, Zhao F, Huang B, Kang D, Zhan P, Liu X. Discovery of GluN2A subtype-selective N-methyl-d-aspartate (NMDA) receptor ligands. Acta Pharm Sin B 2024; 14:1987-2005. [PMID: 38799621 PMCID: PMC11119548 DOI: 10.1016/j.apsb.2024.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/04/2023] [Accepted: 12/28/2023] [Indexed: 05/29/2024] Open
Abstract
The N-methyl-d-aspartate (NMDA) receptors, which belong to the ionotropic Glutamate receptors, constitute a family of ligand-gated ion channels. Within the various subtypes of NMDA receptors, the GluN1/2A subtype plays a significant role in central nervous system (CNS) disorders. The present article aims to provide a comprehensive review of ligands targeting GluN2A-containing NMDA receptors, encompassing negative allosteric modulators (NAMs), positive allosteric modulators (PAMs) and competitive antagonists. Moreover, the ligands' structure-activity relationships (SARs) and the binding models of representative ligands are also discussed, providing valuable insights for the clinical rational design of effective drugs targeting CNS diseases.
Collapse
Affiliation(s)
| | | | - Fabao Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Boshi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
5
|
Ladagu AD, Olopade FE, Adejare A, Olopade JO. GluN2A and GluN2B N-Methyl-D-Aspartate Receptor (NMDARs) Subunits: Their Roles and Therapeutic Antagonists in Neurological Diseases. Pharmaceuticals (Basel) 2023; 16:1535. [PMID: 38004401 PMCID: PMC10674917 DOI: 10.3390/ph16111535] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are ion channels that respond to the neurotransmitter glutamate, playing a crucial role in the permeability of calcium ions and excitatory neurotransmission in the central nervous system (CNS). Composed of various subunits, NMDARs are predominantly formed by two obligatory GluN1 subunits (with eight splice variants) along with regulatory subunits GluN2 (GluN2A-2D) and GluN3 (GluN3A-B). They are widely distributed throughout the CNS and are involved in essential functions such as synaptic transmission, learning, memory, plasticity, and excitotoxicity. The presence of GluN2A and GluN2B subunits is particularly important for cognitive processes and has been strongly implicated in neurodegenerative diseases like Parkinson's disease and Alzheimer's disease. Understanding the roles of GluN2A and GluN2B NMDARs in neuropathologies provides valuable insights into the underlying causes and complexities of major nervous system disorders. This knowledge is vital for the development of selective antagonists targeting GluN2A and GluN2B subunits using pharmacological and molecular methods. Such antagonists represent a promising class of NMDA receptor inhibitors that have the potential to be developed into neuroprotective drugs with optimal therapeutic profiles.
Collapse
Affiliation(s)
- Amany Digal Ladagu
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria; (A.D.L.); (J.O.O.)
| | - Funmilayo Eniola Olopade
- Developmental Neurobiology Laboratory, Department of Anatomy, College of Medicine, University of Ibadan, Ibadan 200284, Nigeria
| | - Adeboye Adejare
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, PA 19131, USA
| | - James Olukayode Olopade
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria; (A.D.L.); (J.O.O.)
| |
Collapse
|
6
|
Harrison PJ, Bannerman DM. GRIN2A (NR2A): a gene contributing to glutamatergic involvement in schizophrenia. Mol Psychiatry 2023; 28:3568-3572. [PMID: 37736757 PMCID: PMC10730418 DOI: 10.1038/s41380-023-02265-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023]
Abstract
Involvement of the glutamate system, particularly N-methyl-D-aspartate (NMDA) receptor hypofunction, has long been postulated to be part of the pathophysiology of schizophrenia. An important development is provided by recent data that strongly implicate GRIN2A, the gene encoding the NR2A (GluN2A) NMDA receptor subunit, in the aetiology of the disorder. Rare variants and common variants are both robustly associated with genetic risk for schizophrenia. Some of the rare variants are point mutations likely affecting channel function, but most are predicted to cause protein truncation and thence result, like the common variants, in reduced gene expression. We review the genomic evidence, and the findings from Grin2a mutant mice and other models which give clues as to the likely phenotypic impacts of GRIN2A genetic variation. We suggest that one consequence of NR2A dysfunction is impairment in a form of hippocampal synaptic plasticity, producing deficits in short-term habituation and thence elevated and dysregulated levels of attention, a phenotype of relevance to schizophrenia and its cognitive aspects.
Collapse
Affiliation(s)
- Paul J Harrison
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK.
- Oxford Health NHS Foundation Trust, Oxford, UK.
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| |
Collapse
|
7
|
McNearney TA, Westlund KN. Pluripotential GluN1 (NMDA NR1): Functional Significance in Cellular Nuclei in Pain/Nociception. Int J Mol Sci 2023; 24:13196. [PMID: 37686003 PMCID: PMC10488196 DOI: 10.3390/ijms241713196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
The N-methyl-D-aspartate (NMDA) glutamate receptors function as plasma membrane ionic channels and take part in very tightly controlled cellular processes activating neurogenic and inflammatory pathways. In particular, the NR1 subunit (new terminology: GluN1) is required for many neuronal and non-neuronal cell functions, including plasticity, survival, and differentiation. Physiologic levels of glutamate agonists and NMDA receptor activation are required for normal neuronal functions such as neuronal development, learning, and memory. When glutamate receptor agonists are present in excess, binding to NMDA receptors produces neuronal/CNS/PNS long-term potentiation, conditions of acute pain, ongoing severe intractable pain, and potential excitotoxicity and pathology. The GluNR1 subunit (116 kD) is necessary as the anchor component directing ion channel heterodimer formation, cellular trafficking, and the nuclear localization that directs functionally specific heterodimer formation, cellular trafficking, and nuclear functions. Emerging studies report the relevance of GluN1 subunit composition and specifically that nuclear GluN1 has major physiologic potential in tissue and/or subnuclear functioning assignments. The shift of the GluN1 subunit from a surface cell membrane to nuclear localization assigns the GluN1 promoter immediate early gene behavior with access to nuclear and potentially nucleolar functions. The present narrative review addresses the nuclear translocation of GluN1, focusing particularly on examples of the role of GluN1 in nociceptive processes.
Collapse
Affiliation(s)
- Terry A. McNearney
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch Galveston, Galveston, TX 77555-1043, USA;
- Department of Internal Medicine, University of Texas Medical Branch Galveston, Galveston, TX 77555-1043, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch Galveston, Galveston, TX 77555-1043, USA
| | - Karin N. Westlund
- Department of Anesthesiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
- Biomedical Laboratory Research & Development (121F), New Mexico VA Health Care System, Albuquerque, NM 87108-5153, USA
| |
Collapse
|
8
|
Raymundi AM, Batista Sohn JM, Salemme BW, Cardoso NC, Silveira Guimarães F, Stern CA. Effects of delta-9 tetrahydrocannabinol on fear memory labilization and reconsolidation: A putative role of GluN2B-NMDA receptor within the dorsal hippocampus. Neuropharmacology 2023; 225:109386. [PMID: 36549374 DOI: 10.1016/j.neuropharm.2022.109386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/23/2022]
Abstract
Cannabis preparations could be an effective reconsolidation-based treatment for post-traumatic stress disorder. However, the effects of Δ9-tetrahydrocannabinol (THC) in fear memory labilization, a critical condition for retrieval-induced reconsolidation, are undetermined. We sought to investigate the effect of a conventional and an ultra-low dose of THC in memory labilization of adult male Wistar rats submitted to contextual fear conditioning. Pretreatment with THC 0.002, but not THC 0.3 mg/kg, i. p., before memory retrieval, did not change memory expression during the retrieval but impaired reconsolidation. No treatment changed freezing expression in an unpaired context. Before retrieval, THC 0.3, but not THC 0.002, decreased GluN2A-NMDA expression and the GluN2A/GluN2B ratio in the dorsal hippocampus (DH) 24 h later. No changes were observed immediately after retrieval. Pretreatment with THC 0.3 abolished the reconsolidation-impairing effect of anisomycin injected into the DH, suggesting an impairment in memory labilization. This effect was associated with an increased freezing expression in the unpaired context and was not observed with the THC ultra-low dose. The GluN2B-NMDA antagonism increased fear generalization in the anisomycin-treated group but restored its reconsolidation-impairing effect and reduced fear generalization when animals were pretreated with THC 0.3. GluN2A-NMDA antagonism or inhibition of the ubiquitin-proteasome system in the DH did not interfere with the effects of THC 0.3. Our findings indicate that THC causes a bidirectional effect on fear memory labilization that depends on hippocampal GluN2B-NMDA receptors' involvement in fear memory generalization.
Collapse
Affiliation(s)
- Ana Maria Raymundi
- Department of Pharmacology, Federal University of Parana, Curitiba, PR, Brazil
| | | | | | | | | | | |
Collapse
|
9
|
Zhao Y, Wu X, Tang M, Shi L, Gong S, Mei X, Zhao Z, He J, Huang L, Cui W. Late-life depression: Epidemiology, phenotype, pathogenesis and treatment before and during the COVID-19 pandemic. Front Psychiatry 2023; 14:1017203. [PMID: 37091719 PMCID: PMC10119596 DOI: 10.3389/fpsyt.2023.1017203] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/15/2023] [Indexed: 04/25/2023] Open
Abstract
Late-life depression (LLD) is one of the most common mental disorders among the older adults. Population aging, social stress, and the COVID-19 pandemic have significantly affected the emotional health of older adults, resulting in a worldwide prevalence of LLD. The clinical phenotypes between LLD and adult depression differ in terms of symptoms, comorbid physical diseases, and coexisting cognitive impairments. Many pathological factors such as the imbalance of neurotransmitters, a decrease in neurotrophic factors, an increase in β-amyloid production, dysregulation of the hypothalamic-pituitary-adrenal axis, and changes in the gut microbiota, are allegedly associated with the onset of LLD. However, the exact pathogenic mechanism underlying LLD remains unclear. Traditional selective serotonin reuptake inhibitor therapy results in poor responsiveness and side effects during LLD treatment. Neuromodulation therapies and complementary and integrative therapies have been proven safe and effective for the treatment of LLD. Importantly, during the COVID-19 pandemic, modern digital health intervention technologies, including socially assistive robots and app-based interventions, have proven to be advantageous in providing personal services to patients with LLD.
Collapse
Affiliation(s)
- Yuanzhi Zhao
- Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Xiangping Wu
- Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Min Tang
- Department of Neurology, Ningbo Rehabilitation Hospital, Ningbo, Zhejiang, China
| | - Lingli Shi
- Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Shuang Gong
- Department of Neurology, Ningbo Rehabilitation Hospital, Ningbo, Zhejiang, China
| | - Xi Mei
- Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Zheng Zhao
- Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Jiayue He
- Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Ling Huang
- Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Wei Cui
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, Translational Medicine Center of Pain, Emotion and Cognition, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- *Correspondence: Wei Cui,
| |
Collapse
|